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A B S T R A C T

Ecological, economic, and social demands triggered a shift in the management of temperate deciduous forests
from rotation forestry system towards more nature-based forest management techniques such as continuous
cover forestry. However, there is insufficient knowledge on the regeneration success of different tree specie-
s—especially oaks—within this management system. Through a systematic experiment, we compared the re-
generation processes of a sessile oak-hornbeam forest after gap-cutting (as an element of continuous cover
forestry system) to regeneration after clear-cutting, preparation cutting, and in retention tree groups (treatments
of rotation forestry system). A managed, closed, mature forest was used as control. Several different aspects of
the regeneration were studied: (1) seed supply of sessile oak—Quercus petraea (Matt.) Liebl., (2) species number
and abundance of the natural regeneration, (3) survival and growth of individual saplings of five tree species
(sessile and Turkey oak—Quercus cerris L., hornbeam—Carpinus betulus L., beech—Fagus sylvatica L., and
common ash—Fraxinus excelsior L.). The number of acorns was high in closed forest, intermediate in preparation
cutting and retention tree group, low in gaps, and zero in clear-cutting. Four years after the interventions, there
was no detectable treatment effect on the species number of regeneration. Survival increased in every treatment
compared to control, but there was no significant difference in this measure between the differently treated sites.
Height growth was highest in the gaps and clear-cuts, intermediate in preparation cuts, and lowest in retention
tree groups and controls. Species with different seed dispersal mechanisms responded differently to treatments:
oaks were dispersal-limited in the gaps and clear-cuts, while anemochorous species (e.g., hornbeam and manna
ash) were present in every treatment. The survival and growth pattern of the particular species proved to be
similar, but the intensity of the response differed: shade-tolerants (hornbeam, beech, and ash) showed better
survival than oaks in most treatments, and their height growth was larger. According to our results, oak re-
generation establishes successfully in oak-hornbeam forests not only in the case of rotation forestry, but also
during continuous cover forestry (gap-cutting). The survival and growth of the saplings are similar in cutting
areas and gaps, but keeping in mind other considerations (such as preserving forest continuity, balanced site
conditions, and forest biodiversity), continuous cover forestry should be preferred.

1. Introduction

Forest management is an elementary driver of forest biodiversity
(Lindenmayer and Franklin 2002, Paillet et al. 2010) and regeneration
(Phillips and Shure 1990, Huggard and Vyse 2002, Man et al. 2009). In
the last decades, an on-going shift has been observed in temperate
deciduous forests from rotation forestry system towards a more nature-

based forest management that has been triggered by conservational,
economic, and social demands (Matthews 1991, von Lüpke 1998,
Pommerening and Murphy 2004, Gustafsson et al. 2012). From ecolo-
gical perspective, the main disadvantage of the most widely used even-
aged rotation forestry system is the temporal discontinuity of the forest
environment (Bengtsson et al. 2000, Uhía and Briones 2002, Fenton
et al. 2003). Regeneration in cutting areas also comes up with some

https://doi.org/10.1016/j.foreco.2019.117810
Received 3 October 2019; Received in revised form 2 December 2019; Accepted 4 December 2019

⁎ Corresponding author.
E-mail addresses: tinya.flora@okologia.mta.hu (F. Tinya), kovacs.bence@okologia.mta.hu (B. Kovács), aszalos.reka@okologia.mta.hu (R. Aszalós),

totib92@gmail.com (B. Tóth), Csepanyi.Peter@pprt.hu (P. Csépányi), nemeth.csaba@okologia.mta.hu (C. Németh), odor.peter@okologia.mta.hu (P. Ódor).

Forest Ecology and Management 459 (2020) 117810

0378-1127/ © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/03781127
https://www.elsevier.com/locate/foreco
https://doi.org/10.1016/j.foreco.2019.117810
https://doi.org/10.1016/j.foreco.2019.117810
mailto:tinya.flora@okologia.mta.hu
mailto:kovacs.bence@okologia.mta.hu
mailto:aszalos.reka@okologia.mta.hu
mailto:totib92@gmail.com
mailto:Csepanyi.Peter@pprt.hu
mailto:nemeth.csaba@okologia.mta.hu
mailto:odor.peter@okologia.mta.hu
https://doi.org/10.1016/j.foreco.2019.117810
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foreco.2019.117810&domain=pdf


difficulties: because of the harsh environmental conditions (e.g., higher
solar irradiance, extreme temperature fluctuations, higher wind speed,
low air humidity, extreme plant surface temperature that can deplete
photosynthesis and injure plant tissues, increased exposure to frost
damage), regeneration is often unsuccessful (Keenan and Kimmins
1993, Man and Lieffers 1997, Fleming et al. 1998, Kellner and Swihart
2016). In the case of clear-cutting, artificial regeneration and compe-
tition control are necessary, which need large human effort and cost
(Dey et al. 2008). These problems can be mitigated by applying uniform
shelterwood system instead of clear-cutting (Matthews 1991, Brose
2011). It is based on natural regeneration but does not solve the pro-
blem of temporal discontinuity if a final cut is applied. Clear-cuts and
the final cuts of uniform shelterwood system can be combined with
retention tree groups that ameliorate the negative effects of the cutting
areas on biodiversity and regeneration (Lindenmayer et al. 2012).
However, there is a lot of uncertainty regarding their buffering capa-
city: the success depends on the given forest type, the level of retention,
and the investigated organism groups (Gustafsson et al. 2012,
Fedrowitz et al. 2014).

