
Algorithmica
https://doi.org/10.1007/s00453-019-00650-0

Stable Matching with Uncertain Linear Preferences

Haris Aziz1,2 · Péter Biró3,4 · Serge Gaspers1 · Ronald de Haan5 ·
Nicholas Mattei6 · Baharak Rastegari7

Received: 1 March 2019 / Accepted: 29 October 2019
© The Author(s) 2019

Abstract
We consider the two-sided stable matching setting in which there may be uncer-
tainty about the agents’ preferences due to limited information or communication. We
consider three models of uncertainty: (1) lottery model—for each agent, there is a
probability distribution over linear preferences, (2) compact indifference model—for
each agent, a weak preference order is specified and each linear order compatible with
the weak order is equally likely and (3) joint probability model—there is a lottery over
preference profiles. For each of the models, we study the computational complexity of
computing the stability probability of a given matching as well as finding a matching
with the highest probability of being stable.We also examinemore restricted problems
such as deciding whether a certainly stable matching exists. We find a rich complexity
landscape for these problems, indicating that the form uncertainty takes is significant.

Keywords Stable matchings · Stable marriage problem · Uncertain preferences ·
NP-hard problems · Polynomial-time algorithms

1 Introduction

We consider a Stable Marriage problem (SM) in which there is a set of men and a set
of women. Each man has a linear order over the women, and each woman has a linear
order over themen. For the purpose of this paperwe assume that the preference lists are
complete, i.e., each agent finds each member of the opposite side acceptable.1 In the
stable marriage problem, the goal is to compute a stable matching; a matching where
no two agents prefer to be matched to each other rather than to be matched to their cur-
rent partners. Unlike most of the literature on stable matching problems [13,19,27],

1 We note that the complexity of all problems that we study is the same for complete and incomplete lists,
where non-listed agents are deemed unacceptable—see Proposition 1 in Sect. 3.1.

A preliminary version of this paper has appeared in the proceedings of the 9th International Symposium
on Algorithmic Game Theory (SAGT 2016) [2]. The majority of the claims appear without a proof or with
only a short proof sketch in Aziz et al. [2].
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we assume that men and women may have uncertainty in their preferences which
can be captured by various probabilistic uncertainty models. We focus on linear
models in which each possible deterministic preference profile is a set of linear
orders.

Uncertainty in preferences could arise for a number of reasons, both practical or
epistemological. For example, an agent could express a weak order because the agent
did not invest enough time or effort to differentiate between potential matches and
therefore one could assume that each linear extension of the weak order is equally
likely; this maps to our compact indifference model. In many real applications, the
ties are broken randomly with lotteries, e.g., in the school choice programs in New
York and Boston as well as in centralized college admissions in Ireland. However,
a central planner may also choose a matching that is optimal in some sense, with-
out breaking the ties in the preference list. For instance, in Scotland they used to
compute the maximum size (weakly) stable matching to allocate residents to hos-
pitals [19]. Alternatively, there may be a cost associated with eliciting preferences
from the agents, so a central planner may want to only obtain and provide a rec-
ommendation based on a subset of the complete orders [9,24]. Another cause of
uncertainty could be that agents are certain about preferences over other agents accord-
ing to specific criteria but there may be a probability distribution corresponding to the
weight placed on different criteria. This motivates our lottery and joint probability
models. In the lottery model, the agents have independent probabilities over possi-
ble linear orders, i.e., each linear order may correspond to a different criterion. In
the joint probability model, the probability distribution is over possible preference
profiles.

Uncertainty in preferences has already been studied in voting [15] and for coopera-
tive games [18]. Ehlers andMassó [10] considersmany-to-onematchingmarkets under
a Bayesian setting. Similarly, in auction theory, it is standard to examine Bayesian
settings in which there is a probability distribution over the types of agents. In the
two-sided matching setting, when preferences are uncertain, a natural solution is find-
ing a matching which has the highest probability of being stable. We consider this
fundamental computational problem and its related variants for the three uncertainty
models discussed above.

To illustrate the problem, we describe a simple example with four agents. We write
b �ac to say that agent a prefers b to c and assume the lottery model.

Example 1 Wehave twomenm1 andm2 and twowomenw1 andw2. Each agent assigns
a probability to each strict preference ordering as follows. (i) p(w1�m1w2) = 0.4
and p(w2�m1w1) = 0.6 (ii) p(w1�m2w2) = 0.0 and p(w2�m2w1) = 1.0 (iii)
p(m1�w1m2) = 1.0 and p(m2�w1m1) = 0.0 (iv) p(m1�w2m2) = 0.8 and
p(m2�w2m1) = 0.2.

This setting admits two matchings that are stable with positive probability: μ1 =
{(m1, w1), (m2, w2)} and μ2 = {(m1, w2), (m2, w1)}. Notice that if each agent sub-
mits the preference list that s/he finds most likely to be true, then the setting admits
a unique stable matching that is μ2. The probability of μ2 being stable, however, is
0.48 whereas the probability of μ1 being stable is 0.52 (Tables 1, 2).
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Table 1 Pairwise probabilities
for the agents in Example 1

Men Women

m1 p(w1�m1w2) = 0.4
p(w2�m1w3) = 0.6

w1 p(m1�w1m2) = 1.0
p(m2�w1m3) = 0.0

m2 p(w1�m2w2) = 0.0
p(w2�m2w3) = 1.0

w2 p(m1�w2m2) = 0.8
p(m2�w2m3) = 0.2

Table 2 Stability probability for
each matching in Example 1

Matching Stability probability

μ1 {(m1, w1), (m2, w2)} 0.52

μ2 {(m1, w2), (m2, w1)} 0.48

1.1 Uncertainty Models

In this article, we consider three different uncertaintymodels which assume that agents
have linear preferences. In related work we have explored similar computational
questions when agents define their uncertainty over pairwise preferences [3].

• Lottery Model For each agent, we are given a probability distribution over strict
preference lists.

• Compact Indifference Model Each agent reports a single weak preference list that
allows for ties. Each complete linear order extension of this weak order is assumed
to be equally likely.

• Joint Probability ModelA probability distribution over preference profiles is spec-
ified.

Note that for the Lottery Model and the Joint Probability Model the representation
of the input preferences can be exponentially large (in the number of agents). However,
in settings where similar models of uncertainty are used, including resident matching
[9] and voting [15], a limited amount of uncertainty (i.e. small supports) is commonly
expected and observed in real-world data [21,22]. Consequently, we consider special
cases when the uncertainty is bounded in certain natural ways, including the existence
of only a small number of uncertain preferences and/or uncertainty on only one side
of the market.

Observe that the compact indifference model can be represented as a lottery model.
This is a special case of the lottery model in which each agent expresses a weak order
over the candidates, similar to the SMT setting [13,19]. However, the lottery model
representation can be exponentially larger than the compact indifference model; for
an agent that is indifferent among n agents on the other side of the market, there
are n! possible linearly ordered preferences. The uncertainty models considered in the
paper have further been examined in the context of Pareto optimal assignment of items
to agents [4–6]. In a subsequent paper, Chen et al. [7] consider additional problems
related to the joint probability model.
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Table 3 Summary of results

Problems Lottery model Compact indifference Joint probability

StabilityProbability #P-complete ? in P

in P for all three models if 1 side is certain

IsStabilityProbabilityNon- Zero NP-complete in P in P

IsStabilityProbabilityOne in P in P in P

ExistsPossiblyStableMatching in P in P in P

ExistsCertainlyStableMatching in P in P NP-complete

MatchingWithHighestStabilityProb ? NP-hard NP-hard

in P for all models if 1 side is certain and

there is O(1) number of uncertain agents

1.2 Computational Problems

Given a stable marriage setting where agents have uncertain preferences, various nat-
ural computational problems arise. Let stability probability denote the probability that
a matching is stable. We then consider the following two natural problems for each of
our uncertainty models.

