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14 Abstract. 

15 1. Non-native tree plantations constitute a large part of forestation worldwide. Plantations are 

16 prone to invasion by exotic herbaceous plant species due to habitat properties, including understory 

17 vegetation structure.

18 2. We established 40 sampling sites in 10 plantation forests. Sites were selected according

19 to tree species (native poplar forests, exotic pine plantations) and common milkweed (Asclepias 

20 syriaca) density (invaded, non-invaded sites) in a full factorial design. We collected spiders with 

21 pitfall traps.

22 3. We found a significant effect of A. syriaca invasion on spider functional diversity (Rao's

23 quadratic entropy), with invaded sites having a lower functional diversity than non-invaded sites 

24 A larger effect of invasion with A. syriaca on the RaoQ of spiders was observed in pine compared 
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25 to poplar plantations. Spider species were larger and web building spiders were more frequent in 

26 poplar forests than in pine plantations. We found no effect of A syriaca invasion on species 

27 richness or abundance of spiders.

28 4. Species composition of spider assemblages in the two forest types were clearly separated

29 according to non-metric multidimensional scaling. We identified 7 species associated with pine 

30 plantations and 6 species associated with poplar plantations.

31 5. The similar species richness and the higher functional diversity of non-invaded sites

32 suggested that these trait states were less similar than invaded sites, and that functionally different 

33 species were present. In contrast, the invaded sites had lower functional diversities, and thus more 

34 uniform trait state compositions, suggesting that environmental filtering played an important role 

35 in species sorting, making invaded plantations low quality secondary habitats for the original 

36 spider fauna. 

37

38 Key words. Plantation, forest, invasion, spider, Araneae, functional diversity, species 

39 composition, pine, poplar, Asclepias syriaca.

40

41 Introduction

42

43 The land cover of commercial tree plantations is increasing worldwide, replacing natural forests. 

44 These secondary forests include native and non-native tree plantations. Generally, they have a 

45 negative impact on the original native ecosystems (Vitousek et al., 1996; Gratton & Denno, 2006; 

46 Spirito et al., 2014), Although international pressure is increasing to tackle the negative 

47 environmental effects of such plantations, tree plantation covers more than 7% of total forest area 

48 worldwide (Payn et al., 2015). However, plantations may also have a positive impact on local 

49 biodiversity by providing secondary habitats for rare and threatened species (Brockerhoff et al., 

50 2008).

51 Pine plantations are common in Europe, where they are generally used for timber 

52 production. Pine trees can alter hydrologic regimes (Urcelay et al., 2017), microclimate and soil 
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53 properties. The layer of pine needles on forest floor makes the soil acidic (Selvi et al., 2017), and 

54 the change in chemical and physical properties of the soil results in loss of fertility (Augusto et al., 

55 2002). These processes are responsible for the changes in understory vegetation structure and 

56 microhabitat diversity (Chiarucci & De Dominicis, 1995), and in turn, lower species diversity of 

57 arthropods compared to natural forests (Brockerhoff et al., 2008; Gallé et al., 2018). 

58 Due to altered microclimate and soil properties, plantation forests are prone to invasion by 

59 non-native herbaceous plant species (Henneron et al., 2015). In turn, invasive plants alter 

60 vegetation diversity (Knops et al., 1999) and biotic interactions (Bezemer et al., 2014). A high 

61 density of invasive plants changes the physical properties of a habitat by altering its structure, 

62 including its microclimatic conditions, such as the light intensity and temperature of the invaded 

63 area (Carter et al., 2015). These changes may lead to changes in ecosystem functioning (Schirmel 

64 & Buchholz, 2013; Gomes et al., 2017). 

65 Common milkweed (Asclepias syriaca) in Europe spreads aggressively and is found in 11 

66 European countries (Szitar et al., 2018). It establishes dense populations in disturbed habitats 

67 (Pysek et al., 2012; Kelemen et al., 2016), and may change the composition of existing vegetation 

68 and form novel ecosystems (Kelemen et al., 2016; Szitár et al., 2016). Milkweed was introduced 

69 into Europe in the 17th century (Gaertner, 1979; Bukovinszky et al., 2014) from eastern North 

70 America and into Hungary in the 18th century by beekeepers (Balogh et al., 2007; Csontos et al., 

71 2009). Currently, A. syriaca endangers the semi-natural and natural vegetation of sandy regions 

72 (Ducs et al., 2016), has become one of the most abundant invasive plant species in Hungarian 

73 lowland forest plantations, and represents a major problem in conservation areas (Szitár et al., 

74 2016). However, its negative effects are not always straightforward (Szitár et al., 2016; Somogyi 

75 et al., 2017).  A. syriaca attracts many insects, particularly pollinators, because of the open 

76 structure of its flowers. As such, it serves as a continuous resource for pollinators day and night, 

77 attracting both diurnal and nocturnal pollinators (Southwick, 1983). The high density of 

78 pollinators, in turn, may attract predatory arthropods. The effect of plant invasion on arthropod 

79 assemblage structure is still not well defined, and is crucial in understanding terrestrial ecosystem 

80 ecology (Bezemer et al., 2014).

81 Although there are reports on the ecology of forest invertebrates in the context of changes in quality 

82 (reviewed by Kuuluvainen et al., 2012, Lassauce et al., 2011, Schulze et al., 2016). The majority 

83 of this work focuses on species diversity patterns (Kuuluvainen et al., 2012), with few studies 

Page 3 of 41 Insect Conservation and Diversity



84 focusing on functional diversity of spiders (Magura, 2017, Gallé et al., 2018). The concept of 

85 functional diversity helps to explain how ecosystems react to environmental change (Petchey & 

86 Gaston, 2006; Cardoso et al., 2011). Changes in habitat quality may act as a filter, structuring the 

87 community with functionally similar species (Cardinale et al., 2012, Dalzochio et al., 2016).