Continuous cover forestry offers uneven-aged stands as an alter-
native to rotation forestry systems (Möller 1922, von Gadow et al.
2002, Pommerening and Murphy 2004, Diaci 2006, Schütz et al. 2012,
Pro Silva 2019). In continuous cover forestry system, the formation of
smaller gaps instead of large cutting areas keeps the continuity of the
canopy cover and of the forest environment at stand scale. Within the
stand, this forestry system maintains heterogeneous stand structure,
variable and balanced age- and diameter-distribution, while higher tree
species diversity, essential structural elements and microhabitats can
also be preserved (Pommerening and Murphy 2004, Diaci 2006). As a
result, it can be more favorable for forest biodiversity (Alder et al. 2018,
Elek et al. 2018, Tinya et al. 2019a), may provide more ecosystem
services (Pukkala 2016), and supports more the multifunctionality of
the forests (Peura et al. 2018). It also has substantial benefits from the
regeneration viewpoint, for example, the saplings are not exposed to
extreme microclimatic conditions as in cutting areas (Keenan and
Kimmins 1993). Mimicking the natural stand dynamic, continuous
cover forestry can better build upon natural regeneration, which can be
a possible option for sustainable forest management (Emborg 1998,
Modrý et al. 2004). By lower investments for tending, and by harvesting
large, valuable trees, continuous cover forestry can be also economic-
ally beneficial (Knoke 2009, Diaci and Firm 2011, Csépányi and Csór
2017). Providing for the natural regeneration of the dominant tree
species is an elementary condition for the successful application of
continuous cover forestry. Concerning this issue, a huge amount of
forestry experiences has been accumulated (e.g., Möller, 1922,
Leibundgut 1986, Sturm 1993, Diaci 2006, Schütz 2011); however,
both the management practice and the base research still suffer from
some uncertainties. Thus, it is essential to compare the regeneration
processes of continuous cover forestry and rotation forestry under si-
milar circumstances, but such comparative experiments are rather rare
(Huggard and Vyse 2002, Mason et al. 2004, Looney et al. 2017),
especially concerning of oak forests (Phillips and Shure 1990).

The regeneration (establishment, survival, and growth) of various
deciduous tree species of the temperate region to the particular forestry
treatments is different. There is substantial evidence concerning the
regeneration of European beech (Fagus sylvatica L.) (Standovár and
Kenderes 2003, Mountford et al. 2006, Feldmann et al. 2018). It is well
known that it can successfully regenerate in old-growth stands char-
acterized by fine-scale gap dynamics (Emborg 1998, Mihók et al. 2005,
Feldmann et al. 2018) and that irregular shelterwood and group se-
lection systems can be applied effectively in beech-dominated managed
forests (Mountford et al. 2006, Nocentini 2009, Csépányi and Csór
2017). Much less information is available about the regeneration of
admixing tree species within various forestry systems, although they
are also instrumental in forest regeneration (Modrý et al. 2004). Even
the shade-tolerant species differ in their tolerance of shade and in their

response to the developed gaps (Canham 1989, Modrý et al. 2004,
Barna and Bosela 2015). Emborg (1998) stated that regeneration of
common ash (Fraxinus excelsior L.) is similarly strongly shade-tolerant
as beech, while, according to Beck et al. (2016), common ash is light-
demanding in its mature stage. Hornbeam (Carpinus betulus L.) is also
considered a shade-tolerant species (Modrý et al. 2004, Tinya et al.
2009), however, the occurrence of its saplings within a stand is related
to the light pattern (Tinya and Ódor 2016). Even less is known about
the regeneration of oaks (Quercus spp.) in gaps; although, oaks are
among the most important tree species in temperate deciduous forests,
both from ecological and economical perspectives (McShea and Healy
2002, EEA 2007). Nowadays, regeneration of oaks is a crucial issue in
forest management. Both in North America and Europe, it is often ob-
served that in unmanaged oak forests, shade-tolerant species regenerate
instead of oaks (Feist et al. 2004, Petritan et al. 2013, Saniga et al.
2014). In North America, it is mainly maple species (Acer spp.) (Abrams
et al. 1997, Feist et al. 2004). In Western Europe and the Carpathian
Mountains, beech became dominant over sessile oak—Quercus petraea
(Matt.) Liebl. (Rohner et al. 2012, Petritan et al. 2013). In the lowland
oak forests of Poland and in the oak-hornbeam forests of Hungary,
hornbeam is the main species in the regeneration layer (Brzeziecki et al.
2016, Standovár et al. 2017). Similarly, the retreat of oaks is also ob-
servable in the natural regeneration of managed oak stands (Van
Couwenberghe et al. 2013, Kollár 2018).

Oaks are considered to be light-demanding species that need large
open areas to regenerate (Thomas and Packham 2007, Bobiec et al.
2011). Historically, these open areas are related to large-scale natural
disturbances or human land-use. In North America, fire is considered
the main driver (Cowell et al. 2010, Nemens et al. 2018). In Europe,
open landscapes were maintained by large herbivores (according to the
wood-pasture concept of Vera 2000) or by traditional human land-use
(Bobiec et al. 2011, Saniga et al. 2014). Based on the “oakscape” con-
cept of Bobiec et al. (2018), many recent oak-dominated stands re-
generated in various kinds of open and transitional habitats (e.g.,
meadows, fallowed croplands, wood pastures, etc.), which were more
abundant in the past at the landscape-scale. However, nowadays
landscape mosaics are more fixed and segregated, and from the man-
agement perspective, oak regeneration should be located in the current
forest areas.

There are evidences of successful regeneration of oaks and other
shade-intolerant species in gaps (von Lüpke 1998, Diaci et al. 2008,
Varga 2013, Csiszár et al. 2014, Schütz et al. 2016). Some studies
suggest that oak can regenerate in gaps if the saplings of shade-tolerant
species are controlled (von Lüpke 1998, Van Couwenberghe et al.
2013). According to Bobiec (2007) and Thomas and Packham (2007),
regeneration of oaks can be successful in gaps in special ephemeral
circumstances (e.g., spots of exposed mineral material, inaccessibility to
browsers) or by means of proper forest site conditions and under an
open canopy layer. According to Kellner and Swihart (2016), it depends
on complex agents such as the intensity of disturbances, abiotic factors,
herbivore pressure, competition, or weather conditions.

