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1 Introduction

The theory of fractional order derivatives are almost as old as the integer-order [5].
There are many applications, for example in physics [1], [2], [6], finance [8], [9] or
biology [3]. Our aim is to prove theoretical mathematical statements.

In this work our goal is to find a solution numerically for the equation A(u) = f .
If we assume that u is time-dependent, then one can do this by finding a stationary
solution of the equation ∂tu(t) = −(A(u(t))− f ). The numerical solution of this
problem can be highly inaccurate. To avoid this we propose to replace the time
derivative with a fractional one. Since the fractional order time derivative is a non-
local operator, we expect that this stabilizes the time integration in the numerical
solutions. Since the fractional order derivative here is defined as a limit of linear
combination of past values, the time discretization will be simple. We also tested
our method numerically in a fluid dynamical problem [10].

Béla J. Szekeres
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2 Mathematical preliminaries

The following theorem is well known, see [11].

Theorem 1. Let H real Hilbert-space, A : H →H nonlinear operator, which satisfies
the conditions below with some positive constants M ≥ m:

1. 〈A(u)−A(v),u− v〉 ≥ m‖u− v‖2,
2. ‖A(u)−A(v)‖ ≤ M‖u− v‖.

Then for any f ,u0 ∈ H there exist a unique solution u∗ of the equation A(u) = f . If
t ∈ R+ is small enough the following iteration converges to u∗.

un+1 = un − t
[
A(un)− f

]
. (1)

There exist many different definitions of the fractional derivative [4], [7] we will
use here the one below which is based on finite differences.

Definition 1. For the exponent β ∈ (0,1) the fractional order derivative for a given
function f : R+ → R is defined as

∂ β f (t)
∂ tβ := lim

N→∞

{ N

∑
k=0

(
β
k

)
(−1)k f (t − kh)

hβ

}
,

provided that the limit exists.

3 Results

Shortly, our objective is to find a solution for the equation A(u) = f for a given non-
linear operator A, and for a given function f . The solution u is also time-dependent,
our goal is to find a stationary solution for

−(A(u(t))− f ) = ∂tu(t). (2)

The method in Theorem 1 is one approach to this. Our idea was that to replace the
time derivative in (2) with ∂ β

∂ tβ for some β ∈ (0,1), according to Definition 1, and
discretise the equation in time by a natural way.

We need an additional statement before we prove.

Lemma 1. (Pachpatte) Let (αn)n∈N, ( fn)n∈N, (gn)n∈N, (hn)n∈N nonnegative real se-
quences with the conditions below:

αn ≤ fn +gn

n−1

∑
s=0

hsαs. (3)

Then the following inequality holds
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αn ≤ fn +gn

n−1

∑
s=0

hs fs

n−1

∏
τ=s+1

(
hτ gτ +1

)
. (4)

The main result is a generalisation of Theorem 1. For simplicity, we will not
prove the existence of the solution.

Theorem 2. Let H be real Hilbert-space, A : H → H a nonlinear operator, which
satisfies the conditions below with some positive constants M ≥ m:

1. 〈A(u)−A(v),u− v〉 ≥ m‖u− v‖2,
2. ‖A(u)−A(v)‖ ≤ M‖u− v‖.

Let u∗ denote the solution of the equation A(u) = f . For any f ,u0 ∈ H α ∈ (0,1),
and t ∈ R+ small enough the following iteration converges to u∗.

un+1 =
n+1

∑
j=1

(
α
j

)
(−1) j+1un+1− j − t

[
A(un+1)− f

]
. (5)

Proof. We first add t
[
A(un+1)− f

]
− u∗ both sides of the equation (5) and taking

their norms, we have that

∥∥un+1 −u∗+ t
[
A(un+1)−A(u∗)

]∥∥=

∥∥∥∥∥
n+1

∑
j=1

(
α
j

)
(−1) j+1un+1− j −u∗

∥∥∥∥∥ . (6)

Using the first assumption, we get the lower estimation

‖un+1 −u∗+ t
[
A(un+1)−A(u∗)

]
‖2

= ‖un+1 −u∗‖2 + t2‖A(un+1)−A(u∗)‖2 +2t〈A(un+1)−A(u∗),un+1 −u∗〉 (7)
≥ ‖un+1 −u∗‖2 +2tm‖un+1 −u∗‖2 ≥ ‖un+1 −u∗‖2.

