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Abstract

Hardware trends over the last decade show increasing complexity and hetero-

geneity in high performance computing architectures, which presents developers

of CFD applications with three key challenges; the need for achieving good per-

formance, being able to utilise current and future hardware by being portable,

and doing so in a productive manner. These three appear to contradict each

other when using traditional programming approaches, but in recent years, sev-

eral strategies such as template libraries and Domain Specific Languages have

emerged as a potential solution; by giving up generality and focusing on a nar-

rower domain of problems, all three can be achieved.

This paper gives an overview of the state-of-the-art for delivering perfor-

mance, portability, and productivity to CFD applications, ranging from high-

level libraries that allow the symbolic description of PDEs to low-level tech-

niques that target individual algorithmic patterns. We discuss advantages and

challenges in using each approach, and review the performance benchmarking

literature that compares implementations for hardware architectures and their

programming methods, giving an overview of key applications and their com-

parative performance.
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1. Introduction

The hardware architectures for parallel high performance scientific computing

continue to undergo significant changes. More than a decade and a half has

passed since the end of CPU clock frequency scaling. This way-point for CMOS-

based micro-processors, also known as the end of Dennard’s scaling has resulted5

in a golden age for processor architecture design as increasingly complex and

innovative designs are utilized to continue delivering performance gains. The

primary trend has been to develop increasingly massively parallel architectures

with the implicit assumption that more discrete units can do more work in

parallel to deliver higher performance by way of increased throughput. As a10

result, we see a continuation of Moore’s law - exponentially increasing transis-

tor numbers on a silicon processor - but configured in increasing numbers of

discrete processors cores. Consequently, on the one hand we see current tra-

ditional processors continuing to gain more and more cores, currently over 20

cores for high-end processors - each with larger vector units (512 bits on Intel’s15

latest chips). On the other hand we see the the widespread adoption of sepa-

rate computational accelerators that excel at specific workloads, such as GPUs,

with larger number of low-frequency cores, or the emergence of heterogeneous

processors.

While more cores have become commonplace, feeding them with data has20

become a bottleneck. As the growth in the speed of memory units has lagged

that of computational units, multiple levels of memory hierarchy, with signifi-

cant chunks of silicon dedicated to caches to bridge the bandwidth/core-count

gap have been designed. New memory technologies such as HBM and HBM2

on Intel’s Xeon Phi and NVIDIA’s Tesla GPUs, for example, have produced25

“stacked memory” designs where embedded DRAM is integrated onto CPU

chips. For large datasets in particular, new non-volatile memory is becoming
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available. Examples include Intel’s 3D Xpoint (Optane) memory, which can be

put in traditional DIMM memory slots, and can be used just like traditional

memory that has much higher capacity, but lower bandwidth. Supercomputers30

built for scientific computing have also become increasingly heterogeneous - 7

out of the 10 top machines in the world have some type of accelerator. This has

led to the need to support a heterogeneous set of architectures for continued

scientific delivery.

The root cause of this issue, the switch to parallelism, was aptly described by35

David Patterson as a Hail Mary pass, an act done in desperation, by the hard-

ware vendors “without any clear notion of how such devices would in general

be programmed” [1]. The significant impact of this decision has today changed

conventional wisdoms in programming parallel high-performance computing sys-

tems [2]. If we specifically focus on Computational Fluid Dynamics (CFD), there40

are indeed a large number of codes ported to utilize GPUs [3, 4, 5, 6, 7, 8, 9, 10].

These efforts focusing on migrating a code-base to a particular programming

abstraction (such as CUDA or OpenACC), which does enable them to exploit

GPUs, but also locks them to that architecture. For most large code-bases,

maintaining two or more versions (one for CPUs and another for GPUs, etc.) is45

simply not a reasonable option. These challenges bring us to three key factors

that should be considered when developing, or maintaining large CFD codes,

particularly production codes:

1. Performance: running at a reasonable fraction of peak performance on

given hardware.50

2. Portability: being able to run the code on different hardware platforms /

architectures with minimum manual modifications.

3. Productivity: the ability to quickly implement new applications, features

and maintain existing ones.

Time and again we have seen that a general solution that delivers all three55

is simply not possible, programming approaches have to choose a point on

this triangle. Attempts for compilers delivering some form of universal auto-
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parallelisation capability for general-purpose languages have consistently failed [11];

given the imperative nature of languages such as C or Fortran, compilers strug-

gle to extract sufficient semantic information (enabling them to safely parallelize60

a program) from all but the simplest structures. This means that the burden

is increasingly pushed onto the programmer to help compilers exploit the capa-

bilities of the latest and purportedly greatest hardware. To make things worse,

different hardware come with different low-level programming languages or ex-

tensions, and compilers.65

It is of course unreasonable to expect from scientists/engineers to gain a deep

understanding of the hardware they are programming for - especially given the

diversity of HPC systems - and to keep re-implementing science codes for var-

ious architectures. This has led to a separation of concerns approach where

description of what to compute is separated from how that computation is im-70

plemented. This notion is in direct contrast to the commonly used programming

languages such as C or Fortran, which are inherently imperative. For example,

a for/do loop written in C/Fortran explicitly describes the order in which iter-

ations have to be executed.

Research and development of software and tools used in CFD therefore has75

been pushed to target individual problem domains, restricting generality, but

being able to address performance, portability, as well as productivity. Clas-

sical software libraries target a small set of algorithms, such as sparse linear

algebra, present a simple Application Programming Interface (API), and are

highly tuned for a set of target hardware. For wider algorithmic classes, such80

as neighbourhood-based (stencil) operations over structured blocks or tensors,

domain specific approaches, such as Domain Specific Languages (DSLs) have

been developed to help separate the algorithmic description from the actual

parallel implementation. At an even higher level, techniques such as DSLs have

been created to allow the abstract, mathematical expression of partial differ-85

ential equations - these then offer a number of discretisation and numerical

algorithms to solve them.

The challenge facing CFD developers is multifaceted; have as much perfor-
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mance, portability and productivity as possible, by means ranging from picking

an off-the-shelf solution, to going with traditional general-purpose languages90

and programming everything from the ground-up. The choice of the right tools

is crucially important: selecting a tool/framework with just the right level of ab-

straction to allow the level of control desired, but remaining productive. Tools,

particularly academic tools, do not always have a clear sustainability and soft-

ware maintenance model. As such it may be more difficult to plan a longer-term95

strategy with them.

In this paper, we aim to review some of the approaches and tools that can be

used to develop new CFD codes or to modernize existing ones; we take a brief

look at general-purpose programming languages and parallelization approaches

in Section 2, then discuss software libraries targeting some of the most common100

algorithmic classes for CFD in Section 3. The common property of libraries in

this class is the large amount of readily-available numerical algorithms - which

may then be customised to various degrees. In Section 4 we review some of the

most established C++ template based performance portability libraries, which

target general data-parallel or task-parallel algorithms, and themselves have105

few numerical algorithms implemented. We then move on to Domain Specific

Languages targeting the common computational patterns in CFD in Section 5.

2. General-purpose programming approaches

In this class we consider programming APIs and extensions that have the

widest scope, and allow fine control over the parallelisation of arbitrary algo-110

rithms.