88 The effect of habitat structure of forests on functional diversity of arthropods has been documented 

89 (Corcuera et al., 2016; Dalzochio et al., 2018; Gallé et al., 2018); however, there is limited 

90 information on how arthropod assemblages and functional diversity is affected by plant invasion 

91 in different forest types. In the present study, we focused on spider assemblages as the ideal 

92 indicators of the impact of plantation tree species and non-native plants on assemblage structure 

93 of invertebrates due to their sensitivity to vegetation structure (Mgobozi et al., 2008). 

94 In this study we assessed the effect of A. syriaca invasion on species richness, and species 

95 composition of spiders in the native and exotic plantation. We also applied the functional diversity 

96 concept to link diversity patterns with ecosystem processes and functioning. Hypotheses for this 

97 study were: (1) species richness would be higher in native forests compared to exotic forests, and 

98 tree species would have an effect on species functional diversity (i.e. functional richness and 

99 evenness, Rao’s quadratic entropy and community weighted mean trait values) and composition 

100 of spider assemblages; (2) functional diversity and abundance of spiders would be higher in the 

101 forests which were invaded by A. syriaca as this plant would attract more pollinators, herbivores 

102 and associated predators; and (3) A. syriaca would have a different effect on spider diversity in 

103 native and exotic forests. We assumed, that changes in habitat structure by A. syriaca in the low 

104 quality exotic pine habitat may have a more pronounced deterioration effect on spider communities 

105 than in native forests.

106

107 Materials and methods

108

109 Study area

110 The present study was carried out in the Kiskunság region, in the southern part of the Great 

111 Hungarian Plain (Appendix 1.). The landscape was dominated by agriculture and semi-natural 

112 forest plantations, with small patches of the original forest-steppe habitats (Gallé et al., 2018). The 

113 soil was calcareous coarse sand and the climate was semiarid with mean annual precipitation and 

114 temperatures in the ranges 550 – 600 mm and 10.2 – 10.8 ⁰C, respectively (Török et al., 2003).
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115

116 Study design and sampling

117 We selected 5 poplar and 5 pine plantation forests for spider sampling. We surveyed ground-

118 dwelling spiders at 4 sampling sites in each of the 10 forests, for a total of 40 sampling sites. Sites 

119 were selected according to tree species (native poplar forests vs. exotic pine plantations) and 

120 common milkweed density (invaded vs. non-invaded sites) in a full factorial design resulting in 10 

121 replicates per treatment combination. All sampled plantations were mature forests with no recent 

122 intensive forestry activity. Sampling sites were located at least 70 m distance from each other, and 

123 each sampling site was located more than 100 m from the forest edges. We assessed A. syriaca 

124 quantity in four 1 m2 quadrates at each invaded sampling site; the density of A. syriaca stems was 

125 7.33 ± 3.86 stems/m2 (mean ± SD), and its cover was 30.31% ± 17.05 (mean ± SD). We 

126 characterized the habitat structure at the sampling sites by the approximate percentage cover of 

127 herbaceous plants (excluding A. syriaca), the average height of the vegetation and by the cover of 

128 leaf litter. 

129 We used 3 pitfall traps for collecting spiders at each site. The traps were plastic cups with 

130 a diameter of 8.5 cm (Császár et al., 2018). We supplied the traps with plastic funnels and we 

131 placed a metal roof above them. Traps were filled with a 50% water-ethylene-glycol solution to 

132 which we had added a few drops of detergent. Traps were open for three 7-day sampling periods: 

133 May 23 - 30, 2017; June 26 - July 3, 2017; and Oct 2 - 10, 2017. 

134

135 Data analysis

136 From the habitat structure data, mean values were calculated for each variable at the site. To 

137 detect possible differences in herbaceous cover, average height of the vegetation and the cover of 

138 leaf litter, we applied generalized linear mixed models (GLMMs) with binomial error terms. Forest 

139 type (i.e., native poplar, exotic pine), presence of A. syriaca (i.e. invaded, non-invaded sites) were 

140 fixed factors. Sampling site nested in plantation forest was used as random effect.

141 We chose 4 attributes for functional categorization of spiders. We classified species according to: 

142 shading tolerance, ranging from 1 (open) to 4 (shaded); moisture preference, ranging from 1 (very 

143 dry) to 5 (very humid habitats); feeding, 0 (active hunter) and 1 (web builder); and size, as a 

144 continuous variable in mm (Buchar & Ruzicka 2002, Bell et al., 2005, Blandenier 2009, Nentwig 

145 et al., 2017). If a species was assigned to more than 1 category, the values were averaged. Spiders 
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146 were considered as generalists if they were assigned to more than 3 categories in the case of 

147 shading tolerance and moisture preference. They were also considered generalist species if they 

148 were present at both extremes of the given categories, and their score was excluded from further 

149 analyses, as their distribution is determined by other factors. We calculated community-weighted 

150 mean (CWM) values for each trait at each sampling site; Functional richness (FRic), Functional 

151 evenness (FEve) and Rao’s quadratic entropy (RaoQ) to characterize the functional diversity of 

152 spider assemblages, using FD package in R (Laliberté et al., 2014). The FRic index describes the 

153 dispersion of all species in a trait space without information on relative abundances, the FEve 

154 index the combines distribution of species traits and evenness of species relative abundances 

155 (Laliberté and Legendre, 2010). The RaoQ index was useful for detecting assembly rules, habitat 

156 filtering (trait convergence) and limiting similarity (trait divergence; Botta-Dukat & Czucz, 2016). 

157 We used the Poisson error term for species richness data, negative binomial error term for 

158 abundance data to account for over-dispersion of the data and Gaussian error terms for RaoQ and 

159 CWM values.

160 We explored the multivariate response of spider assemblages to tree species and the 

161 presence of A. syriaca with non-metric multidimensional scaling (NMDS) using Bray-Curtis 

162 distance measure. We tested the effect of the above variables on spider assemblage composition 

163 with non-metric multivariate analysis of variance (PERMANOVA), using the Bray-Curtis distance 

164 measure, 10000 permutations and the vegan analysis package (Oksanen et al., 2015). Where 

165 significant correlation with tree species and A. syriaca invasion was found, we used indicator value 

166 analysis to detect characteristic spider species (IndVal; Dufrtne & Legendre, 1997) with the 

167 ‘labdsv’ package (Roberts, 2016). 