• StabilityProbabilityGiven amatching and uncertain preferences of the agents,
what is the stability probability of the matching?

• MatchingWithHighestStabilityProbabilityGiven uncertain preferences of
the agents, compute a matching with the highest stability probability.

We also consider two specific problems that are simpler than StabilityProbability:

• IsStabilityProbabilityNon- Zero For a given matching, is its stability proba-
bility non-zero?

• IsStabilityProbabilityOne For a given matching, is its stability probability
one?

We additionally consider problems connected to, and more restricted than, Match-
ingWithHighestStabilityProbability

• ExistsCertainlyStableMatching Does there exist a matching that has stabil-
ity probability one?

• ExistsPossiblyStableMatchingDoes there exist a matching that has non-zero
stability probability?

Note that ExistsPossiblyStableMatching is straightforward to answer for any
of the three uncertainty models we consider here, since there exists a stable matching
for each deterministic preference profile that is a possible realization of the uncertain
preferences.

1.3 Results

Table 3 summarizes our main findings. Note that the complexity of each problem is
consideredwith respect to the input size, and that under the lottery and joint probability
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models the size of the input could be exponential in n, namely O(n! ·2n) for the lottery
model and O((n!)2n) for the joint probability model, where n is the number of agents
on either side of the market.

We point out that StabilityProbability is #P-complete for the lotterymodel even
when each agent has at most two possible preferences, but in P if one side has certain
preferences. Additionally, we show that IsStabilityProbabilityNon- Zero is in P
for the lottery model if each agent has at most two possible preferences. Note that
StabilityProbability is open for the compact indifference model when both sides
may be uncertain, and we also do not know the complexity ofMatchingWithHigh-
estStabilityProbility in the lottery model, except when only a constant number of
agents are uncertain on the same side of the market.

2 Preliminaries

In the Stable Marriage problem, there are two sets of agents. Let M denote a set of n
men and W a set of n women. We use the term agents when making statements that
apply to both men and women, and the term candidates to refer to the agents on the
opposite side of the market to that of an agent under consideration. Each agent has
a linearly ordered preference over the candidates. An agent may be uncertain about
his/her linear preference ordering. Let L denote the uncertain preference profile for
all agents.

We say that a given uncertainty model is independent if any uncertain preference
profile L under the model can be written as a product of uncertain preferences La for
all agents a, where all La’s are independent. Note that the lottery and the compact
indifference models are both independent, but the joint probability model is not.

A matching μ is a pairing of men and women such that each man is paired with
at most one woman and vice versa; defining a list of (man, woman) pairs (m, w). We
use μ(m) to denote the woman w that is matched to m and μ(w) to denote the match
for w. Assume that each agent prefers being matched to remaining unmatched. Given
linearly ordered preferences, a matching is stable if there is no pair (m, w) not in μ

where m prefers w to his partner in μ, i.e., w �m μ(m), and vice versa. If such a
pair exists, it constitutes a blocking pair; as the pair would prefer to defect and match
with each other rather than stay with their partner in μ. A matching μ is a complete
matching if all agents are matched in μ. A matching is certainly stable if it is stable
with probability 1. For an instance I = (M,W , L) andmatchingμ, let p(μ, I ) denote
the probability ofμ being stable, and let pS(I ) = max{p(μ, I ):μ is a matching in I },
that is the maximum probability of a matching being stable for I .

The following extensions of SM will come in handy in proving our results. The
Stable Marriage Problem with Partially Ordered Lists (SMP) is an extension of SM
in which agents’ preferences are partial orders over the candidates. An instance I =
(M,W , p) of SMP is given by a set of n men M , a set of n woman W , and the
partial preference ordering profile of agents p where pa denotes the partial order that
represents the preferences of agent a. If for a given agent a and two candidates b and c
we have that neither b is related to c nor c is related to b then a cannot compare b and
c. The Stable Marriage problem with Ties (SMT) is a special case of SMP in which
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incomparability is transitive and is interpreted as indifference. Therefore, in SMT each
agent partitions the candidates into different ties (equivalence classes), is indifferent
between the candidates in the same tie, and has strict preference ordering over the
ties. In some practical settings some agents may find some candidates unacceptable
and prefer to remain unmatched than to be matched to the unacceptable ones. SMP
with Incomplete Lists (SMPI) and SMT with Incomplete lists (SMTI) captures these
scenarios where each agent’s partially ordered list contains only his/her acceptable
candidates. Three stability criteria, including the one we have already defined, have
been introduced in the literature to capture different degrees of stability for these
richer domains. The weakest criterion, that is the one we have already defined, is
(weak) stability. A matching is (weakly) stable in an instance of SMPI if there is no
pair (m, w) /∈ μ where m (strictly) prefers w to his partner in μ and vice versa. The
strongest criterion, referred to by super-stability, is closely related to our notion of
certain stability. A matching is super-stable in an instance of SMPI if there is no pair
(m, w) not inμwherem either prefersw to his partner inμ or finds them incomparable,
and vice versa. If such a pair exists, it constitutes a very weakly blocking pair. It is
easy to observe (see, e.g., [17]) that μ is super-stable if and only if it is stable w.r.t. all
linear extensions of the partially ordered lists.

We define the certainly preferred relation �cert
a for agent a. We write b �cert

a c if
and only if agent a prefers b over cwith probability 1. Based on the certainly preferred
relation, we can define a dominance relation D: Dm(w) = {w} ∪ {w′ : w′ �cert

m w};
Dw(m) = {m} ∪ {m′ : m′ �cert

w m}. Based on the notion of the dominance relation,
we present a useful characterization of certainly stable matchings for independent
uncertainty models.

Lemma 1 A matching μ is certainly stable for an independent uncertainty model if
and only if for each pair (m, w), μ(m) ∈ Dm(w) or μ(w) ∈ Dw(m).

Proof Assume that for each pair (m, w) we have that μ(m) ∈ Dm(w) or μ(w) ∈
Dw(m) for a given matching μ. This implies that for each unmatched pair (m, w) it
is the case that μ(m) �cert

m w or μ(w) �cert
w m and hence (m, w) has zero probability

of forming a blocking pair. It thus follows that μ is certainly stable.
Assume that a matching μ is certainly stable. Then no pair (m, w) has non-zero

probability of forming a blocking pair. This is only possible if the pair (m, w) is part of
thematching or one ofm andw have zero probability of preferring the partner in (m, w)

over their current partner in μ. In either case, μ(m) ∈ Dm(w) or μ(w) ∈ Dw(m). ��
We point out that the certainly preferred relation can be computed in polynomial time
for all three models studied in this paper.

3 General Results

In this section, we first show that the complexity of all problems that we study is the
same for complete and incomplete lists.We then present somegeneral results that apply
to multiple uncertainty models. We show that ExistsCertainlyStableMatching
can be solved in polynomial time for a class of independent uncertainty models that
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includes lottery and compact indifference. We then prove that, when the number of
uncertain agents is constant and one side of themarket is certain,we can solveMatch-
ingWithHighestStabilityProbability efficiently for each of the linear models.

3.1 The Case for Incomplete Lists

The claims in this section explain that our efficient algorithms described for the case of
complete lists can be extended to incomplete lists. Additionally, our hardness proofs
for incomplete lists can bemodified to extend to complete lists. In fact, all our hardness
reductions, except Theorem 9, are for complete lists and so they trivially extend to the
case of incomplete lists.

In the case of complete lists, we assumed that we have an equal number of men and
women and everybody finds all candidates acceptable. When we consider the problem
with incomplete lists we mean that the sizes of the two sets are not necessarily the
same and not all the candidates are acceptable to all agents. However, we assume that
in all realization of the preference profiles the same candidates are acceptable, so we
only randomize on the preferences over the acceptable partners.

Proposition 1 The computational complexity of StabilityProbability is the same
for complete and incomplete lists.