There are a number of competing and complementary approaches to writing

code for parallel hardware, which all place themselves at various points on the

productivity-portability-performance triangle. There are general purpose pro-

gramming languages such as C/C++/Fortran or extensions to such languages115

(e.g. CUDA) or libraries such as Pthreads that give fine-grained control over

parallelism and concurrency. These allow the programmer to extract the maxi-
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mum performance out of the hardware, but of course they are neither portable

nor productive.

Directive-based approaches, such as OpenMP and OpenACC sacrifice some120

generality and fine-grained control for being significantly more productive to

use - indeed, these are the two most widespread approaches to programming

multi-core CPUs and GPUs in high performance computing. OpenMP has

historically targeted CPUs, and aside from direct data parallelism, it has strong

tools to handle concurrency. Although, OpenMP does support an offload model125

as of version 4.0 to run on GPUs, portability is still an issue; in practice the

same directives and constructs cannot be used to target both the CPU and the

GPU for most cases - however, this is an aspect that is being improved by

implementations, and may well be a good approach in the future. OpenACC is

targeting accelerators, GPUs mainly, and the offload model is fundamental to130

it. The standard does allow for targeting CPUs as well, but the only compiler

supporting this is PGI, (owned by NVIDIA).

The OpenCL standard was introduced to address some of the portability

issues - and in some respect, again it pushes the performance vs. portability

trade-off onto the programmer. While it does allow fine-grained control over135

parallelism and concurrency, codes that do exploit this become less portable.

OpenCL also struggles with productivity: it has a verbose API, which makes

it more difficult to use. Additionally, support for OpenCL by various hardware

vendors is mixed; NVIDIA only supports version 1.2, and Intel has varying

degrees of support for its Xeon processors, and the Knights Landing Xeon Phi.140

An emerging standard is SYCL [12], which can be thought of as an improved

C++ version of OpenCL. In SYCL, much of the concepts remain the same, but

it is significantly easier to use than OpenCL and uses a heavily templated C++

API. Naturally, similar to OpenCL, code will be portable to different platforms,

but not necessarily performance portable as it has been shown for OpenCL [13,145

14, 15]. SYCL may become a key standard with Intel’s introduction of OneAPI,

based on SYCL, and the Xe GPU platform, which is to form a key part of the

upcoming Aurora exascale supercomputer [16]. While CUDA, OpenMP, and
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OpenACC all support C/C++ as well as Fortran, OpenCL and SYCL do not,

limiting its use in the CFD field, which still heavily uses Fortran. If indeed150

C/C++ based extensions and frameworks dominate the parallel programming

landscape for emerging hardware, there could well be a need for porting existing

Fortran based CFD applications to C/C++.

The key challenges when using general-purpose approaches include:

1. The parallel implementation tends to be very prescriptive - the more ef-155

ficient an implementation is on a given hardware, the less (performance)

portable it is.

2. Keeping track of and maintaining specialised code paths for different hard-

ware.

3. Parallel implementation and data structures intertwined with science code,160

making it more difficult to understand and maintain.

3. Classical software libraries

In this class, we consider software and libraries that target CFD application

areas, and themselves implement a diverse set of numerical algorithms.

Off-the-shelf software, such as commercial offerings from Ansys, Fluidyna,165

Simscale and many others arguably give the most productive approach to setting

up and running CFD simulations, and they have been optimised extensively for

CPUs, with certain modules offering GPU support as well. Open source pack-

ages such as OpenFOAM also give access to an array of features, though they

tend to be less optimised and GPU support is sporadic [17, 18], and generally170

not officially supported. These packages however limit the exploration of new

algorithmic techniques and numerical methods, simply because either they are

closed source, or they are difficult to modify - as such they lie outside the focus

of our discussion in this paper.

Perhaps the largest software package, or in fact collection of packages, is the175

Trilinos project [19] from Sandia National Labs. Trilinos’s primary goal is to

offer tools for the Finite Element Method. It contains a number of capability
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areas; sparse linear solvers, meshing tools, parallel programming tools (such

as Kokkos, discussed in the next section), discretisations, and many others.

Most of these tools support distributed memory systems and classical CPU180

architectures, and there is increasing portability support relying on Kokkos -

such as Tpetra, which can parallelise an increasing number of sparse linear

algebra operations with OpenMP and CUDA [20].

A similarly prominent library is PETSc [21]. It is a library providing data

structures and algorithms to assist in solving PDEs with a main focus on provid-185

ing scalable linear solvers. It provides a large set of algorithms for the iterative

solution of sparse linear systems, as well as some non-linear solvers. These

algorithms are easy to use, and are quite robust, and have been tested and

evaluated on millions of CPU cores. There is also increasing support for GPUs,

with solvers based on vector and sparse matrix-vector multiplication primitives190

being supported, and more and more preconditioners also being added.

Most classical software libraries focus on the solution of linear systems, as

the variety of algorithms, and especially the application programming interface

exposed towards the user is tractable. There is a large number of such libraries

that make the complex step of linear solve easily accessible - indeed in most CFD195

applications that use implicit methods, this step is the most time-consuming.

These libraries have been heavily optimised, and the dense solvers in particular

achieve a high percentage of peak machine performance. Portability remains

an issue, as there is only a handful of libraries supporting GPUs. Aside from

the standardised BLAS and LAPACK interfaces, most libraries have their own200

APIs, which makes swapping them out cumbersome.

Libraries that target dense matrix algorithms are well-established, and they

often use the BLAS and LAPACK interfaces. LAPACK [22] and ScaLAPACK [23]

target classical CPUs and homogeneous clusters. The PLASMA [24] library

focuses on dense matrix factorisations, and introduced task based parallel ex-205

ecution to address the inhomogeneity in computations as well as hardware -

though currently only CPUs are supported. MAGMA [25] on the other hand is

the most capable dense solver package that supports GPUs - it uses an interface
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similar to LAPACK to better enable porting applications to use heterogeneous

architectures.210

Considering the inexact nature of most sparse linear solvers, there is a much

richer set of algorithms and libraries and consequently programming interfaces.

The aforementioned PETSc [21] and Trilinos [19] provide a wide range of func-

tionality. There are libraries that rely heavily on C++ templates and metapro-

gramming to support diverse datatypes and optimisations - Armadillo [26] and215

Eigen [27] are such examples; these focus on classical CPU clusters. The

SuiteSparse [28] library additionally supports routines on the GPU. A partic-

ularly important class of algorithms are Algebraic Multigrid methods, which

is the main focus of the hypre [29] library, and the AGMG [30] library, which

support CPUs only - the AmgX [31] library makes these algorithms available220

on the GPU as well. Another significant class of sparse linear solvers are direct

solver algorithms, there are a number of libraries that provide an implementa-

tion for this, including WSMP [32], SuperLU [33], PaStiX [34], MUMPS [35],

DSCPACK [36], and some include GPU implementations as well [37, 38].

For the linear solution phase of applications, one should therefore use an225

established library in the vast majority of cases - this is the most productive

approach, and these implementations also deliver high performance. Key chal-

lenges when using classical software libraries include:

1. Standardised interfaces: since most libraries only target a single hardware

platform, the ability to swap out one library for another with relatively230

little work is important.

2. Integration with other parts of a code base: particularly with deep inte-

gration, with frequent interactions between the two parts, the efficiency of

communication is important (e.g. repeated CPU-GPU memory transfers

can become a bottleneck).235
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4. C++ template libraries

For this group, we consider libraries that facilitate the scheduling and exe-

cution of data parallel or task-parallel algorithms in general, but themselves do

not implement numerical algorithms.