The numerous, above-mentioned knowledge gaps lead us to im-
plement a study, which investigates the regeneration of sessile oak-
hornbeam forests, after different forestry treatments, in a uniform, ex-
perimental framework. We compared the effects of the typical treat-
ments of the rotation forestry system (preparation cutting, clear-cut-
ting, and retention tree group) and the impacts of a widely used
element of the continuous cover forestry system (gap-cutting). In
Hungary, the sessile oak-hornbeam stands are typically managed in
even-aged uniform shelterwood system, where the regeneration felling
is usually divided into two or three steps. The preparation cutting and
the seeding cutting generally happen in one step, when the mature trees
has cropped well. This cutting removes approximately the 30% of the
growing stock. After a couple of years, it is followed by the secondary
cutting, and later by the final cutting. Many times, these last two op-
erations are carried out in one step, as well, when the seedlings are

F. Tinya, et al. Forest Ecology and Management 459 (2020) 117810

2



25–40 cm high. Normally, the whole series of operations takes only
3–10 years. Because of the shortness of this period, in the current ex-
periment, the complete process could be modelled by a clear-cutting
(cutting all the trees in one step). Thus, this treatment of the experiment
represents the final cutting of the uniform shelterwood system.

The aim of this study was to investigate the effect of these treat-
ments on the regeneration (establishment, survival, and growth) of
different tree species. Our main focus was on the regeneration and
growth of sessile oak, as the major tree species of sessile oak-hornbeam
forests, both from silvicultural and conservational perspectives, but we
also evaluated the response of some admixing tree species. To get the
most comprehensive picture, several different variables related to re-
generation were studied: (1) seed supply of sessile oak, (2) species
number and abundance of natural regeneration (trees and shrubs), (3)
survival and growth of individual saplings. Here, we show the four-year
results of our experiment.

2. Materials and methods

2.1. Study area

The study area was located in the Pilis Mountains (47°40′N,
18°54′E), the north-eastern ridge of the Transdanubian Range, Hungary
(Fig. 1a). Concerning the site conditions, stand structure, composition,
and prevalent management practices, the investigated stand represents
the managed sessile oak-hornbeam forests (in Natura 2000: Pannonic
woods with Quercus petraea and Carpinus betulus, code: 91G0, Council
1992; EEA, 2007). It is placed on north-facing, moderate slopes
(7.0–10.6°), at 370–450 m a.s.l. The average annual mean temperature
is 9.0–9.5 °C, while the mean annual precipitation is 600–650 mm
(Dövényi 2010). The limestone and sandstone bedrock is mixed with
loess. The main soil types are slightly acidic Luvisol (lessivage brown
forest soil) and Rendzic Leptosol, the pH of the top 20 cm layer varies
between 4.2 and 5.3 (Kovács et al. 2018). The stand was managed by
shelterwood forestry system (Matthews 1991), which resulted in an
even-aged stand (it was 80 years old at the beginning of the experi-
ment) with uniform structure and species composition. Sessile oak
dominates the upper canopy layer, while hornbeam forms a secondary
canopy layer. Manna ash—Fraxinus ornus L., beech, Turkey oak—-
Quercus cerris L., and wild cherry—Cerasus avium (L.) Moench also ap-
pear as subordinate species. The shrub layer is scarce, and the un-
derstory layer consists of general and mesic forest species; the dominant

herbs are Carex pilosa Scop. and Melica uniflora L.

2.2. Experimental design

The current work is a part of the Pilis Forestry Systems Experiment
(Effect of forestry, 2019), which investigates the effects of different
forestry treatments on forest site, regeneration, understory vegetation,
various animal groups, and ecosystem functions. The experiment was
carried out with the help of a randomized complete block design, with
six replicates, using the following silvicultural treatments (Fig. 1b):

1. control (C): closed-canopy stand, without harvesting;
2. clear-cutting (CC): a circular clear-cut (diameter: 80 m), surrounded

by closed stand;
3. gap-cutting (G): an artificial circular gap in the closed stand (dia-

meter: 20 m, approximately one tree height/gap diameter ratio);
4. preparation cutting (P): 30% of the dominant trees (based on the

basal area) was removed in a spatially even arrangement, and the
whole secondary canopy and shrub layer were felled (diameter:
80 m),

5. retention tree group (R): within the clear-cuts, a circular group of
trees was retained (diameter 20 m, 8–12 individuals).

The selected size and implementation of the treatments mimicked
the general forest management practices in Hungary. Within the uni-
form shelterwood system, the maximal size of the cutting (regenera-
tion) areas is 5 ha in protected montane/submontane native forests
(Anonymous 1996). Because of practical and conservational reasons,
the size of our experimental clear-cut is smaller, only 0.5 ha. However,
we assume that the larger cutting areas of the uniform shelterwood
system have similar or more extreme microclimate and site conditions
compared to closed stand. In Hungary, the paradigm shift towards
continuous cover forestry started two decades ago (Frank 2000, Varga
2013). The introduction of the different methods of continuous cover
forestry happened mainly in beech-dominated mixed forest. In sessile
oak-hornbeam forests, forest managers use many different procedures
in the framework of continuous cover forestry, a generally accepted
methodology is still missing. In the first attempts, the applied gap size
varies between 0.5 and 1.5 tree height/gap diameter ratio (Bartha et al.
2014). The experimental interventions were carried out in the winter of
2014–2015.