Proof We show that if I is an instance of a linear probabilistic model with incomplete
lists and μ is a given matching for I then we can, in linear time, construct an extended
instance I ′ with complete lists and a complete matchingμ′ for I ′ such that the stability
probability of μ under I , p(μ, I ), is equal to the stability probability of μ′ under I ′,
p(μ′, I ′).

Assume, without loss of generality, that |M | ≥ |W |. From I we create an extended
instance I ′ with sets M andW ′ in the following way. First we ensure that |M | = |W ′|
by adding enough agents to the woman’s side of the market if necessary. Then we
complete the preference lists of each agent by adding the previously unacceptable or
nonexistent candidates to the end of her/his list according to a predetermined order,
e.g., by the indices of the agents. Suppose now that μ is a matching in I and X is
the set of matched men in M , whilst μ(X) = Y . Let E denote the set of acceptable
pairs in I . We assume that there is no pair (m, w) ∈ (M\X) × (W\Y ) belonging to
E , since in this case this pair would certainly block μ in I , thus p(μ, I ) = 0 trivially.
Let us now extend μ to another matching μ′ in I ′ by appending to μ the unique stable
matching for the subinstance restricted to the unmatched agents. Namely, letμu be the
stable matching that matches M\X to W ′\Y in such a way that the kth pair contains
the kth man and the kth woman from M\X andW ′\Y , respectively according to their
indices, and let μ′ = μ ∪ μu .

We claim that p(μ, I ) = p(μ′, I ′). This is because there is no blocking pair in
(M\X) × (W ′\Y ), and any other pair is blocking for some preference profile in I if
and only if it is blocking for the corresponding preference profile in I ′. To verify the
latter statement, first consider a pair (m, w) ∈ X×Y . If (m, w) ∈ E then the partners of
m andw are the same inμ andμ′ and the ranks ofm are the same in the corresponding
preference profiles of w, and vice versa. If (m, w) /∈ E then this pair cannot block
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in any preference profile. Similarly, let us consider a pair (m, w) when exactly one
agent is matched in μ, say, m, i.e., (m, w) ∈ M × (W\Y ). If (m, w) ∈ E then m
has the same partner in μ and μ′, whilst w is unmatched in μ and has a previously
unacceptable partner in μ′, namely μ′(w). Whenever this pair blocks for I then it also
blocks for I ′, since the rank of w is the same in the corresponding preference profiles
of m, and w prefers m to μ′(w) in all profiles. Finally, if (m, w) /∈ E then this pair
cannot block in any preference profile, as before. ��

The above proof implies the following Corollary.

Corollary 1 The computational complexity of IsStabilityProbabilityNon- Zero is
the same for complete and incomplete lists, and the same holds for IsStabilityProb-
abilityOne.

Proposition 2 The computational complexity of MatchingWithHighestStabili-
tyProbability is the same for complete and incomplete lists.

Proof Suppose that we are given an instance of a linear probabilistic model with
incomplete lists I , and we consider the extended instance I ′ with complete preference
lists, as described in the proof of Proposition 1. We show that if μ′ is one of the most
stable complete matchings in I ′ then its restriction to E , μ, is one of the most stable
matching for I .

First we note that p(μ, I ) ≥ p(μ′, I ′), since any pair in E that is blocking for μ

under some preference profile in I is also blocking for μ′ under the corresponding
extended preference profile in I ′. Suppose now for a contradiction that there is another
matching ν for I such that p(ν, I ) > p(μ, I ). But then, for its natural extension ν′ we
have p(ν, I ) = p(ν′, I ′) by Proposition 1, contradicting with the maximum stability
of μ′. ��

The above proof implies the following Corollary.

Corollary 2 The computational complexity of ExistsPossiblyStableMatching is
the same for complete and incomplete lists, and the same holds for ExistsCer-
tainlyStableMatching.

3.2 An Efficient Algorithm for the Lottery and Compact IndifferenceModels

As pointed out earlier, certainly stable matchings are closely related to the notion of
super-stablematchings [13,16]. Decidingwhether an instance of SMPI admits a super-
stablematching or not can be done in polynomial time using algorithmSUPER-SMP in
[25].We next show that for a class of independent uncertainty models that includes the
lottery and compact indifference, we can solve ExistsCertainlyStableMatching
in polynomial time by a straightforward reduction to the problem of deciding whether
an instance of SMP admits a super-stable matching or not.

Theorem 1 For any independent uncertainty model in which the certainly pre-
ferred relation is transitive and can be computed in polynomial time, ExistsCer-
tainlyStableMatching can be solved in polynomial time.
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Proof Weprove this by reducingExistsCertainlyStableMatching to the problem
of deciding whether an instance of SMP admits a super-stable matching or not. Let
I = (M,W , L) be an instance of ExistsCertainlyStableMatching under an
independent uncertainty model in which the certainly preferred relation is transitive
and can be computed in polynomial time.We construct in polynomial time an instance
I ′ = (M,W , p) of SMP, where p is the agents’ partial preference ordering profile, as
follows. The set of men and women are unchanged. To create the partial preference
ordering pa for each agent a we do the following. Without loss of generality, assume
that a is a man m. For every pair of women w1 and w2 (i) if w1 �cert

m w2 then
(w1, w2) ∈ pm , denoting that m (strictly) prefers w1 to w2 in I ′, (ii) if w2 �cert

m w1
then (w2, w1) ∈ pm , denoting that m (strictly) prefers w2 to w1 in I ′. We claim that
I ′ admits a super-stable matching if and only if I admits a certainly stable matching.
It follows from the definition of super-stability that a matching μ in I ′ is super-
stable if and only if there is no unmatched pair (m, w) where (μ(m), w) /∈ pm and
(μ(w),m) /∈ pw.

(⇐) We first prove that if I ′ admits a super-stable matching μ then μ is certainly
stable in I . Assume, for a contradiction, that μ is not certainly stable. It then follows
Lemma 1 that μ(m) /∈ Dm(w) and μ(w) /∈ Dw(m), implying that μ(m) �cert

m w and
μ(w) �cert

w m, and thus (μ(m), w) /∈ pm and (μ(w),m) /∈ pw. Therefore μ is not
super-stable in I ′, a contradiction.

(⇒) Now we prove that if I admits a certainly stable matching μ then μ is super-
stable in I ′. Assume, for a contradiction, that μ is not super-stable in I ′. Therefore
there exists an unmatched pair (m, w) where (μ(m), w) /∈ pm and (μ(w),m) /∈ pw,
implying that μ(m) �cert

m w and μ(w) �cert
w m. The latter statement, coupled with

the fact that m and w are not matched together, implies that μ(m) /∈ Dm(w) and
μ(w) /∈ Dw(m). Thus, by Lemma 1, μ is not certainly stable in I , a contradiction. ��

3.3 An Efficient Algorithm for the Case with a Constant Number of Uncertain
Agents

Theorem 2 When the number of uncertain agents is constant and one side of themarket
is certain, thenMatchingWithHighestStabilityProbability is polynomial-time
solvable for each of the linear models.

Proof Let I = (M,W , L) be an instance of MatchingWithHighestStabili-
tyProbability and assume, without loss of generality, that uncertain agents are all
men. Let X ⊆ M be the set of uncertain agents with |X | = k for a constant k. We
consider all the possible matchings between X and W ; note that their total number is
K = n(n − 1) . . . (n − k + 1). Let μi , i ∈ {1 . . . K }, be such a matching. The main
idea of the proof is to show that there exists an extension of μi to M ∪ W , which
we denote by μ∗

i , that has stability probability at least as high as any other extension
of μi . Furthermore, we can compute μ∗

i in polynomial time. Therefore, in order to
compute a matching that has the highest stability probability, it is enough to generate
μ∗
i ’s, compute their stability probabilities, compare them and select the one with the

highest stability probability. The total number of μi ’s and hence μ∗
i ’s is K and hence

polynomial in n, we can compute each μ∗
i in polynomial time (as we will see later

123



Algorithmica

in this proof) and computing the stability probability of a given μ∗
i can be done in

polynomial time since all uncertain agents are on one side of the market (see Theorem
3 in Section 4, Theorem 8 in Section 5 and Theorem 10 in Section 6).