In sharp contrast to linear solution algorithms, the variety in the rest of the240

numerical parts of a CFD application (explicit methods, matrix assembly algo-

rithms, etc.) is just too large to be reasonably handled with a classical library

approach. Traditionally these parts of the code were written by hand in For-

tran/C/C++, and oftentimes hand-ported to use OpenMP, OpenACC, CUDA,

OpenCL, or similar. Clearly, having multiple variants of the same code with dif-245

ferent parallelisations is untenable long-term. Increasingly, given the diversity

in parallelisation approaches and hardware architectures, there is a need to re-

gain productivity by separating the parallelisation concerns from the numerical

algorithms. One such approach, exclusive to C++, is template libraries, which

allow users to express algorithms as a sequence of parallel primitives executing250

user-defined code at each iteration. These libraries follow the design philosophy

of the C++ Standard Template Library [39] – indeed, their specification and

implementation is often considered as a precursor towards inclusion in the C++

STL. The largest such projects are Boost [40], Eigen [27], and focusing on the

parallelism aspect is HPX [41]. While there are countless such libraries, here255

we focus on ones that also target performance portability.

Kokkos [42] is a C++ performance portability layer that provides data con-

tainers, data accessors, and a number of parallel execution patterns. It supports

execution on shared-memory parallel platforms, namely CPUs using OpenMP

and Pthreads, and NVIDIA GPUs using CUDA. It does not consider distributed260

memory parallelism, rather it is designed to be used in conjunction with MPI.

Kokkos ships with Trilinos, and is used to parallelise various libraries in Trilinos,

but it can also be used as a stand-alone tool - it follows the design philosophy of

the C++ STL very closely. Its data structures can describe where data should

be stored (CPU memory, GPU memory, non-volatile, etc.), how memory should265
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be laid out (row/column-major, etc), and how it should be accessed. Simi-

larly, one can specify where algorithms should be executed (CPU/GPU), what

algorithmic pattern should be used (parallel for, reduction, tasks), and how

parallelism is to be organised. It is a highly versatile and general tool capable

of addressing a wide set of needs, but as a result is more restricted in what270

types of optimisations it can apply compared to a tool that focuses on a more

narrower application domain.

RAJA [43] is another C++ performance portability layer, from LLNL, which

in many respects is very similar to Kokkos but it offers more flexibility for manip-

ulating loop scheduling, particularly for complex nested loops. It also supports275

CPUs (with OpenMP and TBB), as well as NVIDIA GPUs with CUDA.

Both Kokkos and RAJA were designed by US DoE labs to help move exist-

ing software to new heterogeneous hardware, and this very much is apparent in

their design and capabilities - they can be used in an iterative process to port

an application, loop-by-loop, to support shared-memory parallelism. Of course,280

for practical applications, one needs to convert a substantial chunk of an appli-

cation; on the CPU that is because non-multithreaded parts of the application

can become a bottleneck, and on the GPU because the cost of moving data

to/from the device.

There are a number of further libraries that use C++ templates to provide285

portability across different architectures, but they focus on narrower application

domains, and are discussed in the next section.

Key challenges when using C++ template libraries for data parallelism in-

clude:

1. Development time and difficulty often increased by hard to read errors,290

and high compilation times.

2. Debugging heavily templated code is challenging.

3. Managing platform-specific code paths.
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5. DSLs and eDSLs

In this category we consider a wide range of languages and libraries - the295

key commonality is that their scope is limited to a particular application or

algorithmic domain. We only discuss DSLs that either specifically target CFD,

or support basic algorithmic patterns most common in CFD.

Domain Specific Languages (DSLs) and more generally domain specific ap-

proaches, by definition, restrict their scope to a narrower problem domain, or300

set of algorithmic patterns. By sacrificing generality, it becomes feasible to at-

tempt and address challenges in gaining all three of performance, portability,

and productivity. There is a wide range of such approaches, starting from li-

braries focused on solving the Finite Element Method, to libraries focused on a

handful of low-level computational patterns. Some embed themselves in a host305

languages (eDSLs), such as Python or C++, others develop a new language of

their own.

By being more focused on an application domain, these libraries and lan-

guages are able to apply much more powerful optimisations to help deliver

performance as well as portability, and because a lot of assumptions are already310

built into the programming interface, much less has to be described explicitly

- leading to better productivity. The Achilles heel of these approaches stems

from their limited applicability - if they cannot develop a considerable user base,

they will become mere academic experiments that are forgotten quickly. They

need to develop a community around them to help support and maintain in the315

long run. Therefore, there are two key challenges to building a successful DSL

or library:

1. An abstraction that is wide enough to cover a range of interesting applica-

tions, and narrow enough so that powerful optimisations can be applied.

2. An approach to long-term support.320

5.1. Algorithmic skeletons

A large fraction of algorithms can be considered as a sequence of basic algo-

rithmic primitives - such as parallel for-each loops, reductions, scan operations,

12



etc. This is a very mechanical approach to expressing algorithms, but by doing

so, it forces computations into a form that is easy to parallelise. Yet, often325

times they are not trivial to read or write. Kokkos and RAJA can be thought

of skeleton libraries supporting a small set of skeletons.

Thrust [44] (active) is a C++ template library developed by NVIDIA, for

shared memory parallelism, supporting both CPUs (relying on TBB) and GPUs

(with CUDA), and offers basic vector containers and a large number of parallel330

algorithms. SkePU 2 [45] (active) relies on C++ templates to target CPUs and

GPUs (with experimental MPI support), vector and matrix data structures, and

the map, reduce, map-reduce, map-overlap (stencil-type), and scan algorithmic

primitives. FastFlow [46] (active) is a C++ parallel programming framework,

targeting CPUs and NVIDIA GPUs, with a particular focus on controlling mem-335

ory and caches.

Muesli [47] (stale, updated Nov 2016) is a C++ template library targeting

CPUs, GPUs, as well as MPI to support both distributed and shared memory

parallelism. It supports vectors and matrices, with map, zip, fold, mapStencil

algorithmic primitives. SkelCL [48] (stale, updated Sept 2016) is embedded in340

C++, and uses OpenCL to target various devices to exploit shared memory

parallelism with vector and matrix containers, and algorithms such as map,

map-reduce, reduce, scan and zip.