The microclimate of the plots have been intensively studied and

Fig. 1. The study area of the Pilis Forestry Systems Experiment. (a) Site location in the Pilis Mountains (Transdanubian Range, Northern Hungary). (b) Experimental
design showing the five treatments replicated within six blocks.
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described in details by Kovács et al., 2018, 2020). Microclimate mea-
surements were taken next to the localities of the regeneration surveys.
The various treatments resulted in significantly different microclimatic
conditions (Kovács et al. 2018), and these initial circumstances did not
change substantially during the first few years (Kovács et al., 2020).
Clear-cuts were characterized by extreme light conditions, high tem-
perature, intermediate soil moisture, and large daily variances of the
microclimatic variables. In gaps, light was intermediate, soil moisture
was high, but the air humidity and temperature remained balanced. In
preparation cuts, light and soil temperature increased moderately; soil
moisture did not change compared to the closed stand. Retention tree
groups received a slightly increased amount of irradiance. The soil was
warmer than in the closed forest, and the soil moisture was low (Kovács
et al., 2018, 2020). Based on our measurements, in 2018, mean relative
diffuse light was 61% in clear-cuts, 20% in gaps, 15% in preparation
cuts, and 12% in retention tree groups, while in the closed control sites
it was 2% (Tinya unpubl.).

2.3. Data collection

The five treatment types in the six replicates resulted in altogether
30 plots. In every plot, a 6 m × 6 m study area has been fenced to
exclude the effects of game species (such as browsing, trampling, and
rooting). All surveys of the current work have been carried out within
the fenced area. The data collection for all studied variables was per-
formed in the first (2015) and the fourth year (2018) after the inter-
ventions.

Three different aspects of the regeneration have been studied: (1)
acorn production of sessile oak, (2) species number and abundance of
natural regeneration, (3) survival and individual growth of planted and
naturally regenerated saplings.

(1) The acorn production was examined by counting the fallen sessile
oak acorns on one square meter within the fence. In order to reduce
seed predation, poultry netting was also mounted to the fence from
the ground up to 0.5 m (mesh size: approx. 1 cm). In both years, one
sampling was carried out in October.

(2) Natural regeneration was investigated in one 2 × 2 m2 quadrate
per plot. The number of saplings was counted separately for every
woody species (trees and shrubs) in four size categories: (I) 0–20 cm
height, (II) 20–50 cm, (III) 50–130 cm, (IV) height > 130 cm,
diameter at breast height < 5 cm. Sampling was carried out in
summer, both in 2015 and 2018.

(3) The survival and the individual growth of regeneration was mea-
sured for planted saplings to obtain standardized initial stage and
sample size for comparing the treatments. Five species were
planted: sessile oak, as the dominant species of the investigated
forest type and hornbeam, which constitutes the secondary canopy
layer. Turkey oak and beech were the main species of the adjacent
forest types around the region of the oak-hornbeam forests (beech
forests, usually at higher elevations, and Turkey oak-sessile oak
forests, typically at lower elevations). Both of them can occur as
admixing species in sessile oak-hornbeam stands. Finally, a further
admixing species of mesic forests, the common ash, was also
planted. Five individuals of each species were planted in every plot
(25 individuals per plot, 150 saplings per species, altogether 750
individuals) in the spring of 2014. In the spring of 2015, the dead
saplings were substituted with new ones. The saplings were ar-
ranged in a 70 cm grid in a randomized order. Height and leaf area
were measured at the end of both summers (2015 and 2018). For
each sapling, a typical leaf was scanned with a portable laser leaf-
area meter (CID-202, CID Bio-Science, USA), and its area was
multiplied by the leaf number to get an estimated total leaf area. All
leaves were counted for smaller saplings, while the leaf number was
estimated for larger ones (by the multiplication of the counted leaf
number of some branches).

To examine the natural survival and growth of the regeneration
independent of the effects of planting stress, we also measured the
naturally regenerated saplings present within the fences. Height and
leaf area measurements followed the same methodology as in the case
planted saplings. Among this natural regeneration, three species were
abundant enough for statistical analysis: sessile oak, hornbeam, and
manna ash. Since their growth pattern in the different treatments
proved to be very similar to that of planted ones, they are interpreted
only in the Appendix of the current paper.

Because the small seedlings of manna ash and common ash
(Fraxinus ornus L. and F. excelsior L.) could hardly be distinguished, all
naturally regenerated ashes were identified as manna ash.

All the used data are available in dataset (Tinya et al., 2019b).

2.4. Data analysis

To investigate the effect of the forestry treatments on the different
variables of the regeneration, general and generalized linear mixed-
effects models were applied. Treatment was used as fixed factor, and
block was captured as random factor. The details of the models were
different for the studied regeneration variables:

(1) For the number of acorns, two distinct models have been created
for 2015 and 2018 due to the obvious year effect caused by masting in
2018. Generalized linear mixed-effect models with Poisson error
structure were performed for these variables.

(2) Species number and abundance of the natural regeneration
followed Poisson distribution as well, thus generalized linear mixed-
effects models were used for these variables also. Similar to acorn
production models, separate models were built for 2015 and 2018. For
the abundance analyses, three species were found adequately abundant
for the modelling procedure: sessile oak, hornbeam, and manna ash.
Wild fruit tree and shrub species (wild cherry, common
dogwood—Cornus sanguinea L., common hawthorn—Crataegus mono-
gyna Jacq., European crab apple—Malus sylvestris (L.) Mill.,
blackthorn—Prunus spinosa L., dog rose—Rosa canina L., and wild ser-
vice tree—Sorbus torminalis (L.) Crantz) were merged as en-
dozoochorous species group and analyzed together. Separate models
were built for the four size categories of each species and the species
group.

(3) In the case of the individual saplings, survival and height growth
were analyzed. For the survival analysis of the planted saplings, the 495
individuals which were alive in the spring of 2015 (from the original
750) were used. Saplings that had died in the first year of planting,
before or during the interventions, were excluded from the calculations.
Among the naturally regenerated saplings, altogether 125 individuals
could be analyzed from the three species. Generalized linear mixed-
effects models were used with logit link function (binomial distribu-
tion), and predicted survival rates were calculated for each species. In
the case of sessile oak survival, the Bayesian model was applied to
handle quasi-complete separation.