Take a matching μi between sets X and W . Let Y = μi (X) (i.e., the partners of
X in W ) and let M ′ = M\X and W ′ = W\Y . Recall that all agents in M ′ ∪ W are
certain. First, we compute the man-optimal matching μM

i for the sub-instance I ′ on
M ′ ∪ W ′, that can be done efficiently by the Gale-Shapley algorithm [11]. Consider
the matching μ′

i = μi ∪μM
i in I . If μ′

i admits a blocking pair (m′, w) involving some
(certain) agents m′ ∈ M ′ and w ∈ Y (that we will refer to as a BP_Type1 blocking
pair) then we can conclude that any extension of μi to a matching in I will have zero
probability of being stable. This is because any extension of μi that has a positive
probability of being stable in I must also be stable for the sub-instance I ′. If (m′, w)

is a blocking pair for μ′
i then it also blocks any other extension of μi in I , since in

all extensions w has the same partner and m′ cannot have a better partner than in μM
i .

Therefore we can exclude the extensions of μi from further consideration in this case.
Suppose now that μ′

i = μi ∪ μM
i admits no BP_Type1 blocking pair. We truncate

the preference lists of men in M ′ in the following way. For each man m′ ∈ M ′ we
remove from his preference list all the women w′ ∈ W ′ that m′ prefers less than some
woman w ∈ Y who prefers m′ to her partner in μi . That is, we remove w′ from the
list of m′ if there exists w ∈ Y such that w �m′ w′ and m′ �w μi (w). To do this, it is
enough to identify the first (i.e. the highest ranked) woman w in the preference list of
m′ such that w ∈ Y and m′ �w μi (w), and then remove from the preference list of m′
all women w′ ∈ W ′ that appear after w. Let us denote the sub-instance for M ′ ∪ W ′
with the truncated lists as I ri . Now we compute the woman-optimal matching μW

i in
I ri . Let μ∗

i = μi ∪ μW
i . We claim that μ∗

i is a complete matching in I and is stable
for the certain agents; that is, no blocking pair (m, w) exists where both m and w are
certain agents. To see this, first note that since μ′

i admits no BP_Type1 blocking pair
hence μM

i (m′) remains in the truncated preference list of all m′ ∈ M ′. Therefore, the
man-optimal matching for I ri is the same as the man-optimal matching for I ′, μM

i ,
implying that a complete stable matching exists in I ri and that each m′ ∈ M ′ is either
matched to the same woman in both μM

i and μW
i or prefers μM

i (m′) to μW
i (m′). As

all stable matchings in I ri are of the same size (by the Rural-Hospital Theorem, see
e.g. [26]), hence all agent in I ri are matched in μW

i and therefore μ∗
i is a complete

matching for I . Now assume, for a contradiction, that μ∗
i is not stable for the certain

agents and hence admits a blocking pair (m∗, w∗) wherem∗ ∈ M ′ and w∗ ∈ W . Note
that w∗ /∈ W ′ as otherwise (m∗, w∗) blocks μW

i in I ri , a contradiction. Therefore,
w∗ ∈ Y . But then we have that w∗ ∈ Y prefers m∗ ∈ M ′ to μi (w

∗) and also that m∗
prefers w∗ to μW

i (m∗), implying that by the construction of the truncated preference
lists of men in M ′, woman μW

i (m∗) must have been removed from m∗’s preference
list, a contradiction. Therefore μ∗

i is a complete matching in I and is stable for certain
agents.

Finally, we show that for any matching μ+
i that is an extension of μi to I , the

stability probability of μ+
i is less than, or equal to, the stability probability of μ∗

i . If
μ+
i is not stable for the certain agents then μ+

i has zero probability of being stable,
thus the statement holds. Otherwise, μ+

i is stable for the certain agents and hence for
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any pair (m, w) that has a positive probability of being a blocking pair it must be that
m ∈ X and w ∈ W ′. Moreover, the projection of μ+

i onto I ri must be stable in I ri , and
as each womanw ∈ W ′ is matched inμ∗

i to her optimal stable partner under I ri thusw

either prefers her partner in μ∗
i to her partner in μ+

i , or is matched to the same partner
under both matchings. Therefore, for each deterministic preference profile that has a
positive probability of realization under I , if a pair (m, w) blocks μ∗

i then it must also
block μ+

i , implying that if μ+
i is stable under the given preference profile then so is

μ∗
i , and thus our statement follows. ��

4 Lottery Model

In this section, we turn to the lottery model. Recall that in the lottery model, each agent
reports a probability distribution over a set of preference orders. We show that even
with small supports, computingStabilityProbability is still a computationally hard
problem. However, other questions become more tractable with small supports or one
side having certain preferences.

Theorem 3 For the lotterymodel, if one side has certain preferences,StabilityProb-
ability is polynomial-time solvable.

Proof Without loss of generality, assume that men have certain preferences so each
man m has a deterministic preference relation �m . We present a polynomial-time
computable formula for the probability of μ being stable. For a woman w, we denote

her set of possible preferences lists by Pw = {�P1
w

w , . . . ,�Pkw
w

w } with each preference

list �Pi
w

w having corresponding probability piw. Let qw be the probability that woman
w will not form a blocking pair. The term qw is by definition as follows.

qw =
∑

�P
j
w

w ∈Pw : � m ∈M for which w �m μ(m) and m �P
j
w

w μ(w)

p j
w

So for each w ∈ W , qw can be computed in time O(kwn) by scanning over the kw

preference lists of womanw and checking in which of them it is not the case that some
m prefers w over μ(m) and w prefers m over μ(w). The probability that μ is stable is
equal to the probability that no woman is in a blocking pair:

p(μ is stable) =
∏

w∈W
qw.

��
Theorem 4 For the lottery model, IsStabilityProbabilityOne can be solved in
polynomial time.

Proof The problem is equivalent to checking whether the given matching μ has non-
zero probability of not being stable, i.e., we need only find a single possible blocking
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pair. This can be checked as follows: for each pair (m, w) of agents that are notmatched
to each other, we check whether either member of this pair can form a blocking pair
with a pair in μ with non-zero probability. To do this, we need to check whether m
prefers w in some possible preference over μ(m) and whether w prefers m in some
possible preference over μ(w). As this only involves checking n2 − n possible pairs,
each of which can be checked in linear time, this can be done in polynomial time. ��
Theorem 5 For the lotterymodel, IsStabilityProbabilityNon- Zero is polynomial-
time solvable when each agent has at most two possible preference orderings.

Proof The problem is to decide whether there is some preference ordering for each
agent (among the ones in their lottery) such that the given matching is stable. If
each agent has at most two possible preference orderings in their lottery, we can
reduce the problem to an instance ϕ of 2SAT [12], as follows. 2SAT is the problem of
deciding whether a given propositional formula in 2CNF is satisfiable. A propositional
formula ϕ is in 2CNF if it is the conjunction of clauses (l1 ∨ l2) of size 2, where l1
and l2 are propositional literals (propositional variables x or their negation ¬x).

Let {a1, . . . , an} and {b1, . . . , bn} be the two sets of agents. Moreover, for each
agent c and each i ∈ {1, 2}, let pref(c, i) denote the i-th preference in the lottery for
agent c.

We introduce a propositional variable for each preference pref(c, i), which we also
call pref(c, i). Intuitively, these variables indicate which preference for the agents we
choose to make the matching stable.

For each agent c, we add the following clauses to ϕ, to ensure that for each
agent c there is exactly one preference that is selected: (pref(c, 1) ∨ pref(c, 2)) ∧
(¬pref(c, 1) ∨ ¬pref(c, 2)).