Furthermore, there are similar skeleton DSLs embedded into functional pro-

gramming languages, such as Haskell. Functional languages have powerful tools345

to apply transformations and optimisations to high-level algorithms, as by de-

sign they describe what to do instead of how, yet they are significantly different

from conventional (imperative) languages such as C/Fortran. Given a general

lack of expertise and awareness of these languages in engineering, the utility of

these for CFD is limited. It is also non-trivial to integrate these with commonly350

used libraries, data formats, and post-processing. Examples of DSLs targeting

HPC in Haskell by supporting high-performance parallel arrays include Accel-

erate [49] (active), targeting GPUs and CPUs, and Repa [50] (active), targeting

CPUs. hmatrix [51] (active) targets BLAS and LAPACK operations on CPUs.
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5.2. DSLs for stencil computations355

Another set of DSLs focus on making the description of structured or un-

structured stencil-based algorithms more productive. This class of DSLs are

for the most part oblivious to numerical algorithm being implemented, which

in turn allows them to be used for a wider range of algorithms - e.g. finite

differences, finite volumes, or finite elements. The key goal here is to create360

an abstraction that allows the description of parallel computations over either

structured or unstructured meshes (or hybrid meshes), with neighbourhood-

based access patterns. Similar DSLs can be constructed for other domains,

such as molecular dynamics that help express N-body interactions, but these

have limited use in CFD.365

One of the first such DSLs to target CPUs as well as GPUs was Liszt [52]

(stale, updated 2013) which defined its own language for expressing unstruc-

tured mesh computations. The research effort was continued and generalised to

support arbitrary meshes as well as particles with Ebb [53] (stale, updated July

2016), which is embedded in the Lua and Terra languages.370

Nebo [54], part of SpatialOps (stale, last updated Nov 2017) targets trans-

port phenomena on structured meshes with a DSL embedded in C++ - it tar-

gets CPUs, GPUs. Halide [55] (active) is a DSL intended for image processing

pipelines, but generic enough to target structured-mesh computations [56], it

has its own language, but is also embedded into C++ - it targets both CPUs375

and GPUs, as well as distributed memory systems. YASK [57] (active) is a C++

library for automating advanced optimisations in stencil computations, such as

cache blocking and vector folding. It targets CPU vector units, multiple cores

with OpenMP, as well as distributed-memory parallelism with MPI. OPS [58]

(active) is a multi-block structured mesh DSL embedded in both Fortran and380

C/C++, targeting CPUs, GPUs and MPI - it uses a source-to-source translation

strategy to generate code for a variety of parallelisations. ExaSlang [59] (active)

is part of a larger European project, Exastencils, which allows the description

of PDE computations at many levels - including at the level of structured-mesh

stencil algorithms. It is embedded in Scala, and targets MPI and CPUs, with385
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limited GPU support. Another DSL for stencil computations, Bricks [60] gives

transparent access to advanced data layouts using C++, which are particularly

optimised for wide stencils, and is available on both CPUs, and GPUs.

For unstructured mesh computations, OP2 [61] (active) and its Python ex-

tension, PyOP2 [62] (active) give an abstraction to describe neighbourhood390

computations, they are embedded in C/Fortran and Python respectively, and

target CPUs, GPUs, and distributed memory systems.

For mixed mesh-particle, and particle methods, OpenFPM [63] (active), em-

bedded in C++, provides a comprehensive library that targets CPUs, GPUs,

and supercomputers.395

A number of DSLs have emerged from the weather prediction domain such

as STELLA [64](active) and PSyclone [65] (active). STELLA, a C++ tem-

plate library for stencil computations, that is used in the COSMO dynamical

core [66], and supports structured mesh stencil computations on CPUs and

GPUs. PSyclone is part of the effort in modernizing the UK MetOffice’s Uni-400

fied Model weather code and uses automatic code generation. It currently uses

only OpenACC for executing on GPUs. A very different approach is taken by

the CLAW-DSL [67] (active), used for the ICON model [68], which is targeting

Fortran applications, and generates CPU and GPU parallelisations - mainly for

structured mesh codes, but it is a more generic tool based on source-to-source405

translation using preprocessor directives. It is worth noting that these DSLs are

closely tied to a larger software project (weather models in this case), developed

by state-funded entities, greatly helping their long-term survival. At the same

time, it is unclear if there are any other applications using these DSLs.

5.3. High-level DSLs for PDEs410

There is a specific class of DSLs that target the solution of PDEs starting

at the symbolic expression of the problem, and (semi-)automatically discretise

and solve them. Most of these are focused on a particular set of equations and

discretisation methods, and offer excellent productivity - assuming the problem

to be solved matches the focus of the library.415
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Many of these libraries, particularly ones where portability is important, are

built with a layered abstractions approach; the high-level symbolic expressions

are transformed, and then passed to a layer that maps them to a discretisa-

tion, then this is given to a layer that arranges parallel execution - the exact

layering of course depends on the library. This approach allows the develop-420

ers to work on well-defined and well-separated layers, without having to gain a

deeper understanding of the whole system. These libraries are most commonly

embedded in the Python language, which has the most commonly used tools

for symbolic manipulation in this field - although functional languages are ar-

guably better suited for this, they still have little use in HPC. Due to the poor425

performance of interpreted Python, these libraries ultimately generate low-level

C/C++/Fortran code to deliver high performance.

One of the most established such libraries is FEniCS [69] (active), which

targets the Finite Element Method, however it only supports CPUs and MPI.

Firedrake [70] (active) is a similar project with a different feature set, which also430

only supports CPUs - it uses the aforementioned PyOP2 library for parallelising

and executing generated code.

The ExaStencils project [71] (active) uses 4 layers of abstraction to create

code running on CPUs or GPUs (experimental) from the continuous descrip-

tion of the problem - its particular focus is structured meshes and multigrid.435

Saiph [72] (active) is a DSL embedded in Scala, developed at BSC, designed

to target a wider range of PDEs and discretisation methods, though it is cur-

rently in an early stage, supporting finite differences and CPUs (with MPI and

OpenMP) only. CDFLang [73] (stale, last updated Jan 2018) defines its own

language for a set of tensor operations, which it then transforms and generates440

C/C++ code parallelised with OpenMP, targeting CPUs only.

DUNE/PDELab [74] (active) is another high-level library that allows the

description of PDEs and their discretisation with various methods, on both

structured and unstructured grids. It is embedded in C++, and its current ver-

sion only supports MPI and CPUs, but research and development work towards445

GPU support is ongoing. OpenSBLI [75] (active) is a DSL embedded in Python,
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focused on resolving shock-boundary layer interactions and uses finite differences

and structured meshes - it generates C code for the OPS library, which in turn

can parallelise it on distributed memory machines with both CPUs and GPUs.

Devito [76] (active) is a DSL embedded in Python which allows the symbolic450

description of PDEs, and focuses on high-order finite difference methods, with

the key target being seismic inversion applications.

The most common challenges when using DSLs include:

1. In some cases, debugging can be difficult due to all the extra hidden layers

of software between user code and code executing on the hardware.455

2. Extensibility - implementing algorithms that fall slightly outside of the

abstraction defined by the DSL can be an issue.

3. Customisability - it is often difficult to modify the implementation of high-

level constructs generated automatically.

6. Characterising performance, portability, and productivity460

In this section, we explore the literature that discusses how to quantify per-

formance, portability, and productivity, and discuss a number of papers which

present performance results on the libraries above. Note that given the huge

body of research on performance, we restrict this discussion to papers and li-

braries that consider at least CPUs and GPUs, and therefore have a meaningful465

discussion of portability as well. Additionally, we focus on work that presents

results from either production applications, or at least proxy codes of large

applications.

6.1. Metrics

Quantifying even one of the three factors is exceedingly difficult. Perhaps the470

easiest of the three is performance - one can try and determine how efficiently

a code uses the hardware it is running on. The Roofline model [77] captures

efficiency based on arithmetic intensity - how many operations are carried out

for each byte of data moved, and how close this is to the theoretical maximum
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on any given hardware architecture. As such, it sets an aspirational goal, and for475

complex codes (and irregular algorithms in particular), only a low fraction can

be reasonably achieved. Given some reference implementations of an algorithm

one can also calculate the fraction of the “best known performance”.