168

169

170 Results

171

172 Herbaceous plant cover was higher in non-invaded than in invaded sites (z = 2.257, p = 0.024). 

173 However, leaf litter cover was higher in invaded than in non-invaded sites (z = - 2.032, p = 0.042), 

174 and it was higher in poplar compared to pine plantations (z = 2.547, p = 0.011). No difference was 

175 found in the height of the vegetation.
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176 We collected 1621 adult spider specimens from 53 species. The most abundant species in 

177 total catch were Arctosa lutetiana (Simon, 1876), Pardosa alacris (C. L. Koch, 1833) and Zelotes 

178 apricorum (L. Koch, 1876) with 256, 241 and 221 individuals, respectively; all 3 species are 

179 abundant in dry forests with relatively open canopies (Buchar & Ruzicka, 2002).

180 We did not find a significant effect of tree species or A. syriaca invasion on the species 

181 richness and abundance of spider assemblages (Table 1). There was a significant effect of A. 

182 syriaca on RaoQ of spiders, with the invaded sites having lower functional diversity than non-

183 invaded sites. The significant interaction effect of forest types and invasion of A. syriaca on RaoQ 

184 of spiders indicated that invasion had a more pronounced effect in pine than in poplar forests (Fig. 

185 1a). We did not find a significant effect of tree species or A. syriaca invasion on FRic and FEve 

186 indices. Spider species were larger (Fig. 1b) and web building spiders were more abundant (Fig. 

187 1c) in poplar forests than in pine plantations; however, there was no significant effect of moisture 

188 and shading (Table 1).

189 Spider assemblages of the 2 forest types clearly separated according to the NMDS (Fig. 2). 

190 Non-metric multivariate ANOVA indicated a significant difference in composition of spider 

191 assemblages from poplar and pines forests (R2 = - 0.227, p < 0.001). We found 7 species associated 

192 with pine plantations and 6 species associated with poplar plantations, according to indicator value 

193 analysis (Appendix 2).

194

195 Discussion

196

197 In accordance with hypothesis (1), we found different species compositions for poplar and pine 

198 forests. Furthermore, we found a higher proportion of web-building spiders and larger species in 

199 poplar forests than in pine forests. In contrast to hypothesis (2), functional diversity was higher in 

200 non-invaded sites than in invaded sites; however, we found no effect of A. syriaca invasion on the 

201 abundance of spiders. Supporting hypothesis (3), A. syriaca had a negative effect on functional 

202 diversity in pine forests, while its effect was less pronounced in poplar forests.

203 Canopy closure is among the most important determinants of spider species richness and 

204 assemblage composition, because it can affect the soil microclimate and understory vegetation 

205 development (Finch, 2005; Lange et al., 2011). Vegetation structure provides various micro-

206 habitats (Rodrigues & Mendonça Jr, 2012), which in turn, determine the species composition of 
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207 spider assemblages. In the present study, both poplar and pines forests were commercially mature. 

208 Mature plantation forests generally have dense understory vegetation (Calviño-cancela et al., 

209 2012) and well-developed canopies that reduce extreme microclimatic variation (Harms et al., 

210 2000). Herbaceous vegetation structure depends on the light availability at the forest floor. Poplar 

211 forests have relatively open canopies and sunlight penetrates to the forest floor, favoring more 

212 diverse herbaceous understory vegetation than for pine plantations with their closed canopies 

213 (Balandier et al., 2006). The resulting complex vegetation structure might provide numerous 

214 potential web attachments for web-building spider species (Schirmel et al., 2012). We found that 

215 species composition differed between forest types, as indicated by the significant results of 

216 multivariate PERMANOVA and the clear separation by NMDS ordination. The high number of 

217 significant indicator species also underpinned the marked differences in spider assemblages of 

218 pine and poplar forests, even though we detected no differences in herbaceous vegetation cover 

219 between the plantations types.

220 The quality and quantity of leaf litter determined the microhabitat structure of the forest 

221 floor, thus having an effect on the diversity of spiders (Pearce et al., 2004; Castro & Wise, 2009). 

222 The thick layer of deciduous leaf litter in poplar forests creates a more complex forest floor than 

223 in pine forests (Gallé et al., 2014). Furthermore, the leaf litter in pine plantations consists of pines 

224 needles which reduces soil pH and may change the physical properties of the soil, as well (Selvi 

225 et al., 2017). Coniferous forests generally provide less diversified herbaceous understory 

226 vegetation than deciduous forests due to different soil conditions and lower light availability 

227 (Barbier et al., 2008). The resulting relatively uniform microhabitat conditions of pine plantations 

228 may result in a uniform spider species composition (Schultz, 1997). Besides habitat structure, leaf 

229 litter also influences the abundance of decomposer organisms, and therefore, potential food 

230 sources for spiders. Springtails (Collembola) provide a large part of the diet of ground-dwelling 

231 spiders in forests (Block & Zettel, 2003; Wise, 2004). Springtails are more abundant in native 

232 forests than in exotic plantations (Kováč et al., 2005; Bolger et al., 2013), offering an easily 

233 accessible food source for ground-dwelling spiders in poplar forests, and may enhance the 

234 colonization and increase the abundance of larger species of spider. In the present study, we also 

235 found larger CWM size values in poplar forests. 

236 Invasive plants affect species composition of spider assemblages (Bultman & DeWitt, 

237 2008; Mgobozi et al., 2008), and the behavior and density of spider species (Gallé et al., 2015; 
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238 Pearson, 2009). Invasive plant species may have a direct effect on spiders, as they affect the 

239 architecture of vegetation (Souza & Martins, 2005; Simao et al., 2010) and therefore, habitat 

240 structure. Included in these changes are a variety of shelters and structural supports for web 

241 building (Litt et al., 2014).