Then, we add clauses to ensure that the selected matching is stable. For each agent c
and each i ∈ {1, 2}, let Bc,i be the set of preferences pref(c′, i ′)—for c′ �= c and i ′ ∈
{1, 2}—such that pref(c, i) and pref(c′, i ′) together lead to the given matching being
unstable (with (c, c′) being a blocking pair). Then, for each c, i , we add the following
clauses: (¬pref(c, i) ∨ ¬pref(c′, i ′)) for each pref(c′, i ′) ∈ Bc,i .

The given matching is then stable if and only if ϕ is satisfiable. Since ϕ is a 2CNF
formula, this can be decided in linear time [1]. ��
Theorem 6 For the lottery model, StabilityProbability is #P-complete, even when
each agent has at most two possible preferences.

Proof Weshowhow to count the number of satisfying assignments for a 2CNF formula
using the problem StabilityProbability for the lottery model where each agent has
two possible preferences. Since this problem is #P-hard, we get #P-hardness also for
StabilityProbability [23].

Let ϕ be a 2CNF formula over the variables x1, . . . , xn . We firstly transform ϕ

to a 2CNF formula ϕ′ over the variables x1, . . . , x2n, y1, . . . , y2n that has exactly the
same number of satisfying assignments, and that satisfies the property that each clause
contains one variable among x1, . . . , x2n and one variable among y1, . . . , y2n . We do
so as follows. Firstly, for each 1 ≤ i ≤ n, we add the clauses (¬xi ∨ yi ), (¬yi ∨ xn+i ),
(¬xn+i ∨ yn+i ) and (¬yn+i ∨ xi ), ensuring that in each satisfying assignment the
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variables xi , xn+i , yi and yn+i get assigned the same truth value. Then, for each clause
of ϕ, we replace one occurrence of a variable among x1, . . . , xn by a corresponding
variable among y1, . . . , y2n—that is, we replace xi either by yi or by yn+i—and we
add the resulting clause to ϕ′. For example, if ϕ contains the clause (x1 ∨ ¬x3), we
could add the clause (x1∨¬y3) to ϕ′. It is readily verified that ϕ′ has the same number
of satisfying assignments as ϕ.

Without loss of generality, we may assume that for each pair xi , x j of variables
among x1, . . . , xn , the original formula ϕ contains at most two distinct clauses that
contain both xi and x j . If ϕ were to contain three or more distinct clauses that contain
both xi and x j , we know that at least one of the literals xi ,¬xi , x j ,¬x j would be
entailed by these clauses, andwe could instantiate these entailed literals and simplify ϕ

accordingly. For example, if ϕ contains the clauses (x1 ∨ x2), (x1 ∨ ¬x2) and (¬x1 ∨
¬x2), we can simplify ϕ by instantiating the entailed literals x1 and ¬x2. As a result,
we know that we can construct ϕ′ in such a way that for any two variables of ϕ′, there
is at most one clause of ϕ′ that contains both of these variables. For instance, if ϕ

contains the clauses (x1 ∨ x2) and (¬x1 ∨ ¬x2), we can construct ϕ′ in such a way
that it contains the clauses (x1 ∨ y2) and (¬y1 ∨ ¬x2).

We now construct an instance ofStabilityProbability. The sets of agents that we
consider are {x1, . . . , x2n, a1, . . . , a2n} and {y1, . . . , y2n, b1, . . . , b2n}. The matching
that we consider matches xi to bi and matches yi to ai , for each 1 ≤ i ≤ 2n as shown
below.

•
b1

•
x1

•
b2

•
x2

•
b3

•
x3

· · ·
•
b2n

•
x2n

•
y1

•
a1

•
y2

•
a2

•
y3

•
a3

· · ·
•
y2n

•
a2n

Each agent bi has only a single possible preference, namely onewhere they prefer xi
over all other agents. Similarly, each agent ai has a single possible preference where
they prefer yi over all other agents. In other words, the agents ai and bi are perfectly
happy with the given matching.

The agents xi and yi each have two possible preferences, that are each chosen with
probability 1

2 . These two possible preferences are associated with setting these vari-
ables to true or false, respectively. We describe how these preferences are constructed
for the agents xi . The construction for the preferences of the agents yi is then entirely
analogous.

Take an arbitrary agent xi . We show how to construct the two possible preferences
for agent xi , which we denote by pxi and p¬xi . Both of these possible preferences are
based on the following partial ranking: b1 > b2 > · · · > b2n, and we add some of the
agents among y1, . . . , y2n to the top of this partial ranking, and the remaining agents
to the bottom of this partial ranking.

To the ranking pxi we add exactly those agents y j to the top where ϕ′ contains a
clause (¬xi ∨ y j ) or a clause (¬xi ∨¬y j ). All remaining agents we add to the bottom.
Similarly, to the ranking p¬xi we add exactly those agents y j to the top where ϕ′
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contains a clause (xi ∨ y j ) or a clause (xi ∨ ¬y j ). The rankings py j and p¬y j , for the
agents y j , are constructed entirely similarly.

Consider a truth assignment α : {x1, . . . , x2n, y1, . . . , y2n} → {0, 1}, and consider
the corresponding choice of preferences for the agents x1, . . . , x2n, y1, . . . , y2n , where
for each agent xi the preference pxi is chosen if and only if α(xi ) = 1, and for each
agent y j the preference py j is chosen if and only if α(y j ) = 1. We show that α

satisfies ϕ′ if and only if the corresponding choice of preferences leads to the matching
being stable. The only blocking pairs that can arise are between an agent xi and an
agent y j . Take an arbitrary such pair (xi , y j ). We show that this is a blocking pair
if and only if α falsifies at least one clause containing both variables xi and y j . We
know that ϕ′ contains exactly one clause containing xi and y j . We deal with the case
where ϕ′ contains the clause (xi ∨ y j )—the other possibilities are entirely analogous.
By construction of pxi , p¬xi , py j , and p¬y j , we get that (xi , y j ) is a blocking pair
if and only if both p¬xi and p¬y j are chosen. This is exactly the case where the
clause (xi ∨ y j ) is falsified. Thus, we can conclude that α falsifies ϕ′ if and only if
there is a blocking pair, and thus that α satisfies ϕ′ if and only if the corresponding
choice of preferences leads to the matching being stable

Since each combination of preferences is equally likely to occur, and there are 24n

many combinations of preferences, the probability that the given matching is stable
is exactly q = s

24n
, where s is the number of satisfying truth assignments for ϕ.

Therefore, given q, s can be obtained by computing s = q24n . ��
If the agents are allowed to have more than two possible preferences as we have
assumed in the last two Theorems, then even the following problem is NP-complete.
The statement can be proved via a reduction from Exact Cover by 3-Sets (X3C).

Theorem 7 For the lottery model, IsStabilityProbabilityNon- Zero is NP-
complete.

Proof The problem is in NP, since we only need to provide one profile that occurs with
non-zero probability for which the given matching is stable. We show NP-hardness by
giving a reduction from Exact Cover by 3-Sets (X3C). Let (X ,C) be an instance of
X3C, where |X | = 3n for some n, andC = {c1, . . . , cm} is a collection of sets ci ⊆ X ,
each of size 3. Moreover, let ci = {x�i,1 , x�i,2 , x�i,3}, for each 1 ≤ i ≤ m. The problem
is to decide whether there is a subset C ′ ⊆ C of size exactly n such that

⋃
C ′ = X .

We construct an instance of our problemas follows.We let {a1, . . . , an, a′
1, . . . , a

′
3n}

and {b1, . . . , bn, b′
1, . . . , b

′
3n}be the two sets of agents,wematchai tobi—for each1 ≤

i ≤ n— and we match a′
j to b′

j—for each 1 ≤ j ≤ 3n. This is depicted graphically
below.