Based on this performance metric, the definition of performance portabil-

ity, as defined in Pennycook et al. [78]: “A measurement of an application‘s480

performance efficiency for a given problem that can be executed correctly on

all platforms in a given set.”. The metric described in the paper gives a single

value, P (a, p,H), as a function of a given application a, running a given prob-

lem p, on a set of hardware/software platforms of interest H (where |H| is the

number of platforms).485

PP(a, p,H) =

!
""#

""$

|H|%
i∈H

1
ei(a,p)

if i is supported ∀i ∈ H

0 otherwise,

(1)

which is the harmonic mean of performance efficiencies ei(a, p) on each platform.

There are two common metrics for performance efficiency on a given hardware

(ei): as a fraction of some peak theoretical performance (e.g. bandwidth of

computational throughput), or as a fraction of “best known performance” on

the given platform. Clearly, comparing the results of this metric from different490

applications, and from different hardware sets is hardly objective - therefore

in this paper we do not attempt to directly compare and rank libraries and

software based on their published performance or portability.

The performance portability metric does not consider productivity - in the

extreme case, it still considers completely separate implementations and optimi-495

sations of the same applications as one. For obvious reasons, working with such

a code base is very unproductive. A “code divergence” metric was proposed

by Harrell et al. [79], which quantifies the difference, relying on the number

of different lines of code, between variants targeting different platforms. Code
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divergence D on a set of code variants is defined as follows:500

D(A) =

&

'|A|

2

(

)
−1

*

{ai,aj}⊂A

d(ai, aj), (2)

giving the average pairwise distances between all the variants in A (where |A|

is the number of variants). d is defined as the change in the number of source

lines of code (SLOC):

d(a, b) =
|SLOC(a)− SLOC(b)|

min(SLOC(a), SLOC(b))
. (3)

An open source tool, the Code Base Investigator [80] can be used to calculate

this metric.

6.1.1. Comparative works

Unfortunately there are only a handful of works that evaluate the above

metrics on codes or applications of interest to the CFD community - below we505

summarise their results.

CloverLeaf is a Lagrangian-Eulerian explicit hydrodynamics mini applica-

tion, with both 2D and 3D variants. It has been a target of several papers

focusing on performance. The most recent and relevant works that discuss both

performance and portability include McIntosh-Smith [81], exploring a wide va-510

riety of architectures including Intel, ARM, AMD, IBM CPUs, NVIDIA and

AMD GPUs, as the NEC Aurora. They evaluate OpenMP, Kokkos, OpenACC,

CUDA, and OpenCL - and report mixed results. OpenMP supports 7 out of the

12 platforms with a high performance portability score (1.0, based on fraction of

best observed performance), OpenCL runs only on GPUs with a score of 0.945,515

OpenACC runs on NVIDIA GPUs, x86 CPUs, and Power CPUs only, with a

score of 0.624, and the Kokkos implementation of CloverLeaf was only working

on NVIDIA GPUs, achieving a score of 0.628.

BookLeaf is an unstructured compressible hydrodynamics proxy application,

its performance and portability was evaluated in detail by Law et al. [102, 84],520

considering OpenMP, CUDA, Kokkos, and RAJA, calculating the aforemen-

tioned portability metric as well. The authors evaluate performance on a
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Table 1: CFD software and papers with performance portability studies

Application Paper Parallelisations Performance measures

CloverLeaf [81] OpenMP, Kokkos, OpenACC, Time, PP

CUDA, OpenCL

CloverLeaf [82, 83] OPS (OpenMP, CUDA) Time, GB/s, GFLOPS/s

BookLeaf [84] MPI, OpenMP, Kokkos, Time, PP

RAJA, CUDA

TeaLeaf [85] MPI, OpenMP, OpenACC, Time, GB/s, PP

CUDA, Kokkos, RAJA, OPS

Bricks [60] OpenMP, CUDA Time, GFLOPS, GB/s, PP

Nekbone [86] OpenMP, OpenACC Time, GB/s

PENNANT [87] OpenMP, CUDA Time

Aria [88] Kokkos (OpenMP, CUDA) Time

SPARTA [89] Kokkos (OpenMP, CUDA) Time

Albany [90] Kokkos (OpenMP, CUDA) Time

SPARC [91, 92] Kokkos (OpenMP, CUDA) Time

Uintah [93] Kokkos (OpenMP, CUDA) Time

ARK [94] Kokkos (OpenMP, CUDA) Time

KARFS [95] Kokkos (OpenMP, CUDA) Time

SAMRAI [96] RAJA (OpenMP, CUDA) Time

ARES [97] RAJA (OpenMP, CUDA) Time

OpenSBLI [98] OPS (MPI, OpenMP, CUDA) Time, GB/s, GFLOPS/s

VOLNA-OP2 [99] OP2 (MPI, OpenMP, CUDA) Time, GB/s, GFLOPS/s

RR Hydra [100, 101] OP2 (MPI, OpenMP, CUDA) Time, GB/s, GFLOPS/s
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classical CPU cluster (ARCHER, Intel Xeon E5-2697 v2), and a GPU cluster

(Power8 with 4 P100 GPUs). On CPUs the authors note only minor variations

in performance, scaling up to 4096 compute nodes, with 10-20% slowdown com-525

pared to OpenMP only at the extreme problem sizes. Scaling up to 64 GPUs

Kokkos slightly outperforming the CUDA implementation (¡1%), and RAJA be-

ing slightly slower (< 2%). An extended study of performance portability to the

Intel Xeon Phi and V100 GPUs show that out of the explored implementations

only Kokkos and RAJA were able to run on all platforms, and both achieved530

above 90% architectural efficiency (bandwidth in this case), with Kokkos slightly

outperforming RAJA; with a performance portability score of 0.928, compared

to 0.876. The authors note that the productivity of porting a code to use Kokkos

or RAJA is roughly similar to that of porting to CUDA.

TeaLeaf [103] is a structured mesh matrix-free implicit solver proxy applica-535

tion, solving a simple heat-conduction problem with a variety of iterative solvers

- Kirk et al. [85] evaluate MPI, OpenMP, OpenACC, CUDA, Kokkos, RAJA,

and OPS versions on an Intel Broadwell CPU, and Intel Xeon Phi, and an

NVIDIA P100 GPU. The authors report similar productivity when porting to

CUDA, Kokkos, RAJA or OPS. Performance results on the larger problem run-540

ning on the CPU show Kokkos and RAJA outperforming OpenMP by 15-25%,

and OPS outperforming OpenMP by 35%, due to integrated memory locality

optimisations. On the Xeon Phi, OpenMP, OPS, and RAJA are within 10%,

Kokkos performed 50% worse. On the P100 GPU, the hand-coded CUDA im-

plementation performed best, with Kokkos and RAJA trailing behind by 7-15%545

and OPS by 20%. The paper also reports the performance portability score, with

hand-coded implementations (two separate ones) achieving 0.74, OPS achieving

0.79, Kokkos 0.41, and RAJA 0.61. McIntosh-Smith also studies TeaLeaf [81]

on the same platforms as reported for CloverLeaf above, calculating perfor-

mance portability based on fraction of best observed performance - reporting550

that OpenMP runs on all of them with a performance portability score of 0.45.