242 Plant invasion may provide herbivore arthropods with novel food resources (Bezemer et 

243 al., 2014), thus affecting the potential prey abundance for spiders. In North America, where A. 

244 syriaca is a native plant, 457 insect species from 8 orders are associated with it, mainly as 

245 pollinators and specialist herbivores (Dailey et al., 1978). The continuously open flowers are a 

246 relatively large and stable food resource for pollinator insects (Dafni & Kevan, 1997). However, 

247 association as herbivores or pollinators may require a common evolutionary history with the 

248 invasive plant (Tallamy et al., 2010). The poisonous cardenolide content of its white latex hinders 

249 top-down control of native generalist herbivores (Zandt & Agrawal, 2018), and specialist native 

250 herbivores are presumably negatively affected by loss of native vegetation due to the invasion of 

251 A. syriaca (Litt et al., 2014). Several authors found that herbivore abundance was reduced due to 

252 plant invasion (Simao et al., 2010; Cronin et al., 2015).

253 Plant invasion may also change plant–pollinator relations, either positively or negatively 

254 (Larson et al., 2006; Bartomeus et al., 2008; Fenesi et al., 2015). Furthermore, invasive plant 

255 species can weaken the relationship between native plants and their pollinators (Aizen et al., 2008), 

256 resulting in significant changes in pollinator abundances and assemblage structure. In accordance 

257 with Bezemer et al., (2014), we did not find a significant indirect effect of altered prey availability 

258 of invaded sites on spider species richness and abundance. This was in line with Groot et al., 

259 (2007), who suggested that profiles of predatory arthropods such as spiders were not closely related 

260 to plant species composition, and were less vulnerable to the effects of invasive plants. However, 

261 we found that A. syriaca had a negative effect on the functional diversity of spiders, and this effect 

262 was larger in pine plantations than is poplar forests. 

263 In pine plantations, the similar species richness and the higher functional diversity (RaoQ 

264 index) of non-invaded sites suggest that traits values are less similar then in invaded sites, and 

265 functionally different species are present in the assemblage (Schirmel & Buchholz, 2013). In 

266 contrast, the invaded sites had lower functional diversity, and thus a uniform trait state 

267 composition. Invaded pine forests only favored certain trait state combinations, which implied that 
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268 environmental filtering played an important role in species sorting. This presumably precluded the 

269 colonization of several species of the original forest-steppe fauna.

270 In conclusion, plantation type and invasion of A. syriaca affected different elements of 

271 spider functional diversity. Spider species composition of exotic forests was different from that of 

272 native forest assemblages, and they were not functionally equivalent. This might also affect 

273 arthropod food web structure (Gratton & Denno, 2006). In exotic plantations, invasion of A. 

274 syriaca had an effect on the trait composition of spiders, suggesting strong habitat filtering and the 

275 generation of low quality secondary habitats for the original spider fauna. This may have further 

276 top-down effects on the broader invertebrate herbivore and detritivore community. The 

277 information on the effect of pine plantations and A. syriaca invasion on biodiversity is critical for 

278 forestry and conservation management (Mgobozi et al., 2008). 

279
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499 Figure legends

500

501 Figure 1. Effect of forest type and Asclepias syriaca invasion on spider functional diversity. Open 

502 circles: non-invaded; black dots: invaded sites. (A) RaoQ index; (B) Community weighted mean 

503 (CWM) of hunting strategy; (C) CWM value of spider body sizes.

504

505 Figure 2. NMDS ordination plot of spider samples (dots), with significant indicator species 

506 (crosses), and community weighted mean values (CWM) also fitted (arrows).  Black dots: pine 

507 plantations, open circles: poplar plantations. Species names are abbreviated with the first letter of 

508 genus name and the first three letters of species names, please see Appendix 2. for further details.

509
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11 Short title: Spiders of invaded plantation forests

12

13

14 Abstract. 

15 1. Non-native tree plantations constitute a large part of forestation worldwide. Plantations are 

16 prone to invasion by exotic herbaceous plant species due to habitat properties, including understory 

17 vegetation structure.

18 2. We established 40 sampling sites in 10 plantation forests. Sites were selected according

19 to tree species (native poplar forests, exotic pine plantations) and common milkweed (Asclepias 

20 syriaca) density (invaded, non-invaded sites) in a full factorial design. We collected spiders with 

21 pitfall traps.

22 3. We found a significant effect of A. syriaca invasion on spider functional diversity (Rao's

23 quadratic entropy), with invaded sites having a lower functional diversity than non-invaded sitesA 

24 significant effect of A. syriaca on functional diversity (Rao’s quadratic entropy) was indicated by 
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25 GLMMs, with invaded sites having a lower functional diversity than non-invaded sites. A larger 

26 effect of invasion with A. syriaca on the RaoQ of spiders was observed in pine compared to poplar 

27 plantations. Spider species were larger and web building spiders were more frequent in poplar 

28 forests than in pine plantations.; We found no effect of A syriaca invasion on species richness or 

29 abundance of spiders.however, we found no effect on species richness and abundance.

30 4. Species composition of spider assemblages in the two forest types were clearlySpecies

31 composition of the 2 forest types clearly separated according to non-metric multidimensional 

32 scaling. We identified 7 species associated with pine plantations and 6 species associated with 

33 poplar plantations.

34 5. The similar species richness and the higher functional diversity of non-invaded sites

35 suggested that these trait states were less similar than invaded sites, and that functionally different 

36 species were present. In contrast, the invaded sites had lower functional diversities, and thus more 

37 uniform trait state compositions, suggesting that environmental filtering played an important role 

38 in species sorting, making invaded plantations low quality secondary habitats for the original 

39 spider fauna. 

40

41 Key words. Plantation, forest, invasion, spider, Araneae, functional diversity, species 

42 composition, pine, poplar, Asclepias syriaca.