•
a1

•
b1

•
a2

•
b2

•
a3

•
b3

· · ·
•
an

•
bn

•
a′
1

•
b′
1

•
a′
2

•
b′
2

•
a′
3

•
b′
3

· · ·
•
a′
3n

•
b′
3n
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Each agent ai prefers their matching to bi over any other possible match, i.e.,
agent ai has one preference, where bi is ranked first, and the rest of the agents appear
in some fixed order after bi .

Similarly, each agent b′
j prefers their matching to a′

j over any other possible match.
That is, agent b′

j has one preference ordering in which a′
j is ranked first and the rest

of the agents appear in some fixed order after a′
j .

Then, for each agent bi , we add the following |C | possible preferences to the lottery:

Pi,1 : a′
�1,1

> a′
�1,2

> a′
�1,3

> ai > · · ·
Pi,2 : a′

�2,1
> a′

�2,2
> a′

�2,3
> ai > · · ·

...

Pi,m : a′
�m,1

> a′
�m,2

> a′
�m,3

> ai > · · ·

where in each preference the remaining agents appear in any (fixed) order after ai . In
other words, bi prefers three agents a′

j to their current match, and these three form
some set c ∈ C .

Finally, for each agent a′
j , we add the following n possible preferences to the lottery:

P ′
j,1 : b2 > · · · > bn > b′

j > b1 > b′
1 > · · · > b′

j−1 > b′
j+1 > · · · > b′

3n
P ′
j,2 : b1 > b3 > · · · > bn > b′

j > b2 > b′
1 > · · · > b′

j−1 > b′
j+1 > · · · > b′

3n
P ′
j,3 : b1 > b2 > b4 > · · · > bn > b′

j > b3 > b′
1 > · · · > b′

j−1 > b′
j+1 > · · · > b′

3n
...

...

P ′
j,n : b1 > · · · > bn−1 > b′

j > bn > b′
1 > · · · > b′

j−1 > b′
j+1 > · · · > b′

3n

That is, each agent a′
j prefers each of the agents b1, . . . , bn , except one, to their current

match (and they never prefer any of the agents b′
j ′ for j

′ �= j over their current match).
We can show that there is a choice of preferences for the agents that makes this

matching stable if and only if (X ,C) ∈ X3C.
(⇒) Firstly, suppose that there is a choice of preferences for the agents that makes

this matching stable. That is, for each agent bi there is some preference ordering Pi,�i ,
and for each agent a′

j there is some preference ordering P ′
j,k j

, such that these orderings

(together with the fixed preference orderings for the agents ai and b′
j ) make this

matching stable. Now, consider the set C ′ = {c� : i ∈ [n], � = �i }. We show
that

⋃
C ′ = X . To derive a contradiction, suppose that this is not the case, that is,

suppose that
⋃

C ′ �= X . Then, since |C ′| = n, |X | = 3n and for each c ∈ C ′ it holds
that |c| = 3, we know that there must be some c�, c�′ ∈ C ′ such that c� ∩ c�′ �= ∅. Say
that x j ∈ c� ∩ c�′ . Therefore, there must be some i, i ′ ∈ [n] such that both bi and bi ′
prefer a′

j over their current match. On the other hand, a′
j will prefer either bi or bi ′

over their current match. Therefore, either bi and a′
j or bi ′ and a

′
j will form a blocking

pair. Thus, the matching is not stable. From this we can conclude that
⋃

C ′ = X .
(⇐) Conversely, suppose that there exists some C ′ ⊆ C of size exactly n such

that
⋃

C ′ = X . Let C ′ = {c�1 , . . . , c�n }. Now, for each agent bi we pick some
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preference ordering, and for each agent a′
j we pick some preference ordering, such that

these orderings (together with the fixed preference orderings for the agents ai and b′
j )

make the matching stable. For each agent bi , we pick the preference ordering Pi,�i ,
and for each agent a′

j we pick the preference ordering P ′
j,k j

, where k j ∈ [n] is the
unique value such that x j ∈ c�k j

. It is straightforward to verify that these preferences
make the matching stable. ��

Given that StabilityProbability is computationally hard even in restricted set-
tings, one may immediately wonder about approximation algorithms. However, we
can state the following two corollaries, the first from Theorem 7 and the second from
[29, Proposition 8] and Theorem 7, which show that even approximation remains
intractable.

Corollary 3 For the lottery model, unless P=NP, there exists no polynomial-time
constant-factor approximation algorithm StabilityProbability of a given match-
ing.

Corollary 4 For the lottery model, unless NP=RP, there is no FPRAS for Stabili-
tyProbability.

5 Compact IndifferenceModel

In the compact indifference model we are given an instance of SMT and each linear
order over candidates (each possible preference ordering) is achieved by breaking
ties independently at random with uniform probabilities. It is easy to show that
IsStabilityProbablityNonZero, IsStabilityProbablityOne, and ExistsCer-
tainlyStableMatching are all in P.

Proposition 3 For the compact indifference model, IsStabilityProbability
NonZero is in P.

Proof This is equivalent to checking whether a given matching μ is weakly stable
in the given SMTI instance, which is polynomial-time solvable. To check this we
only have to look for a blocking pair, which can be done in polynomial time: take
every possible pair (m, w)who are not matched together and check whether they both
(strictly) prefer each other to their current partner. ��
Proposition 4 For the compact indifference model, IsStabilityProbabilityOne is
in P.

Proof This is equivalent to checking whether a given matching μ is super stable in
the given SMTI instance, which is polynomial-time solvable. To check this we only
have to look for a very weakly blocking pair, which can be done in polynomial time:
take every possible pair (m, w) who are not matched together and check whether they
each either prefers the other to his or her current partner or finds them incomparable.

��
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Proposition 5 For the compact indifferencemodel,ExistsCertainlyStableMatch-
ing is in P.

Proof Deciding whether there is a matching that is stable with probability one is
equivalent to deciding whether there is a matching that is stable w.r.t. all refinements,
i.e., a super-stable matching. Given an instance of SMTI one can decide in polynomial
time whether it admits a super-stable matching [20]. ��

The complexity of computing the stability probability of a given matching remains
open under the compact indifference model, but this problem can be shown to be in P
if one side has certain preferences.

Theorem 8 In the compact indifference model, if one side has certain preferences,
StabilityProbability is polynomial-time solvable.

Proof Assume, without loss of generality, that men have certain preferences. The
following procedure gives us the stability probability of any given matching μ. (1)
For each uncertain woman w identify those men with whom she can potentially form
a blocking pair. That is, thosem such that w �m μ(m) and w is indifferent betweenm
and her partner in μ. Assume there are k such men. The probability of w not forming
a blocking pair with any men is then the probability that her current match ranks first
among these k + 1 men, which is 1

k+1 . (2) Multiply the probabilities from step 1. ��
We next show thatMatchingWithHighestStabilityProbability is NP-hard. For
an instance I of SMT and matching μ, let p(μ, I ) denote the probability of μ being
stable, and let pS(I ) = max{p(μ, I ) | μ is a matching in I }, that is the maximum
probability of a matching being stable. A matching μ is said to be weakly stable if
there exists a tie-breaking rule where μ is stable. Therefore a matching μ has positive
probability of being stable if and only if it is weakly stable. Furthermore, if the number
of possible tie-breaking is N then anyweakly stablematching has a probability of being
stable at least 1

N .
An extreme case occurs if we have one woman only with n men, where the woman

is indifferent between all men. In this case any matching (pair) has a 1
n probability

of being stable. An even more unfortunate scenario is when we have n men and n
women, each women is indifferent between all men, and each man ranks the women
in a strict order in the same way, e.g., in the order of their indices. In this case, the
probability that the first woman picks her best partner, and thus does not block any
matching is 1

n . Suppose that the first woman picked her best partner, the probability
that the second woman also picks her best partner from the remaining n − 1 men is
1

n−1 , and so on. Therefore, the probability that an arbitrary complete matching is stable

is 1
n·(n−1)·····2 = 1

n! .