Into the growth analyses, we included all available individuals (both
the original and the replanted ones). The effect of substituting of dead
saplings was tested as a random factor, but it was not significant.
Therefore we excluded this variable from the final models.

Only those individuals which survived between the summer of 2015
and 2018 were analyzed—altogether 423 specimens in the case of
planted saplings, and 107 individuals in the case of natural saplings.
The dependent variable was the three-year increment in height and leaf
area between 2015 and 2018. General linear mixed-effects models
could be applied; however, in most cases (except the height growth of
hornbeam and beech), natural logarithm transformation of the growth
data was necessary to reach the normal residual distribution.

For all performed models, multiple comparisons were done with
user-defined contrasts to find the significant differences between
treatments.

All analyses were carried out with R version 3.5.1 (R Development
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Core Team 2018). General linear mixed-effects modelling was con-
ducted by the R package “nlme” (Pinheiro et al. 2013), while “lme4”
was used for the generalized linear mixed models, and “blme” packages
were used in the case of sessile oak survival (Bates et al. 2015, Chung
et al. 2013). Multiple comparisons were calculated by the “multcomp”
package (Hothorn et al. 2015).

3. Results

3.1. Seed supply of sessile oak

The density of sessile oak acorns ranged from 0 to 28 pieces/m2 in
the non-masting year (2015, Fig. 2.a) and from 0 to 640 pieces/m2 in
the masting year (2018, Fig. 2.b). There was a significant difference
between the treatments in the number of acorns in both years (2015:
Chi2 = 83.002, P < 0.001; 2018: Chi2 = 3512.400, P < 0.001). In
the non-masting year, most of the acorns were accumulated in the
preparation cuts and in the control sites (11.33 ± 9.99 and
9.33 ± 9.54 pieces/m2, respectively), the acorn number was inter-
mediate in the retention tree groups and in the gaps, and no acorn was
found in the clear-cuts (Fig. 2. a). In the studied masting year, sig-
nificantly the highest acorn number was recorded in the control closed
forest sites (239.33 ± 223.68 pieces/m2). There was an intermediate
amount of seeds in the preparation cuts and retention tree groups (also
very high number: 183.33 ± 94.57 and 180.67 ± 66.67 pieces/m2,
respectively). There were only a few acorns in the middle of the gaps
(2.66 ± 3.27 pieces/m2), and no acorns in the clear-cuttings (Fig. 2.b).

3.2. Species number and abundance of natural regeneration

In the first year after the interventions, the total species number of
woody species was 11, while in the fourth year it was 14. Number of
species in the 2 m × 2 m understory quadrates ranged from 1 to 5 in
both years. There was no significant difference between the treatments
in either year (2015: Chi2 = 0.836, P = 0.934; 2018: Chi2 = 4.794,
P = 0.309).

Altogether 501 and 960 saplings were recorded in 2015 and 2018,
respectively. Treatment effect on the abundance of saplings was ana-
lyzed in separate models for the three species (sessile oak, hornbeam,
manna ash) and for the species group of endozoochorous species, for
the four size categories (Fig. 3, Appendix Table A1). In 2015, significant
differences were found between the treatments in two cases: the
number of size I hornbeam saplings was significantly higher in every
treated site than in the control, and it was the highest in the gaps
(Chi2 = 127.720, P < 0.001, Appendix Table A1; Fig. 3b, left plot).

Endozoochorous saplings of size II did not occur in the gaps; their
number was intermediate in the controls, clear-cuts, and preparation
cuts, and significantly the highest in the retention tree groups
(Chi2 = 10.494, P = 0.033, Appendix Table A1; Fig. 3d, left plot).
Large (size IV) saplings of any species did not occur anywhere.

In 2018, significant treatment effect was detectable for all species
(Appendix Table A1; Fig. 3, right column). In the case of sessile oak, the
number of small saplings (size I) was the highest in the controls, in-
termediate in the retention tree groups and preparation cuts, and low in
the clear-cuts and gaps (Chi2 = 749.800, P < 0.001, Appendix Table
A1; Fig. 3.a, right plot). Total number of size I sessile oaks was ex-
tremely high (5 4 5), because 2016 was a masting year.

The number of hornbeam saplings differed significantly between the
treatments in every size category (Appendix Table A1; Fig. 3.b, right
plot). Size I saplings were most abundant in the retention tree groups,
while size II saplings were most abundant in the preparation cuts. The
number of size III saplings was the largest in the clear-cuts and gaps,
and that of size IV ones was the highest in the gaps. Their abundance in
the control was always low.

For the manna ash saplings of size I, the treatment effect also be-
came significant: they were more abundant in the retention tree groups
than in the other treatments (Chi2 = 21.503, P < 0.001, Appendix
Table A1; Fig. 3.c, right plot).

In the case of endozoochorous species, similar to the first year, only
the size II saplings showed a significant response to the treatments;
their number was still the highest in the retention tree groups
(Chi2 = 10.519, P = 0.033, Appendix Table A1; Fig. 3.d, right plot).

In the controls no large (size IV) saplings were found from any
species, even in the fourth year after the interventions, while in the
clear-cuts and gaps, all species reached the fourth size category for this
time (Appendix Table A1; Fig. 3, right column). The hornbeam and the
endozoochorous species, in particular, reached a considerable relative
abundance in these treatments.