43

44 Introduction

45

46 The land cover of commercial tree plantations is increasing worldwide, replacing natural forests. 

47 These secondary forests include native and non-native tree plantations. Generally, they have a 

48 negative impact on the original native ecosystems (Vitousek et al., 1996; Gratton & Denno, 2006; 

49 Spirito et al., 2014), Although international pressure is increasing to tackle the negative 

50 environmental effects of such plantations, tree plantation covers more than 7% of total forest area 

51 worldwide (Payn et al., 2015). However, plantations may also have a positive impact on local 
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52 biodiversity by providing secondary habitats for rare and threatened species (Brockerhoff et al., 

53 2008).

54 Pine plantations are common in Europe, where they are generally used for timber 

55 production. Pine trees can alter hydrologic regimes (Urcelay et al., 2017), microclimate and soil 

56 properties. The layer of pine needles on forest floor makes the soil acidic (Selvi et al., 2017), and 

57 the change in chemical and physical properties of the soil results in loss of fertility (Augusto et al., 

58 2002). These processes are responsible for the changes in understory vegetation structure and 

59 microhabitat diversity (Chiarucci & De Dominicis, 1995), and in turn, lower species diversity of 

60 arthropods compared to natural forests (Brockerhoff et al., 2008; Gallé et al., 2018). 

61 Due to altered microclimate and soil properties, plantation forests are prone to invasion by 

62 non-native herbaceous plant species (Henneron et al., 2015). In turn, invasive plants alter 

63 vegetation diversity (Knops et al., 1999) and biotic interactions (Bezemer et al., 2014). A high 

64 density of invasive plants changes the physical properties of a habitat by altering its structure, 

65 including its microclimatic conditions, such as the light intensity and temperature of the invaded 

66 area (Carter et al., 2015). These changes may lead to changes in ecosystem functioning (Schirmel 

67 & Buchholz, 2013; Gomes et al., 2017). 

68 Common milkweed (Asclepias syriaca) in Europe spreads aggressively and is found in 11 

69 European countries (Szitar et al., 2018). It establishes dense populations in disturbed habitats 

70 (Pysek et al., 2012; Kelemen et al., 2016), and may change the composition of existing vegetation 

71 and form novel ecosystems (Kelemen et al., 2016; Szitár et al., 2016). Milkweed was introduced 

72 into Europe in the 17th century (Gaertner, 1979; Bukovinszky et al., 2014) from eastern North 

73 America and into Hungary in the 18th century by beekeepers (Balogh et al., 2007; Csontos et al., 

74 2009). Currently, A. syriaca endangers the semi-natural and natural vegetation of sandy regions 

75 (Ducs et al., 2016), has become one of the most abundant invasive plant species in Hungarian 

76 lowland forest plantations, and represents a major problem in conservation areas (Szitár et al., 

77 2016). However, its negative effects are not always straightforward (Szitár et al., 2016; Somogyi 

78 et al., 2017).  A. syriaca attracts many insects, particularly pollinators, because of the open 

79 structure of its flowers. As such, it serves as a continuous resource for pollinators day and night, 

80 attracting both diurnal and nocturnal pollinators (Southwick, 1983). The high density of 

81 pollinators, in turn, may attract predatory arthropods. The effect of plant invasion on arthropod 
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82 assemblage structure is still not well defined, and is crucial in understanding terrestrial ecosystem 

83 ecology (Bezemer et al., 2014).

84 Although there are reports on the ecology of forest invertebrates in the context of changes in quality 

85 (reviewed by Kuuluvainen et al., 2012, Lassauce et al., 2011, Schulze et al., 2016). The majority 

86 of this work focuses on species diversity patterns (Kuuluvainen et al., 2012), with few studies 

87 focusing on functional diversity of spiders (Magura, 2017, Gallé et al., 2018). The concept of 

88 functional diversity helps to explain how ecosystems react to environmental change (Petchey & 

89 Gaston, 2006; Cardoso et al., 2011). Changes in habitat quality may act as a filter, structuring the 

90 community with functionally similar species (Cardinale et al., 2012, Dalzochio et al., 2016).

91 The effect of habitat structure of forests on functional diversity of arthropods has been documented 

92 (Corcuera et al., 2016; Dalzochio et al., 2018; Gallé et al., 2018); however, there is limited 

93 information on how arthropod assemblages and functional diversity is affected by plant invasion 

94 in different forest types. In the present study, we focused on spider assemblages as the ideal 

95 indicators of the impact of plantation tree species and non-native plants on assemblage structure 

96 of invertebrates due to their sensitivity to vegetation structure (Mgobozi et al., 2008). 

97 In this study we assessed the effect of A. syriaca invasion on species richness, and species 

98 composition of spiders in the native and exotic plantation. We also applied the functional diversity 

99 concept to link diversity patterns with ecosystem processes and functioning. Hypotheses for this 

100 study were: (1) species richness would be higher in native forests compared to exotic forests, and 

101 tree species would have an effect on species functional diversity (i.e. functional richness and 

102 evenness, Rao’s quadratic entropy and community weighted mean trait values) and composition 

103 of spider assemblages; (2) functional diversity and abundance of spiders would be higher in the 

104 forests which were invaded by A. syriaca as this plant would attract more pollinators, herbivores 

105 and associated predators; and (3) A. syriaca would have a different effect on spider diversity in 

106 native and exotic forests. We assumed, that changes in habitat structure by A. syriaca in the low 

107 quality exotic pine habitat may have a more pronounced deterioration effect on spider communities 

108 than in native forests.

109

110 Materials and methods

111

112 Study area
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113 The present study was carried out in the Kiskunság region, in the southern part of the Great 

114 Hungarian Plain (Appendix 1.). The landscape was dominated by agriculture and semi-natural 

115 forest plantations, with small patches of the original forest-steppe habitats (Gallé et al., 2018). The 

116 soil was calcareous coarse sand and the climate was semiarid with mean annual precipitation and 

117 temperatures in the ranges 550 – 600 mm and 10.2 – 10.8 ⁰C, respectively (Török et al., 2003).