Theorem 9 For the compact indifference model, MatchingWithHighestStabili-
tyProbability is NP-hard, even if only one side of the market has uncertain agents.

Proof For an instance I of SMTI, let opt(I ) denote the maximum size of a weakly
stable matching in I . [14] showed (in the proof of Corollary 3.4) that given an instance
I of SMTI of size n, where only one side of the market has agents with indifferences
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and each of these agents has a single tie of size two, and any arbitrary small positive
ε, it is NP-hard to distinguish between the following two cases: (1) opt(I ) ≥ 21−ε

27 n
and (2) opt(I ) < 19+ε

27 n.
When choosing ε so that 0 < ε < 1

2 we can simplify the above cases to (1)
opt(I ) > 41

54n, since opt(I ) ≥ 21−ε
27 n > 41

54n and (2) opt(I ) < 39
54n, since opt(I ) <

19+ε
27 n < 39

54n.
Therefore, the number of agents left unmatched on either side of the market is

less than 13
54n in the first case and more than 15

54n in the second case. Let us now
extend instance I to a larger instance of SMTI I ′ as follows. Besides the n men
M = {m1, . . . ,mn} and n women W = {w1, . . . , wn}, we introduce 13

54n men X =
{x1, . . . xk} and another n

27 men Y = {y1, . . . yl} and n
27 women Z = {z1, . . . zl}.

Furthermore, for each y j ∈ Y , we introduce n men Y j = {y j
1 , . . . , y j

n }. We create the
preferences of I ′ as follows. The preferences of men M remain the same. For each
woman w ∈ W we append the men X and then Y at the end of her list in the order of
their indices. Each man xi ∈ X has only all the women W in his list in the order of
their indices. Furthermore, each y j ∈ Y has all the women W first in his preference
list in the order or their indices and then z j . Let each z j ∈ Z has y j as first choice and
then all the men Y j in one tie of size n. Each man in Y j has only z j in his list. We
will show that in case one pS(I ′) ≥ 1

2n , whilst in case two pS ≤ ( 1n )
n
27 . Therefore, for

n > 227, it is NP-hard to decide which of the two separate intervals contains the value
pS(I ′).

To show the above statement, suppose first that we have the first case, so opt(I ) >
41
54n and therefore less than 13

54n women are left unmatched in a maximum size weakly
stable matching μ for I , denoted by Wu ⊂ W . We extend μ to μ′ for I ′ as follows.
We assign all the women in Wu to men in X in the unique stable way, namely we
pair them in a mutually increasing order of their indices. Since |X | > |Wu |, we now
matched all women in W , and left some men in X unmatched in μ′. We complete the
matching by assigning y j to z j for each j = 1, . . . , n and leaving all of the men in Y j

for all j unmatched. We shall see that no matter how we break the ties in I ′, blocking
pair can appear between the original I agents only, and therefore the probability of μ′
being stable in I ′ is the same as the probability of μ being stable in I . Since we have
at most n ties in I , each of length two, the number of different tie-breakings is at most
2n , out of which at least one is stable. Therefore p(μ, I ′) = p(μ, I ) ≥ 1

2n .
In the second case, opt(I ) < 39

54n and therefore more than 15
54n women are left

unmatched in any weakly stable matching μ for I . Let μ′ be one of the most stable
matchings in I ′. First we have to note that the restriction of μ′ to I must be weakly
stable in I , since otherwise p(μ′, I ′) = 0. LetWu denote the set of women that are not
matched to any man from M in μ′. According to our assumption |Wu | > 15

54n, whilst
|X | + |Y | = 15

54n, therefore in order to avoid a certain blocking pair between Wu and
X ∪ Y we shall match all the men in X ∪ Y to women in Wu in the only stable way
(in the order of indices, where men in X are coming before men in Y ), leaving some
women inWu unmatched inμ′. However, in this case no agent z j ∈ Z can be matched
to y j , and therefore, even if there was no potential blocking pair between agents of I ,
the probability that z j is matched the best partner from Y j is 1

n independently for each
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z j ∈ Z . Therefore the probability ofμ′ being stable is at most ( 1n )
n
27 , which completes

the proof of the first statement.
Regarding the NP-hardness of finding one of the most stable matchings, we shall

prove that we can decide between the two cases according to the number of unmatched
women inW in the restriction of μ′ to I , where μ′ is one of the most stable matchings
in I ′. To see this, let Wu denote again the set of women that are not matched to any
man in M under μ′. In the first case, when opt(I ) > 41

54n, it must be the case that

|Wu | < 15
54n, since otherwise p(μ′, I ) would be less than ( 1n )

n
27 and could not achieve

1
2n , that is the minimum value for pS(I ′), as shown in the above argument. Whilst, in
the second case |Wu | > 15

54n must hold, since opt(I ) < 39
54n was assumed. ��

6 Joint Probability Model

In this section, we examine problems concerning the joint probability model. Recall
that the input now consists of a set of preference profiles, and a probability distribution
over these preference profiles. Our first result is that the stability probability of a
matching can be computed in polynomial time in the size of the input.

Theorem 10 For the joint probability model, StabilityProbability can be solved
in polynomial time.

Proof The probability that a given matching is stable is equivalent to the sum of the
probability weights of the preference profiles for which the matching is stable. This
can be checked as follows. We check for which preference profiles the given matching
is stable. For one profile, this can be checked in O(n2) time by checking for each
(man, woman) pair, whether it is a blocking pair. Then we add up the probabilities
of those profiles for which the matching is stable. The sum of the probabilities is the
probability that the matching is stable. ��
Corollary 5 For the joint probabilitymodel, IsStabilityProbabilityNon- Zeroand
IsStabilityProbabilityOne can be solved in polynomial time.

For the joint probability model, the problem ExistsCertainlyStableMatching is
equivalent to checking whether the intersection of the sets of stable matchings of the
different preference profiles is empty.

Theorem 11 For the joint probability model, ExistsCertainlyStableMatching is
NP-complete.

Proof The problem is in NP, since computing StabilityProbability can be done in
polynomial time by Theorem 10 , and so amatching that is stable with probability 1 is a
certificate. TheNP-hardness proof is by reduction from theNP-complete 3- Coloring
problem. The input for 3- Coloring is a graph G = (V , E), and the question is
whether there exists a coloring of the vertex set with 3 colors, χ : V → {1, 2, 3},
such that no two adjacent vertices receive the same color. Such a coloring is called a
proper coloring. Let G = (V , E) be a graph specifying an instance of 3- Coloring,
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where V = {v1, . . . , vn}. We construct an instance I of ExistsCertainlyStable-
Matching in the joint probability model.

For each vertex vi ∈ V , we introduce three men mi,1,mi,2,mi,3 and three
women wi,1, wi,2, wi,3. We will add a sequence of preference profiles that have non-
zero probability. The exact probability of the preference profiles is unimportant, so we
may assume that there is a uniform probability associated with the preference profiles.
The first preference profile P0 will ensure that every certainly stable matchingmatches
eachmi, j to somewi, j ′ and eachwi, j to some mi, j ′′ , where j, j ′, j ′′ ∈ {1, 2, 3}.More-
over, it ensures that for each i ∈ {1, . . . , n}, exactly one of three matchings between
the men mi, j and the women wi, j must be used:

(1) mi,1 is matched to wi,1, mi,2 is matched to wi,2, and mi,3 is matched to wi,3;
(2) mi,1 is matched to wi,2, mi,2 is matched to wi,3, and mi,3 is matched to wi,1; or
(3) mi,1 is matched to wi,3, mi,2 is matched to wi,1, and mi,3 is matched to wi,2.

Intuitively, choosing one of thematchings (1)–(3) for the agentsmi, j , wi, j corresponds
to coloring vertex vi with one of the three colors in {1, 2, 3}.