3.3. Survival and growth of individual saplings

Considering the survival rates of the planted tree species, all species
showed a significant response to the treatments, except common ash
(Fig. 4). Survival was usually low in the closed forest controls, while the
interventions increased the survival rate. In the case of sessile oak,
survival was significantly better only in the gaps than in the control
(Chi2 = 11.830P = 0.019, Fig. 4.a). In the case of Turkey oak, it was
higher in all treated sites (Chi2 = 48.111, P < 0.001, Fig. 4.b). Sur-
vival of hornbeam was the highest in the gaps, and it was also sig-
nificantly higher in the clear-cuts than in the control (Chi2 = 17.078,

Fig. 2. Boxplot of sessile oak—Quercus pet-
raea (Matt.) Liebl. acorn density in the dif-
ferent treatments, a) in the first year and b)
in the fourth year after the interventions.
Treatments: C = control, CC = clear-cut-
ting, G = gap-cutting, P = preparation
cutting, R = retention tree group. 2018 was
a masting year, thus the scales of the y axes
are different. Black dots represent the mean
values. Dissimilar letters mean significant
differences between the treatments at
P < 0.05 level.
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P = 0.002, Fig. 4.c). Beech survival was the best in the gaps, clear-cuts,
and preparation cuts (Chi2 = 12.859, P = 0.012, Fig. 4.d). Common
ash survived well in all treatments, including the control sites
(Chi2 = 2.129, P = 0.712, Fig. 4.e).

The survival of the investigated naturally regenerated saplings was
better than that of the planted ones (Appendix Fig. B1). Sessile oak
survived better in all treated sites than in the control, while the survival
of hornbeam and manna ash was high in every treatment, including the
closed forest control.

The treatments also had a significant effect on the growth of the
planted saplings for all species. Here, we demonstrate only the height
growth models (Fig. 5). The leaf-area analyses presented quite similar

results (Appendix Fig. B2). The growth of sessile and Turkey oak was
most intensive in the clear-cuts and gaps (F = 10.742, P < 0.001 and
F = 83.820, P < 0.001, respectively, Fig. 5a and b). Turkey oak
showed a weak increment in the preparation cuts, but sessile oak did
not. Their mortality in the control sites was so high that their growth
could not be analyzed. Hornbeam and beech grew best in the gaps and
clear-cuts, but here, contrary to oaks, the mean values were slightly
(but not significantly) higher in the gaps than in the clear-cuts
(F = 46.855, P < 0.001 and F = 22.294, P < 0.001, respectively,
Fig. 5.c and d). Their growth in the preparation cuts was intermediate.
Common ash showed an extreme intensive increment in the gaps
(295.64 ± 78.25 cm), and its growth was intermediate but substantial

Fig. 3. Abundance of the saplings of the investigated species and species group in the different treatments, in the first year (2015, left column) and in the fourth year
(2018, right column) after the interventions. Columns show summarized number of saplings in the 2 × 2 m2 quadrates for the six blocks. Different colors mean
different size categories. Treatments: C = control, CC = clear-cutting, G = gap-cutting, P = preparation cutting, R = retention tree group. The scales of y axes are
different.
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in the clear-cuts (F = 61.892, P < 0.001, Fig. 5.e). None of the planted
species could grow in the retention tree groups and controls.

The growth pattern of the investigated naturally regenerated (sessile
oak, hornbeam, and manna ash) saplings in the different treatments was
similar to those of the planted ones (Appendix Fig. B3).

4. Discussion

4.1. Regeneration of different species

The differential response to the treatments between the species was
primarily related to their seed dispersal mechanisms. Species with
large, heavy seeds (oaks) were hardly able to get to the internal area of
the clear-cuts and to center of gaps, while seeds of anemochorous
species (hornbeam and manna ash) were present even in the clear-cut
areas. After the seeds reached the sites, the treatments influenced the
establishment of seedlings and the growth of the plants—but in the
general responses, the particular species proved to be more similar.
Only the intensity of the response differed between light-demanding
and shade-tolerant ones: shade-tolerants (hornbeam, beech, and ash)
showed better survival than oaks in most treatments, and their height
growth was, especially, larger than that of oaks.

There are some contradictions in the literature about the competi-
tion of light-demanding and shade-tolerant tree species. The question is
that in the natural regeneration, with the increase of the cutting areas,
whether light-demanding species outcompete the shade-tolerant ones
or vice versa (McClure and Lee 1993 vs. Ligot et al. 2013; Reuling et al.
2019). Similarly to Ligot et al. (2013) and Reuling et al. (2019), we
found that in oak-hornbeam forests, where both shade-tolerant and
intolerant species are present, shade-tolerant species (primarily horn-
beam) have a competitive advantage over sessile oak (larger abun-
dance, better survival, and growth) even in sites of high light avail-
ability such as gaps with 20%, and clear-cut areas with about 60%
relative diffuse light. This means that if sessile oak is the target species
of management, it must be helped by restraining the growth of the
hornbeams independent of the applied forestry system, which is in
congruence with the field experiences of foresters and has also been
emphasized by other experts investigating either sessile oak forests in
Europe (von Lüpke 1998) or other oak forest types in North America
(Brose 2011). However, the establishment of homogeneous, mono-
dominant oak stands should not be the aim of an ecologically sustain-
able forest management. The oak-dominated upper canopy layer of
sessile oak-hornbeam forests managed by rotation forestry systems is a
result of human impact (Haraszthy 2014). Based on the survey of cur-
rent near-natural forests (Halamová and Saniga 2006) and on historical
sources (Bartha and Oroszi 2004), natural sessile oak forests are char-
acterized by a mixed tree species composition. Admixing tree species

not only make a substantial contribution to forest biodiversity and
stability (Jactel et al. 2005, Cavard et al. 2011, Király et al. 2013) but
also positively affect the stem straightness of oak trees (Jensen and Löf
2017). However, the latter study suggests that interspecific competition
also decreases the survival of the oak regeneration, thus it is necessary
to find a balance between these trade-offs.