118

119 Study design and sampling

120 We selected 5 poplar and 5 pine plantation forests for spider sampling. We surveyed ground-

121 dwelling spiders at 4 sampling sites in each of the 10 forests, for a total of 40 sampling sites. Sites 

122 were selected according to tree species (native poplar forests vs. exotic pine plantations) and 

123 common milkweed density (invaded vs. non-invaded sites) in a full factorial design resulting in 10 

124 replicates per treatment combination. All sampled plantations were mature forests with no recent 

125 intensive forestry activity. Sampling sites were located at least 70 m distance from each other, and 

126 each sampling site was located more than 100 m from the forest edges. We assessed A. syriaca 

127 quantity in four 1 m2 quadrates at each invaded sampling site; the density of A. syriaca stems was 

128 7.33 ± 3.86 stems/m2 (mean ± SD), and its cover was 30.31% ± 17.05 (mean ± SD). We 

129 characterized the habitat structure at the sampling sites by the approximate percentage cover of 

130 herbaceous plants (excluding A. syriaca), the average height of the vegetation and by the cover of 

131 leaf litter. 

132 We used 3 pitfall traps for collecting spiders at each site. The traps were plastic cups with 

133 a diameter of 8.5 cm (Császár et al., 2018). We supplied the traps with plastic funnels and we 

134 placed a metal roof above them. Traps were filled with a 50% water-ethylene-glycol solution to 

135 which we had added a few drops of detergent. Traps were open for three 7-day sampling periods: 

136 May 23 - 30, 2017; June 26 - July 3, 2017; and Oct 2 - 10, 2017. 

137

138 Data analysis

139 From the habitat structure data, mean values were calculated for each variable at the site. To 

140 detect possible differences in herbaceous cover, average height of the vegetation and the cover of 

141 leaf litter, we applied generalized linear mixed models (GLMMs) with binomial error terms. Forest 

142 type (i.e., native poplar, exotic pine), presence of A. syriaca (i.e. invaded, non-invaded sites) were 

143 fixed factors. Sampling site nested in plantation forest was used as random effect.
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144 We chose 4 attributes for functional categorization of spiders. We classified species according to: 

145 shading tolerance, ranging from 1 (open) to 4 (shaded); moisture preference, ranging from 1 (very 

146 dry) to 5 (very humid habitats); feeding, 0 (active hunter) and 1 (web builder); and size, as a 

147 continuous variable in mm (Buchar & Ruzicka 2002, Bell et al., 2005, Blandenier 2009, Nentwig 

148 et al., 2017). If a species was assigned to more than 1 category, the values were averaged. Spiders 

149 were considered as generalists if they were assigned to more than 3 categories in the case of 

150 shading tolerance and moisture preference. They were also considered generalist species if they 

151 were present at both extremes of the given categories, and their score was excluded from further 

152 analyses, as their distribution is determined by other factors. We calculated community-weighted 

153 mean (CWM) values for each trait at each sampling site; Functional richness (FRic), Functional 

154 evenness (FEve) and Rao’s quadratic entropy (RaoQ) to characterize the functional diversity of 

155 spider assemblages, using FD package in R (Laliberté et al., 2014). The FRic index describes the 

156 dispersion of all species in a trait space without information on relative abundances, the FEve 

157 index the combines distribution of species traits and evenness of species relative abundances 

158 (Laliberté and Legendre, 2010). The RaoQ index was useful for detecting assembly rules, habitat 

159 filtering (trait convergence) and limiting similarity (trait divergence; Botta-Dukat & Czucz, 2016). 

160 We used the Poisson error term for species richness data, negative binomial error term for 

161 abundance data to account for over-dispersion of the data and Gaussian error terms for RaoQ and 

162 CWM values.

163 We explored the multivariate response of spider assemblages to tree species and the 

164 presence of A. syriaca with non-metric multidimensional scaling (NMDS) using Bray-Curtis 

165 distance measure. We tested the effect of the above variables on spider assemblage composition 

166 with non-metric multivariate analysis of variance (PERMANOVA), using the Bray-Curtis distance 

167 measure, 10000 permutations and the vegan analysis package (Oksanen et al., 2015). Where 

168 significant correlation with tree species and A. syriaca invasion was found, we used indicator value 

169 analysis to detect characteristic spider species (IndVal; Dufrtne & Legendre, 1997) with the 

170 ‘labdsv’ package (Roberts, 2016). 

171

172

173 Results

174

Page 24 of 41Insect Conservation and Diversity



175 Herbaceous plant cover was higher in non-invaded than in invaded sites (z = 2.257, p = 0.024). 

176 However, leaf litter cover was higher in invaded than in non-invaded sites (z = - 2.032, p = 0.042), 

177 and it was higher in poplar compared to pine plantations (z = 2.547, p = 0.011). No difference was 

178 found in the height of the vegetation.

179 We collected 1621 adult spider specimens from 53 species. The most abundant species in 

180 total catch were Arctosa lutetiana (Simon, 1876), Pardosa alacris (C. L. Koch, 1833) and Zelotes 

181 apricorum (L. Koch, 1876) with 256, 241 and 221 individuals, respectively; all 3 species are 

182 abundant in dry forests with relatively open canopies (Buchar & Ruzicka, 2002).

183 We did not find a significant effect of tree species or A. syriaca invasion on the species 

184 richness and abundance of spider assemblages (Table 1). There was a significant effect of A. 

185 syriaca on RaoQ of spiders, with the invaded sites having lower functional diversity than non-

186 invaded sites. The significant interaction effect of forest types and invasion of A. syriaca on RaoQ 

187 of spiders indicated that invasion had a more pronounced effect in pine than in poplar forests (Fig. 

188 1a). We did not find a significant effect of tree species or A. syriaca invasion on FRic and FEve 

189 indices. Spider species were larger (Fig. 1b) and web building spiders were more abundant (Fig. 

190 1c) in poplar forests than in pine plantations; however, there was no significant effect of moisture 

191 and shading (Table 1).