Then, for each edge e = {vi1, vi2} ∈ E , and for each color c ∈ {1, 2, 3}, we will
introduce a preference profile Pe,c that ensures that in each certainly stable matching,
it cannot be the case that both the agents mi1, j , wi1, j and the agents mi2, j , wi2, j are
matched to each other according to matching (c). As a result, any certainly stable
matching directly corresponds to a proper 3-coloring of G.

A detailed description of the preference profiles P0 and Pe,c and a proof of correct-
ness for this reduction follows.

In P0, for each i ∈ [n], the preferences for mi, j , wi, j are as follows:

mi,1 : wi,1, wi,2, wi,3,− − − wi,1 : mi,2,mi,3,mi,1,− − −
mi,2 : wi,2, wi,3, wi,1,− − − wi,2 : mi,3,mi,1,mi,2,− − −
mi,3 : wi,3, wi,1, wi,2,− − − wi,3 : mi,1,mi,2,mi,3,− − −

Observe that the matchings (1)–(3) are the only stable matchings restricted to the
agents {mi,1,mi,2,mi,3, wi,1, wi,2, wi,3}.

Next, we continue with the preference profiles Pe,c. Take an arbitrary e =
{vi1, vi2} ∈ E and an arbitrary c ∈ {1, 2, 3}. In Pe,c, the preferences for mi, j , wi, j for
each i ∈ [n]\{i1, i2} are exactly the same as in P0. Only the preferences formi1, j , wi1, j

and mi2, j , wi2, j differ from P0; namely, we construct these preferences as follows.
For mi1, j , wi1, j , we start with preferences that (i) for all mi1, j have {wi1,1, wi1,2,

wi1,3} as top three choices, (ii) for all wi1, j have {mi1,1,mi1,2,mi1,3} as top three
choices, (iii) admit only matchings (1), (2), and (3) as stable matchings between the
agents mi1, j , wi1, j , and (iv) for the men mi1, j the matching (c) is the worst option
among the matchings (1), (2), and (3). Similarly, for mi2, j , wi2, j , we start with prefer-
ences that satisfy conditions (i), (ii) and (iii), and additionally satisfy the condition (iv′)
that for the women wi2, j the matching (c) is the worst option among the match-
ings (1), (2), and (3). Then, we modify the preferences for mi1,1 and wi2,1 slightly.
For mi1,1, we insert wi2,1 between his second and third preferred woman. Similarly,
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forwi2,1, we insertmi1,1 between her second and third preferredman. As a result,mi1,1
and wi2,1 form a blocking pair in this preference profile if both the agents mi1, j , wi1, j

and the agents mi2, j , wi2, j are matched to each other using matching (c)— and not if
either set of agents is matched to each other using some other matching (c′).

For example, consider e = {vi1 , vi2} and c = 2. The preferences for the
agents mi1, j , wi1, j and mi2, j , wi2, j in the preference profile Pe,c are as follows:

mi1,1 : wi1,1, wi1,3,wi2,1, wi1,2,− − − mi2,1 : wi2,2, wi2,3, wi2,1,− − −
mi1,2 : wi1,2, wi1,1, wi1,3,− − − mi2,2 : wi2,3, wi2,1, wi2,2,− − −
mi1,3 : wi1,3, wi1,2, wi1,1,− − − mi2,3 : wi2,1, wi2,2, wi2,3,− − −
wi1,1 : mi1,3,mi1,2,mi1,1,− − − wi2,1 : mi2,1,mi2,2,mi1,1,mi2,3,− − −
wi1,2 : mi1,1,mi1,3,mi1,2,− − − wi2,2 : mi2,2,mi2,3,mi2,1,− − −
wi1,3 : mi1,2,mi1,1,mi1,3,− − − wi2,3 : mi2,3,mi2,1,mi2,2,− − −

We argue that G has a proper 3-coloring if and only if there is a certainly stable
matching for the probability distribution over preference profiles that we constructed.

(⇒) Firstly, suppose that G has a proper 3-coloring, say χ : V → {1, 2, 3}. We
can then construct a certainly stable matching as follows. For each i ∈ {1, . . . , n},
we match the agents mi, j , wi, j to each other using matching (χ(vi )). Clearly, this
matching is stable for P0. Moreover, because χ is a proper 3-coloring of G, it is
straightforward to verify that this matching is also stable for each Pe,c.

(⇐) Conversely, suppose that there is a certainly stable matching. We know that in
this matching, each man mi, j must be matched to some woman wi, j ′ , and vice versa,
each woman wi, j must be matched to some man mi, j ′′ . If this were not the case, the
matching would not be stable for P0, and thus not certainly stable. Moreover, by a
similar argument, we know that for each i ∈ {1, . . . , n}, the matching between the
men mi, j and the women wi, j must be one of the matchings (1), (2), or (3). We can
then construct a 3-coloring χ : V → {1, 2, 3} as follows. For each i ∈ {1, . . . , n},
we set χ(vi ) in such a way that (χ(vi )) is the matching used in the certainly stable
matching to match the men mi, j and the women wi, j to each other.

We argue that χ is a proper 3-coloring of G. Suppose that this is not the case, that
is, that there is some e = {vi1 , vi2} such that χ(vi1) = χ(vi2) = c. Now consider
the preference profile Pe,c. By construction of χ , we know that in the certainly stable
matching, agent mi1, j is matched to agent wi1, j and agent mi2, j is matched to agent
wi2, j , both times according to matching (c). However, by construction of Pe,c we will
have that mi1,1 and wi2,1 form a blocking pair in Pe,c. This is a contradiction with
our assumption that the matching we considered is certainly stable. From this, we can
conclude that χ is a proper 3-coloring of G. ��
By reducing from 3- Coloring on 4-regular graphs and using Vizing’s theorem to
combine preference profiles, we can strengthen Theorem 11 and show that the result
holds even when the input contains only a constant number of preference profiles.

Corollary 6 For the joint probability model, ExistsCertainlyStableMatching is
NP-complete, even when there are only 16 preference profiles in the lottery.
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Proof Weshow this bymodifying theproof ofTheorem11.Weknow that3- Coloring
is NP-complete even when restricted to 4-regular graphs [8]. We use the reduction in
the proof of Theorem 11, and we assume that in the given graph G, each vertex has
degree 4. Then, by Vizing’s Theorem [28], we know that we can give a proper edge
coloring ofG that uses atmost 5 colors.Moreover, we can find such an edge coloring in
polynomial time.Then, since in the proof ofTheorem11, in eachpreferenceprofile Pe,c
with e = {vi1, vi2}, only the preferences for the agents mi1, j , wi1, j ,mi2, j , wi2, j differ
from P0, we can, for each color c ∈ {1, 2, 3}, combine the preference profiles Pe,c
for all edges e that are colored with the same color. This results in only 16 preference
profiles: P0, and a preference profile for each of the 5 edge colors and each of the 3
vertex colors. ��

7 Future work

Firstwenote thatwe left open twooutstanding questions, as described inTable 3. In this
paper we focused on the problem of computing a matching with the highest stability
probability. However, a similarly reasonable goal could be to minimize the expected
number of blocking pairs. It would also be interesting to investigate some further
realistic probability models, such as the situation when the candidates are ranked
according to some noisy scores (like the SAT scores in the US college admissions).
This would be a special case of the joint probability model that may turn out to be
easier to solve.

One may also consider the questions we asked in this paper for two natural gener-
alizations on the one-to-one matching problem: many-to-one and the many-to-many
two-sided problems, where the agents on one or both sides of a two-sided market have
capacities. These are reasonable extensions with regard to many applications, e.g.,
college admissions, and course allocation, respectively. One issue when considering
capacities larger than one is that there are many ways of extending the preferences
over candidates to preferences over sets of candidates. Another possible generalization
of the one-to-one marriage model is the non-bipartite stable roommates problem. We
conjecture that most of our polynomial tractability results can be extended to these
more general models, but we leave this work for future research.
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