Endozoochorous species were most abundant in the retention tree
groups, but larger saplings (higher than 50 cm) occurred mainly in the
clear-cuts and gaps. Grünewald et al. (2010) stated that at local spatial
scales, the structure of the habitat does not influence the dispersal be-
havior of the mammals. Thus, we can suppose that the abundance of the
endozoochorous saplings in the different treatments mainly depends on
the environmental conditions, not on dispersal. Most of these wild fruits
are species of forest edges and shrublands. The relatively dry and warm
soil and air conditions of the retention tree group as well as the rela-
tively high cover of bare soil and the low herbaceous cover make this
treatment favorable for the establishment of endozoochorous arboreal
species. However, their height growth was most successful in those
treatments where soil moisture was the highest—in the clear-cuts and
gaps (Kovács et al., 2018, 2020).

4.2. Effect of the different treatments on regeneration

4.2.1. Closed forest control
Despite the continuous seed availability, closed forests (our control

sites) do not ensure proper conditions for regeneration, presumably due
to low light availability and modest soil moisture (Kovács et al., 2018,
2020). Survival of the species was low (except common ash), and height
growth during the first four years after the interventions was almost
zero for every species. After masting years, the abundance of sessile oak
seedlings is extremely high, but these seedlings are unable to survive
and grow without the opening of the canopy.

4.2.2. General effects of the applied treatments
Compared to the closed forest, the applied treatments did not in-

crease the species number of the regeneration layer significantly. The
most common admixing tree and shrub species of the area were also
present in the control sites, while rare species could not establish during
such a short time. Only in the clear-cuts and retention tree groups ap-
peared some new woody species; mainly species of forest edges such as
common hawthorn, dog rose, or European crab apple and pioneer
species such as goat willow—Salix caprea. Reuling et al. (2019) also
found—in northern hardwood forests—that various sized gap-cuttings
did not change the diversity of the regeneration.

Survival of the saplings increased in every treatment compared to
control, but there was no significant difference in this measure between
the differently treated sites. However, height growth was significantly

Fig. 4. Predicted survival rate (means and 95% confidence intervals) of the five planted tree species in the different treatments, based on their survival between the
first and the fourth year. Treatments: C = control, CC = clear-cutting, G = gap-cutting, P = preparation cutting, R = retention tree group. Dissimilar letters mean
significant differences between the treatments at P < 0.05 level.
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higher only in preparation cuts, gaps, and clear-cuts, and there were
significant differences between them. These results are in agreement
with the findings of Sevillano et al. (2016), who stated that the survival
of oak and beech do not differ between light conditions from 28 to
100% of the full light (which are similar values to our treated sites),
while the growth of sapling depends on the light conditions. Besides
light, other components of the microclimate may also drive the differ-
ences of the regeneration responses to the various treatments. Hence,
next we discuss the specificities of the regeneration in the different
treatments separately.

4.2.3. Clear-cutting and gap-cutting
In general, regeneration proved to be most successful in the clear-

cuts and gaps. However, the establishment of oaks in these treatments

was strongly dispersal-limited. In clear-cuts, newly fallen acorns were
completely absent, while there was a low but significantly higher
number of acorns in the center of the gaps. We can suppose that the
outer parts of the gaps get even more acorns from the adjacent trees
(Csiszár et al. 2014). Kollmann and Schill (1996) found that acorns can
be dispersed to 10–20 m by mice, while for larger distances (several
hundred meters) acorns are carried only by Eurasian jay (Garrulus
glandarius L.). Mice transport the seeds to unmown grasslands also,
while jays preferred mown sites. Since the center of the clear-cut sites
were further than 20 m from the adjacent trees, and their vegetation
was dense, these factors could also have contributed to the differences
between the seed supply of the two treatment types. Based on other
Hungarian studies, we can suppose that in this region the effect of jays
is limited in acorn dispersal: Ádám et al. (2013) and Tinya et al. (2019c)

Fig. 5. Boxplot of height growth of the planted tree saplings, between the first and the fourth year, in the different treatments (C = control, CC = clear-cutting,
G = gap-cutting, P = preparation cutting, R = retention tree group). The scales of y axes are different; black dots represent the mean values. Dissimilar letters mean
significant differences between the treatments at P < 0.05 level. In the case of sessile oak and Turkey oak, control was not included into the models, because there
were no enough saplings for the analysis.
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found that sessile oak regeneration is strongly related to the presence of
mother trees. This suggests that felling should be carried out the year
after a masting to ensure there are enough acorns on the sites. However,
this measure is advisable for other forestry systems also as, for example,
Brose (2011) suggested for shelterwood management. An alternative
solution could be the retention of mother trees for seeding, both in
smaller gaps and larger cutting areas.

Abundance of large saplings (higher than 50 cm) in the natural
regeneration and the growth of the individual saplings were the largest,
and similar, in clear-cuts and gaps. However, while the initial incre-
ment of the saplings was intensive in the clear-cuts, the dense unders-
tory vegetation established in this treatment (Tinya et al. 2019a) might
suppress the tree regeneration in a few years. Brose (2011) found that in
clear-cuts, three years after the felling, light decreased substantially
because of the upgrowing vegetation. Moreover, he stated that only
certain species are able to utilize the extra amount of light of the clear-
cuts as compared to the gaps. Based on our results, most of the species
did not grow better in the clear-cuts (with over 60% diffuse light) than
in the gaps (with ca. 20% diffuse light). Only the leaf area increment of
Turkey oak was an exception, but it was not connected to a height in-
crement, thus from the forestry aspect, it was not an advantage. For the
regeneration, a further difficulty can be the harsh microclimatic con-
ditions in the clear-cuts (e.g., higher maximum air and soil temperature,
lower soil temperature and air humidity minimum, Kovács et al., 2018,
2020). Years with extraordinary weather events (e.g., severe drought)
may have a more severe negative effect on regeneration in clear-cuts
than in less intensive treatments (Kellner and Swihart 2016). Successful
regeneration in large cutting areas under the above-mentioned cir-
cumstances may need extra human interventions (weed control, site
preparation, etc.), which can be unprofitable from the financial per-
spective, harmful for biodiversity, and adverse for subsequent stand
development (Fleming et al. 1998, Man et al. 2009, Brose 2011).