192 Spider assemblages of the 2 forest types clearly separated according to the NMDS (Fig. 2). 

193 Non-metric multivariate ANOVA indicated a significant difference in composition of spider 

194 assemblages from poplar and pines forests (R2 = - 0.227, p < 0.001). We found 7 species associated 

195 with pine plantations and 6 species associated with poplar plantations, according to indicator value 

196 analysis (Appendix 2).

197

198 Discussion

199

200 In accordance with hypothesis (1), we found different species compositions for poplar and pine 

201 forests. Furthermore, we found a higher proportion of web-building spiders and larger species in 

202 poplar forests than in pine forests. In contrast to hypothesis (2), functional diversity was higher in 

203 non-invaded sites than in invaded sites; however, we found no effect of A. syriaca invasion on the 

204 abundance of spiders. Supporting hypothesis (3), A. syriaca had a negative effect on functional 

205 diversity in pine forests, while its effect was less pronounced in poplar forests.
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206 Canopy closure is among the most important determinants of spider species richness and 

207 assemblage composition, because it can affect the soil microclimate and understory vegetation 

208 development (Finch, 2005; Lange et al., 2011). Vegetation structure provides various micro-

209 habitats (Rodrigues & Mendonça Jr, 2012), which in turn, determine the species composition of 

210 spider assemblages. In the present study, both poplar and pines forests were commercially mature. 

211 Mature plantation forests generally have dense understory vegetation (Calviño-cancela et al., 

212 2012) and well-developed canopies that reduce extreme microclimatic variation (Harms et al., 

213 2000). Herbaceous vegetation structure depends on the light availability at the forest floor. Poplar 

214 forests have relatively open canopies and sunlight penetrates to the forest floor, favoring more 

215 diverse herbaceous understory vegetation than for pine plantations with their closed canopies 

216 (Balandier et al., 2006). The resulting complex vegetation structure might provide numerous 

217 potential web attachments for web-building spider species (Schirmel et al., 2012). We found that 

218 species composition differed between forest types, as indicated by the significant results of 

219 multivariate PERMANOVA and the clear separation by NMDS ordination. The high number of 

220 significant indicator species also underpinned the marked differences in spider assemblages of 

221 pine and poplar forests, even though we detected no differences in herbaceous vegetation cover 

222 between the plantations types.

223 The quality and quantity of leaf litter determined the microhabitat structure of the forest 

224 floor, thus having an effect on the diversity of spiders (Pearce et al., 2004; Castro & Wise, 2009). 

225 The thick layer of deciduous leaf litter in poplar forests creates a more complex forest floor than 

226 in pine forests (Gallé et al., 2014). Furthermore, the leaf litter in pine plantations consists of pines 

227 needles which reduces soil pH and may change the physical properties of the soil, as well (Selvi 

228 et al., 2017). Coniferous forests generally provide less diversified herbaceous understory 

229 vegetation than deciduous forests due to different soil conditions and lower light availability 

230 (Barbier et al., 2008). The resulting relatively uniform microhabitat conditions of pine plantations 

231 may result in a uniform spider species composition (Schultz, 1997). Besides habitat structure, leaf 

232 litter also influences the abundance of decomposer organisms, and therefore, potential food 

233 sources for spiders. Springtails (Collembola) provide a large part of the diet of ground-dwelling 

234 spiders in forests (Block & Zettel, 2003; Wise, 2004). Springtails are more abundant in native 

235 forests than in exotic plantations (Kováč et al., 2005; Bolger et al., 2013), offering an easily 

236 accessible food source for ground-dwelling spiders in poplar forests, and may enhance the 
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237 colonization and increase the abundance of larger species of spider. In the present study, we also 

238 found larger CWM size values in poplar forests. 

239 Invasive plants affect species composition of spider assemblages (Bultman & DeWitt, 

240 2008; Mgobozi et al., 2008), and the behavior and density of spider species (Gallé et al., 2015; 

241 Pearson, 2009). Invasive plant species may have a direct effect on spiders, as they affect the 

242 architecture of vegetation (Souza & Martins, 2005; Simao et al., 2010) and therefore, habitat 

243 structure. Included in these changes are a variety of shelters and structural supports for web 

244 building (Litt et al., 2014).

245 Plant invasion may provide herbivore arthropods with novel food resources (Bezemer et 

246 al., 2014), thus affecting the potential prey abundance for spiders. In North America, where A. 

247 syriaca is a native plant, 457 insect species from 8 orders are associated with it, mainly as 

248 pollinators and specialist herbivores (Dailey et al., 1978). The continuously open flowers are a 

249 relatively large and stable food resource for pollinator insects (Dafni & Kevan, 1997). However, 

250 association as herbivores or pollinators may require a common evolutionary history with the 

251 invasive plant (Tallamy et al., 2010). The poisonous cardenolide content of its white latex hinders 

252 top-down control of native generalist herbivores (Zandt & Agrawal, 2018), and specialist native 

253 herbivores are presumably negatively affected by loss of native vegetation due to the invasion of 

254 A. syriaca (Litt et al., 2014). Several authors found that herbivore abundance was reduced due to 

255 plant invasion (Simao et al., 2010; Cronin et al., 2015).

256 Plant invasion may also change plant–pollinator relations, either positively or negatively 

257 (Larson et al., 2006; Bartomeus et al., 2008; Fenesi et al., 2015). Furthermore, invasive plant 

258 species can weaken the relationship between native plants and their pollinators (Aizen et al., 2008), 

259 resulting in significant changes in pollinator abundances and assemblage structure. In accordance 

260 with Bezemer et al., (2014), we did not find a significant indirect effect of altered prey availability 

261 of invaded sites on spider species richness and abundance. This was in line with Groot et al., 

262 (2007), who suggested that profiles of predatory arthropods such as spiders were not closely related 

263 to plant species composition, and were less vulnerable to the effects of invasive plants. However, 

264 we found that A. syriaca had a negative effect on the functional diversity of spiders, and this effect 

265 was larger in pine plantations than is poplar forests. 