Kokkos runs on all but the NEC Aurora, achieving a score of 0.57. OpenACC

only ran on NVIDIA GPUs and the IBM Power9, achieving a score of 0.77.
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The Bricks library [60] gives access to advanced data structures tailored to

the needs of high-order stencil computations. Zhao et al. [60] carry out an in-555

depth performance portability study, between Intel Xeon Phi, Skylake CPUs,

as well as an NVIDIA P100 GPU. With increasing stencil sizes calculating

the Laplacian, the code becomes increasingly computationally heavy, and the

authors utilize the roofline model to determine the fraction achieved peak per-

formance. CPU architectures achieve a consistently higher efficiency at smaller560

stencil sizes, largely thanks to sizable caches - utilisation goes down from 85%

(KNL), 96% (Skylake), and 82% (P100) at the smallest stencil size to 41%, 43%

and 62% respectively. Across all test cases, Bricks achieves a 0.72 performance

portability score in double precision.

6.1.2. OpenMP and OpenACC565

Daley [104] studies various compilers for OpenMP offload functionality, re-

porting significant differences in behaviour. While they do not report perfor-

mance differences between CPU and GPU, they point out that the CPU execu-

tion fall back path of offload pragmas is currently inefficient with most compilers,

therefore separate OpenMP pragmas should be used when running on the CPU570

and when running on the GPU.

The Nekbone code is a proxy for the large Nek5000 spectral element CFD

solver, and its performance portability is evaluated by Chunduri et al. [86] -

the CPU version uses OpenMP, and the GPU version OpenACC, they compare

an Intel Xeon Phi, and an NVIDIA P100 GPU. They achieve 40-51% of peak575

computational performance on compute-intensive kernels, and 64-95% of peak

memory bandwidth on data-intensive kernels on the Xeon Phi. In comparison,

on the P100 GPU they achieve only 6% of peak compute, but 89-95% of peak

bandwidth. Overall the Xeon Phi outperforms the GPU at all but the largest

problem sizes.580

PENNANT is a proxy for the LANL rad-hydro code FLAG, an implements

2D staggered-grid Lagrangian hydrodynamics on general unstructured meshes.

As reported by Ferenbaugh [87], it has both CUDA and OpenMP implementa-
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tions, with various degrees of granularity in the parallelism, which often has sig-

nificant effects on performance. Best results are achieved with a coarse-grained585

approach on both CPUs and GPUs - up to 2.5x speedup is reported when com-

paring a Sandy Bridge (E5-2670) server and an NVIDIA K20X GPU, 5.5x when

compared to a Blue-Gene/Q node, and 3x compared to the first-generation Xeon

Phi.

6.1.3. Kokkos590

Parts of the Aria code, an unstructured, nonlinear, multiphysics finite ele-

ment solver, were ported to use Kokkos, and Brunini et al. [88] report compara-

ble performance between one Intel Broadwell server (E5-2607 v4) and a single

NVIDIA V100 GPU. They point to repeated CPU-GPU copies, particularly

during development, as a key performance bottleneck.595

The particle-based computations in the SPARTA Direct Simulation Monte

Carlo (DSMC) code were moved to use Kokkos, as reported in [89]; with several

target-specific optimisations (e.g. atomics for GPUs, and parallel reduction on

CPUs). Authors report a 3× speedup going from a Haswell server to a V100

GPU at the maximum problem size that fits in the GPU.600

The Albany land ice sheet solver relies extensively on Trilinos packages, and

uses Tpetra, accelerated with Kokkos in the Finite Element Assembly phase, as

discussed in [90]. The authors report an up to 8.8x speedup in the node-local

assembly phase between a Haswell server and a P100 GPU, but note the consid-

erable overheads of the global assembly, which involves MPI communications,605

reducing the overall speedup to only about 2x. They also carry out a scalability

study up to 32 nodes, reporting strong and weak scaling efficiencies of 62% and

89% respectively on Haswell, and 36% and 69% respectively on P100 GPUs.

The SPARC hypersonic CFD code developed at Sandia National Labs also

uses Kokkos, as reported by Hower et al. [91, 92], P100 and V100 GPUs out-610

perform Haswell and Broadwell systems 1.5-2x, and 2-2.5x respectively on some

parts of assembly, yet on other parts they are up to 2x slower. This results in

no significant speedup for the whole application. Overall the system demon-
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strates excellent strong and weak scalability up to 64 nodes or GPUs. The

authors note that re-engineering the code to use Kokkos did make most parts of615

the code much more performant, but they note challenges in measuring perfor-

mance, building the software system for different architectures, as well as large

compilation times.

Critical sections of the Uintah [93] multi-physics code were ported to use

the tasking feature of the Kokkos library, and the authors evaluate scalability620

and performance on an Intel Xeon Phi cluster (Stampede) and an NVIDIA

K20X cluster (Titan - a generation older than Stampede). The results show

no loss in performance compared to the reference implementation. The authors

report good scalability, particularly on the Phi, to up to 256 nodes, and the Phi

outperforming the K20X by 2×.625

ARK is a finite volume stratified compressible Navier-Stokes solver, targeting

all Mach regimes, which was implemented using Kokkos. Padioleau et al. [94]

report on its performance portability, comparing the Intel Xeon Phi, Skylake,

NVIDIA K80, P100, and V100 platforms. Taking the Phi as a baseline, they

report 1.5× speedup on Skylake, 7× on the K80, 30× on the P100, and 53×630

on the V100. The authors note that the code did not vectorise well on the

CPU platforms, explaining the large performance difference between CPUs and

GPUs.

KARFS (KAUST Adaptive Reacting Flows Solver) is a direct numerical

simulation (DNS) code for multi-component gaseous reacting flows, which has635

been implemented with an MPI+Kokkos programming model [95]. The authors

perform a series of benchmarks with increasing numbers of problem size and

reacting species, comparing a 16-core Intel Haswell CPU with an NVIDIA K80

GPU, reporting modest speedups or even slowdowns at smaller scales, and 2-

5× speedups at larger problems. They also integrate the Cantera-CVODE-640

MAGMA stiff ODE solver, and report up to 2× speedups on larger problems.
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6.1.4. RAJA

Beckingsale et al. [96] discuss the portability of the SAMRAI structured

AMR framework between CPUs and GPUs, and modify key parts of both

SAMRAI and the CleverLeaf proxy application, relying on RAJA for porta-645

bility. They report a 7x speedup going from the IBM Power 9 CPUs in a node

(44 cores) to the 4 NVIDIA V100 GPUs.

ARES is a multiphysics ALE-AMR code at LLNL, Pearce [97] presents a

port that relies on RAJA to not only utilise either CPUs or GPUs, but both

in the same system, by way of a load-balanced domain decomposition that650

assigns work to CPUs (Intel Xeon E5-2667 v3 and IBM Power8) as well as

GPUs (NVIDIA K80 and P100). The paper reports up to 40% improvement by

oversubscribing GPUs, and an 18% improvement by utilising CPUs as well as

GPUs. The paper also reports an up to 16× speedup between CPU and GPU

at the largest problem sizes.655

6.1.5. OP2 and OPS

OpenSBLI [75] is a Shock-wave/Boundary-layer Interaction CFD code capa-

ble of performing Direct Numerical Simulations (DNS) or Large Eddy Simula-

tion (LES) of SBLI problems, which has been developed using the OPS frame-

work. Mudalige et al. [98] report on its performance, portability, and energy660

consumption on a variety of architectures including Intel Broadwell and Sky-

lake, and IBM Power 8 CPUs (utilising the MPI+OpenMP capabilities of OPS),

and NVIDIA P100 and V100 GPUs (utilising the CUDA capabilities of OPS).