It is also known that ∑∞
j=1

(α
j

)
(−1) j+1 = 1 and

(α
j

)
(−1) j+1 > 0. Using this, the

triangle inequality and (6) for the inequality in (7) we get

‖un+1 −u∗‖ ≤
∥∥∥∥∥

n+1

∑
j=1

(
α
j

)
(−1) j+1un+1− j −u∗

∥∥∥∥∥

=

∥∥∥∥∥
n+1

∑
j=1

(
α
j

)
(−1) j+1un+1− j −

∞

∑
j=1

(
α
j

)
(−1) j+1u∗

∥∥∥∥∥ (8)

≤
n+1

∑
j=1

(
α
j

)
(−1) j+1‖un+1− j −u∗‖+

∞

∑
j=n+2

(
α
j

)
(−1) j+1‖u∗‖.

Let αn := ‖un − u∗‖, fn := ∑∞
j=n+1

(α
j

)
(−1) j+1‖u∗‖ and βn =

(α
n

)
(−1)n+1. With

these, we can rewrite (8) as
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αn+1 ≤ fn+1 +
n+1

∑
j=1

β jαn+1− j. (9)

Also using the notation h j instead of βn+1− j, (9) can be recognised as

αn+1 ≤ fn+1 +
n

∑
j=0

h jα j. (10)

Therefore, with gn := 1 we can apply Lemma 1.

αn+1 ≤ fn+1 +
n

∑
s=0

hs fs

n

∏
τ=s+1

(hτ +1). (11)

Estimate ∏n
τ=s+1(hτ +1) as

n

∏
τ=s+1

(hτ +1) =
n

∏
τ=s+1

(βn+1−τ +1)

≤
n

∏
τ=1

(βn+1−τ +1)≤
(n+∑n

j=1 β j

n

)n
≤
(

1+
1
n

)n
≤ e.

Consequently, for (11) the following holds.

αn+1 ≤ fn+1 +
n

∑
s=0

hs fs

n

∏
τ=s+1

(hτ +1)≤ fn+1 + e
n

∑
s=0

hs fs.

It is clear that if n → ∞ then fn+1 → 0. We prove that ∑n
s=0 hs fs → 0.

n

∑
s=0

hs fs = ‖u∗‖βn+1 +‖u∗‖
n

∑
s=1

βn+1−s

∞

∑
j=s+1

β j

= ‖u∗‖βn+1 +‖u∗‖
n

∑
s=1

βn+1−s

(
1−

s

∑
j=1

β j

)
(12)

= ‖u∗‖βn+1 +‖u∗‖
n

∑
s=1

βn+1−s −‖u∗‖
n

∑
s=1

n

∑
j=1

βn+1−sβ j.

Observe first, that the last term in (12) is a Cauchy product.

lim
n→∞

( n

∑
s=1

n

∑
j=1

βn+1−sβ j

)
=
( ∞

∑
j=1

β j

)2
= 1.

Therefore, the first term in (12) tends to zero, the second and the third term to ‖u∗‖,
since ∑∞

j=1 β j = 1. This means that αn+1 → 0 if n → ∞, which has been stated. ⊓⊔
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4 Discussion

In this work, we solved nonlinear time-independent equations of type A(u) = f ,
where the operator A is on a Hilbert space. We assumed that it is monotone and
Lipschitz-continuous and we proved that the algorithm is convergent.

Our numerical experiences show that if we replace the time-derivative operator
in the equation ∂tu = −[A(u)− f ] with a fractional derivative, then it stabilizes the
time integration in the numerical solutions. We have tested our method numerically
in a fluid dynamical problem previously [10].
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