266 In pine plantations, the similar species richness and the higher functional diversity (RaoQ 

267 index) of non-invaded sites suggest that traits values are less similar then in invaded sites, and 
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268 functionally different species are present in the assemblage (Schirmel & Buchholz, 2013). In 

269 contrast, the invaded sites had lower functional diversity, and thus a uniform trait state 

270 composition. Invaded pine forests only favored certain trait state combinations, which implied that 

271 environmental filtering played an important role in species sorting. This presumably precluded the 

272 colonization of several species of the original forest-steppe fauna.

273 In conclusion, plantation type and invasion of A. syriaca affected different elements of 

274 spider functional diversity. Spider species composition of exotic forests was different from that of 

275 native forest assemblages, and they were not functionally equivalent. This might also affect 

276 arthropod food web structure (Gratton & Denno, 2006). In exotic plantations, invasion of A. 

277 syriaca had an effect on the trait composition of spiders, suggesting strong habitat filtering and the 

278 generation of low quality secondary habitats for the original spider fauna. This may have further 

279 top-down effects on the broader invertebrate herbivore and detritivore communitythis may have a 

280 top-down effect on invertebrate herbivore and decomposer assemblages. The information on the 

281 effect of pine plantations and A. syriaca invasion on biodiversity is critical for forestry and 

282 conservation management (Mgobozi et al., 2008). 
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503 Figure legends

504

505 Figure 1. Effect of forest type and Asclepias syriaca invasion on spider functional diversity. Open 

506 circles: non-invaded; black dots: invaded sites. (A) RaoQ index; (B) Community weighted mean 

507 (CWM) of hunting strategy; (C) CWM value of spider body sizes.

508

509 Figure 2. NMDS ordination plot of spider samples (dots), with significant indicator species 

510 (crosses), and community weighted mean values (CWM) also fitted (arrows). NMDS ordination 

511 plot of sampling sites (dots), and significant indicator species (crosses), community weighted mean 

512 values (CWM) are fitted onto the ordination plot (arrows). Black dots: pine plantations, open 

513 circles: poplar plantations. Species names are abbreviated with the first letter of genus name and 

514 the first three letters of species names, please see Appendix 2. for further details.

515
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of spider samples (dots), with significant indicator species (crosses), and community weighted 
mean values (CWM) also fitted (arrows)..."
Answer: We changed.

Reviewer(s)' Comments to Author:
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Reviewer: 1

Comments to the Author
This study looks at the effects of forest type and milkweed invasion on spider assemblages, using 
both taxon and functional data. It is clear, straightforward and pretty much ready for publication 
after the initial review. I just have a few extra comments:
Answer: We would like to thank Pedro Cardoso for the overall positive evaluation of our study, 
we made the requested changes in the manuscript.

Ln 104 – Hypothesis 3 should include a tentative explanatory mechanism, why should the effect 
be different?
Answer: We added to hypothesis (3) “We assumed, that changes in habitat structure by A. 
syriaca in the low quality exotic pine habitat may have a more pronounced deterioration effect on 
spider communities than in native forests.”

Ln 151 – It is not clear why these were excluded? Please clarify
Answer: For clarification, we added to Ln 148-150 “They were also considered generalist species 
if they were present at both extremes of the given categories, and their score was excluded from 
further analyses, as their distribution is determined by other factors.”

Ln 155 – “(the) FEve (index) …”
Answer: We corrected

Ln 218 – PER(M)ANOVA
Answer: We corrected

Pedro Cardoso
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Figure 1. Effect of forest type and Asclepias syriaca invasion on functional diversity. Open circles: non-
invaded; black dots: invaded sites. (A) RaoQ index; (B) Community weighted mean (CWM) of hunting 

strategy; (C) CWM value of spider body sizes. 
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Figure 2. NMDS ordination plot of sampling sites (dots), and significant indicator species (crosses), 
community weighted mean values (CWM) are fitted onto the ordination plot (arrows). Black dots: pine 

plantations, open circles: poplar plantations. Species names are abbreviated with the first letter of genus 
name and the first three letters of species names, please see Appendix 2. for further details 
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1 Table 1. The effect of tree species and Asclepias syriaca invasion on species richness, abundance 

2 and functional diversity measures of spiders according to mixed models, parameter estimates ± 

3 95% confidence intervals and (z/t values) are given. Ep: exotic pine; np: native poplar; i: 

4 invaded; n: non invaded sites.

5

Tree (np/ep) Type (n/i) Tree: Type 

Species richness1
0.052 ± 0.256 

(0.396)

-0.149 ± 0.245 

(-1.189)

0.140 ± 0.358 

(0.767)

Abundance2
-0.143 ± 0.231 (-

0.121)

-0.171 ± 0.182 (-

1.800)

1.176 ± 0.260 

(1.320)

FRic -0.077 ± 2.254 (-0.06)
-1.305 ± 1.779 (-

1.437)
2.226 ± 2.516 (1.733)

FEve 0.042 ± 0.088 (0.930) 0.040 ± 0.088 (0.890)
-0.062 ± 0.125 (-

0.972)

RaoQ3
0.012 ± 0.015 

(1.431)

-0.017 ± 0.013 

(-2.223)*

0.023 ± 0.021 

(2.166)*

Shading CWM3
-0.015 ± 0.070 

(-0.436)

0.174 ±  0.039 

(0.770)

-0.032 ± 0.062 

(-1.023)

Hunting CWM3
-0.080 ± 0.068 

(-2.284)*

0.063 ±  0.058 

(2.037)

-0.072 ± 0.084 

(1.656)

Moisture CWM3
0.034 ± 0.052 

(1.288)

-0.028 ±  0.035

 (-1.556)

0.018 ± 0.029 

(0.711)

Size CWM3
-0.091 ± 0.027

 (-3.318)**

-0.017 ± 0.049

 (-0.683)

0.069 ± 0.071 

(-1.907)

6 1 Models were fitted with Poisson distribution

7 2 Models were fitted with negative binomial distribution

8 3 Models were fitted with normal distribution

9 Significance levels: *: <0.05, **: <0.01, ***: <0.001.

10
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