The authors report that some parts of the application are bandwidth-bound,

while others are latency-sensitive, and suffer from occasional lack of vectori-665

sation, which is why the Broadwell system outperforms Skylake 1.17×, IBM

Power8 is 1.96× faster thanks to the large bandwidth available, and the P100

and the V100 are 6.3× and 9.7× faster respectively. The authors also report

architectural efficiency - for the SN, 2603 test case the overall computational

and bandwidth efficiencies are 0.14 and 0.31 respectively (Skylake), 0.24 and670

0.35 (Broadwell), 0.39 and 0.29 (Power8), 0.1 and 0.39 (P100), 0.11 and 0.39
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(V100), yielding a performance portability score of 0.34, based on bandwidth

efficiency. Strong and weak scalability is also evaluated with up to 4096 nodes

(Intel Ivy Bridge on ARCHER) or 4096 GPUs (K20X on Titan), or 256 GPUs

(P100 on Wilkes2).675

VOLNA-OP2 is a finite-volume non-linear shallow-water equation (NSWE)

solver built on the OP2 domain-specific language capable of simulating the

full life cycle of tsunamis. Reguly et al. [99] report on its performance and

portability, running in Intel Skylake and Xeon Phi CPUs, as well as NVIDIA

P100 GPUs, scaling up to 32 nodes or GPUs. Performance and scalability of680

the Skylake and Xeon Phi platforms are closely matched (within 15%), and

the P100 system’s relative performance highly depends on the problem size; on

smaller problems there is a 1.2-2× speedup, and at the largest problem size there

is a 1.96-2.2× speedup (1 GPU vs. 1 CPU node), which translates to a 3.2-3.6×

energy efficiency. The paper also reports detailed performance breakdowns on685

achieved bandwidth.

CloverLeaf, as discussed above, was also ported to OPS, and Reguly et.

al. [82, 83] report on their performance on Intel Haswell and IBM Power8 CPUs,

as well as NVIDIA K80, P100 and V100 GPUs. Their study furthermore in-

vestigates a memory-locality optimisation algorithm that can improve memory690

bandwidth utilisation, as well as utilise both CPU and GPU architectures in

the same system. The authors evaluate achieved memory bandwidth, report-

ing a fraction of peak for Haswell at 0.79, 0.27 for Power 8 (1.6× speedup),

0.82 on the K80 (4.3× speedup), 0.86 on the P100 (11.7× speedup), and 0.83

on the V100 (17.8× speedup). Results from heterogeneous execution utilising695

both CPUs and GPUs in the system show only 10-20% degradation compared

to adding the achieved bandwidths on CPU and GPU alone.

Rolls-Royce’s Hydra CFD application is a finite volume Reynolds-Averaged

Navier-Stokes solver used for the simulation of turbomachinery such as Rolls-

Royces latest aircraft engines. Reguly and Mudalige [100, 101] report on its700

conversion to use the OP2 library, and its performance on a variety of architec-

tures including Intel Sandy Bridge and NVIDIA K20 GPUs, showing an up to
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1.4× speedup. The latter paper [101] studies Intel Haswell and NVIDIA K80

platforms, and achieving auto-vectorisation on unstructured mesh applications

in particular, reporting a 15% improvement on the CPU by enabling specialised705

code-generation features. The paper gives breakdowns of achieved bandwidth

for various computational stages as well, reporting an overall slowdown on the

K80 of 0.95× compared to the vectorised version running on the CPU. Later

benchmarks show an NVIDIA P100 outperforming an Intel Broadwell server by

2.1×. There are further benchmark data and performance analysis available on710

the performance of OPS and OP2 and the optimisations we have introduced not

discussed here, but these are available in publications related to OPS and OP2

[105].

7. Conclusions

In this paper we have given an overview of some of the programming ap-715

proaches that can be used for implementing CFD applications, with a partic-

ular focus on what level of performance, portability, and productivity can be

achieved. We intend our work to be used to help pick the appropriate level

of abstraction when implementing a new application. We discussed a number

of tools, matching different levels of abstraction that can be used, or further720

developed for new applications or for porting existing ones.

We discussed some of the challenges in designing, developing, and maintain-

ing Domain Specific Languages and tools common in this area, and while many

of the libraries cited are now defunct, we argue that some of these are still worth

mentioning, particularly for those who are interested in developing new DSLs.725

We have also reviewed the performance benchmarking literature that com-

pares various CPU and GPU architectures and their programming methods, giv-

ing an overview of key applications and their comparative performance. Readers

wishing to develop new applications are pointed to these representative exam-

ples to make informed decisions about the choice of programming methods.730
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[2] K. Asanović, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,745

K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,

K. A. Yelick, The Landscape of Parallel Computing Research: A View

from Berkeley, Tech. Rep. UCB/EECS-2006-183, EECS Department,

University of California, Berkeley (Dec 2006).

URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/750

EECS-2006-183.html

[3] S. Alimirzazadeh, E. Jahanbakhsh, A. Maertens, S. Leguizamón, F. Avel-

lan, GPU-accelerated 3-D Finite Volume Particle Method, Computers

& Fluids 171 (2018) 79 – 93. doi:https://doi.org/10.1016/j.

compfluid.2018.05.030.755

URL http://www.sciencedirect.com/science/article/pii/

S0045793018302834

28

http://dx.doi.org/10.1109/MSPEC.2010.5491011
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.sciencedirect.com/science/article/pii/S0045793018302834
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2018.05.030
http://www.sciencedirect.com/science/article/pii/S0045793018302834


[4] M. A. Diaz, M. A. Solovchuk, T. W. Sheu, High-performance multi-

GPU solver for describing nonlinear acoustic waves in homogeneous

thermoviscous media, Computers & Fluids 173 (2018) 195 – 205.760

doi:https://doi.org/10.1016/j.compfluid.2018.03.008.

URL http://www.sciencedirect.com/science/article/pii/

S0045793018301087

[5] A. Gorobets, S. Soukov, P. Bogdanov, Multilevel parallelization

for simulating compressible turbulent flows on most kinds of hy-765

brid supercomputers, Computers & Fluids 173 (2018) 171 – 177.

doi:https://doi.org/10.1016/j.compfluid.2018.03.011.

URL http://www.sciencedirect.com/science/article/pii/

S0045793018301105

[6] F. Ren, B. Song, Y. Zhang, H. Hu, A GPU-accelerated solver770

for turbulent flow and scalar transport based on the Lattice

Boltzmann method, Computers & Fluids 173 (2018) 29 – 36.

doi:https://doi.org/10.1016/j.compfluid.2018.03.079.

URL http://www.sciencedirect.com/science/article/pii/

S004579301830183X775

[7] R. K.-S. Liu, C.-T. Wu, N. S.-C. Kao, T. W.-H. Sheu, An im-

proved mixed Lagrangian–Eulerian (IMLE) method for mod-

elling incompressible Navier–Stokes flows with CUDA program-

ming on multi-GPUs, Computers & Fluids 184 (2019) 99 – 106.

doi:https://doi.org/10.1016/j.compfluid.2019.03.024.780

URL http://www.sciencedirect.com/science/article/pii/

S0045793018308387

[8] Y.-H. Lee, L.-M. Huang, Y.-S. Zou, S.-C. Huang, C.-A. Lin, Sim-

ulations of turbulent duct flow with lattice Boltzmann method

on GPU cluster, Computers & Fluids 168 (2018) 14 – 20.785

doi:https://doi.org/10.1016/j.compfluid.2018.03.064.