Gap-cutting resulted in similar intensive height growth, without the
discussed disadvantages of the clear-cuts. Light increment in the gaps
also proved to be enough for the regeneration, while other aspects of
the microclimate remained more balanced (Kovács et al., 2018, 2020).
Though the mean height growth of the species did not differ between
clear-cuts and gaps, in the case of shade-tolerant species (hornbeam,
beech, and common ash), maximal increment of the saplings was ob-
servable in gaps, while growth of sessile oak was the largest in the clear-
cuts. This suggests that in the gaps, oaks must be helped by controlling
the shade-tolerants. Dominance relations of shade-tolerants vs. oaks can
be influenced by the applied gap size and shape (Montgomery et al.
2013, Poznanovic et al. 2014). However, as mentioned while discussing
the species, the results are contradictory and depend on the local site
conditions and species composition (Diaci et al. 2008, Diaci and Firm
2011), thus further investigation on the effects of gap size on re-
generation in sessile oak-hornbeam forests is needed.

4.2.4. Preparation cutting
In preparation cuts, the success of regeneration was moderate,

which corresponds to the intermediate microclimatic conditions (pri-
marily light and soil moisture conditions, Kovács et al., 2018, 2020). Its
advantage over clear-cuts and gaps was the large number of acorns
present. However, Brose (2011) emphasized that even in uniform
shelterwood system, preparation cutting should be done in years when
there is an adequate density of oak seedlings. For most species, we
found an intermediate survival rate between the control and the clear-
cuts/gaps, which is in agreement with the result of Brose (2011) for
oaks. In general, height growth of the saplings was weak. Brose (2011)
stated that in preparation cuts, the larger proportion of diffuse light can
help the oak regeneration against competitor species; however, we
found that even preparation cut facilitated the growth of the shade-
tolerant species over oaks. Growth of hornbeam and beech was sig-
nificantly larger than in the closed stand, and in the case of hornbeam,
some individuals of the natural regeneration reached size categories

above 50 cm.
Contrary to this, oaks and common ash could not grow in the pre-

paration cut sites. Under the shelterwood system, oak saplings are ex-
pected to grow in height only after the following steps of the cutting
(Brose 2011, Holzmueller et al. 2014). According to Kellner and
Swihart (2016), the shelterwood system may support a more stable
regeneration compared to clear-cutting due to its buffering capacity
against extreme weather conditions. However, gap-cutting also ensures
these balanced conditions, and besides, it has some advantages com-
pared to the uniform preparation cutting: It maintains long-term forest
continuity, and by creating a more complex stand structure, it provides
buffered, but heterogeneous microsite conditions for the forest biota.

4.2.5. Retention tree group
The aim of the retention tree groups is not to help the regeneration,

but to ensure the continuity of the forest structure and composition and
thus preserve the legacies of the forest biodiversity and functions
(Gustafsson et al. 2012, Lindenmayer et al. 2012, Šavrak et al. 2019,
Tinya et al. 2019a). Retained trees often attenuate the survival and
growth of the regeneration (Gradowski et al. 2008, Lennie et al. 2009).
In our study, survival in the retention tree groups was not significantly
weaker than in other treated sites. Compared to clear-cuts and gaps, the
moderate light and the drier soil and air resulted in a sparser understory
vegetation (Kovács et al., 2018; Tinya et al., 2019a; Kovács et al.,
2020). At the same time, soil temperature was higher than in the closed
stand (Kovács et al., 2018, 2020). This dry, warm, open soil surface,
without a considerable competition, favored the establishment of some
small-seeded woody species of forest edges and xerothermic forests.
This is in agreement with Modrý et al. (2004), who stated that beside
higher direct light, the increased competition can result in a lower
density of woody species. However, in our retention tree groups, the
lack of sufficient soil moisture precluded the growth of the saplings.
Among the natural regeneration, only some endozoochorous shrub
species and some manna ash could reach the larger size categories. The
height growth of the individually-measured saplings was always close
to zero (similar to the closed control). Thus, retention tree groups are
not the localities of successful stand regeneration, however, in some
ways they can still contribute to it, for example via seed scatter-
ing—presumably even to the surrounding clear-cut areas, retention tree
groups can ensure some seed supply. Moreover, they provide habitat for
some admixing tree and shrub species, which are not the typical species
of closed humid forests, thereby increasing forest biodiversity.

5. Conclusions

This study evaluated the initial success of regeneration, four years
after the interventions. Because of the shortness of this period we
cannot draw inferences about the whole process of forest regeneration;
to evaluate the long-term responses, the data collection is continuing.
According to our results, oak regeneration establishes successfully in
oak-hornbeam forests not only in the case of rotation forestry, but also
during continuous cover forestry (gap-cutting). The survival and
growth of the saplings are similar in cutting areas and gaps, but keeping
in mind other considerations (such as preserving forest continuity, ba-
lanced site conditions, and forest biodiversity), continuous cover for-
estry should be preferred. To exploit the advantages of rotation forestry
as well, it can also be retained, at landscape scale, among the applied
systems.

Both in case of clear-cutting and gap-cutting, timing seems to be
crucial: felling should be carried out in the first subsequent year after a
masting to ensure there are enough acorns on the sites. If management’s
priority is to regenerate sessile oak, shade-tolerant competitor species
(primarily hornbeam) must be restrained. This is valid for all in-
vestigated kinds of management because hornbeam has a more in-
tensive dispersal rate, a better survival rate, and better growth in
comparison to sessile oak. However, the issue is especially relevant in
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the case of gap-cutting, because the shaded environment of gaps serves
better the shade-tolerant species than oaks. Completely homogeneous
sessile oak-hornbeam stands cannot be achieved by continuous cover
forestry, and neither should it be the aim since mixed stands are more
resilient to abiotic and biotic disturbances and converge better to nat-
ural forests.
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