29

http://www.sciencedirect.com/science/article/pii/S0045793018301087
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2018.03.008
http://www.sciencedirect.com/science/article/pii/S0045793018301087
http://www.sciencedirect.com/science/article/pii/S0045793018301105
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2018.03.011
http://www.sciencedirect.com/science/article/pii/S0045793018301105
http://www.sciencedirect.com/science/article/pii/S004579301830183X
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2018.03.079
http://www.sciencedirect.com/science/article/pii/S004579301830183X
http://www.sciencedirect.com/science/article/pii/S0045793018308387
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2019.03.024
http://www.sciencedirect.com/science/article/pii/S0045793018308387
http://www.sciencedirect.com/science/article/pii/S0045793018301683
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2018.03.064


URL http://www.sciencedirect.com/science/article/pii/

S0045793018301683

[9] T. Hashimoto, T. Yasuda, I. Tanno, Y. Tanaka, K. Morin-

ishi, N. Satofuka, Multi-GPU parallel computation of unsteady790

incompressible flows using kinetically reduced local Navier–

Stokes equations, Computers & Fluids 167 (2018) 215 – 220.

doi:https://doi.org/10.1016/j.compfluid.2018.03.028.

URL http://www.sciencedirect.com/science/article/pii/

S004579301830104X795

[10] N. S.-C. Kao, T. W.-H. Sheu, Development of a finite element flow solver

for solving three-dimensional incompressible Navier–Stokes solutions

on multiple GPU cards, Computers & Fluids 167 (2018) 285 – 291.

doi:https://doi.org/10.1016/j.compfluid.2018.03.033.

URL http://www.sciencedirect.com/science/article/pii/800

S0045793018301373

[11] J. P. Singh, J. L. Hennessy, An empirical investigation of the effectiveness

and limitations of automatic parallelization, Shared memory multiprocess-

ing (1992) 203–207.

[12] M. Wong, A. Richards, M. Rovatsou, R. Reyes, Khronos’s OpenCL SYCL805

to support heterogeneous devices for C++ (2016).

[13] S. Rul, H. Vandierendonck, J. D’Haene, K. De Bosschere, An experi-

mental study on performance portability of OpenCL kernels, in: 2010

Symposium on Application Accelerators in High Performance Computing

(SAAHPC’10), 2010.810

[14] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, H. Kobayashi,

Evaluating performance and portability of OpenCL programs, in: The

fifth international workshop on automatic performance tuning, Vol. 66,

2010, p. 1.

30

http://www.sciencedirect.com/science/article/pii/S0045793018301683
http://www.sciencedirect.com/science/article/pii/S004579301830104X
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2018.03.028
http://www.sciencedirect.com/science/article/pii/S004579301830104X
http://www.sciencedirect.com/science/article/pii/S0045793018301373
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2018.03.033
http://www.sciencedirect.com/science/article/pii/S0045793018301373


[15] S. J. Pennycook, S. D. Hammond, S. A. Wright, J. Herdman, I. Miller,815

S. A. Jarvis, An investigation of the performance portability of OpenCL,

Journal of Parallel and Distributed Computing 73 (11) (2013) 1439–1450.

[16] Its Official: Aurora on Track to Be First US Exascale

Computer in 2021, https://www.hpcwire.com/2019/03/18/

its-official-aurora-on-track-to-be-first-u-s-exascale-computer-in-2021/820

(2019).

[17] Q. He, H. Chen, J. Feng, Acceleration of the OpenFOAM-based MHD

solver using graphics processing units, Fusion Engineering and Design 101

(2015) 88–93.

[18] Z. Malecha, $L. Miros$law, T. Tomczak, Z. Koza, M. Matyka, W. Tarnawski,825

D. Szczerba, et al., GPU-based simulation of 3D blood flow in abdominal

aorta using OpenFOAM, Archives of Mechanics 63 (2) (2011) 137–161.

[19] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G.

Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, et al.,

An overview of the Trilinos project, ACM Transactions on Mathematical830

Software (TOMS) 31 (3) (2005) 397–423.

[20] M. F. Hoemmen, Summary of current thread parallelization efforts in

Trilinos’ linear algebra and solvers., Tech. rep., Sandia National Lab.(SNL-

NM), Albuquerque, NM (United States) (2017).

[21] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,835

L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik,

M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson,

K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc

Web page, http://www.mcs.anl.gov/petsc (2019).

URL http://www.mcs.anl.gov/petsc840

[22] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen,

31

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc


LAPACK Users’ Guide, 3rd Edition, Society for Industrial and Applied

Mathematics, Philadelphia, PA, 1999.

[23] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,845

J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,

R. C. Whaley, ScaLAPACK Users’ Guide, Society for Industrial and Ap-

plied Mathematics, Philadelphia, PA, 1997.

[24] A. Buttari, J. Langou, J. Kurzak, J. Dongarra, A class of

parallel tiled linear algebra algorithms for multicore architec-850

tures, Parallel Computing 35 (1) (2009) 38 – 53. doi:https:

//doi.org/10.1016/j.parco.2008.10.002.

URL http://www.sciencedirect.com/science/article/pii/

S0167819108001117

[25] S. Tomov, J. Dongarra, M. Baboulin, Towards dense linear algebra for855

hybrid GPU accelerated manycore systems, Parallel Computing 36 (5-6)

(2010) 232–240. doi:10.1016/j.parco.2009.12.005.

[26] C. Sanderson, R. Curtin, Armadillo: a template-based C++ library for

linear algebra, Journal of Open Source Software 1 (2) (2016) 26.

[27] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org860

(2010).

[28] T. Davis, W. Hager, I. Duff. SuiteSparse [online] (2014).

[29] R. D. Falgout, J. E. Jones, U. M. Yang, The design and implementa-

tion of hypre, a library of parallel high performance preconditioners, in:

Numerical solution of partial differential equations on parallel computers,865

Springer, 2006, pp. 267–294.

[30] Y. Notay, An aggregation-based algebraic multigrid method, Electronic

transactions on numerical analysis 37 (6) (2010) 123–146.

32

http://www.sciencedirect.com/science/article/pii/S0167819108001117
http://dx.doi.org/https://doi.org/10.1016/j.parco.2008.10.002
http://www.sciencedirect.com/science/article/pii/S0167819108001117
http://dx.doi.org/10.1016/j.parco.2009.12.005
http://faculty.cse.tamu.edu/davis/suitesparse.html


[31] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton,

S. Layton, N. Markovskiy, I. Reguly, N. Sakharnykh, et al., AmgX: A870

library for GPU accelerated algebraic multigrid and preconditioned it-

erative methods, SIAM Journal on Scientific Computing 37 (5) (2015)

S602–S626.

[32] A. Gupta, WSMP: Watson sparse matrix package (Part-I: direct solution

of symmetric sparse systems), IBM TJWatson Research Center, Yorktown875

Heights, NY, Tech. Rep. RC 21886.

[33] X. S. Li, An Overview of SuperLU: Algorithms, Implementation, and User

Interface, ACM Trans. Math. Softw. 31 (3) (2005) 302–325.
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