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Abstract

A defensive alliance in a graph G = (V,E) is a set of vertices S satisfying the
condition that every vertex v ∈ S has at least as many neighbors (including itself) in
S than it has in V \ S. We also consider strong defensive alliances where the vertex
itself is not considered in the inequality. We consider two notions of minimality in
this paper, local and global minimality and we are interested in minimal (strong)
defensive alliances of maximum size. We also look at connected versions of these
alliances. We show that these problems are NP-hard.

1 Introduction

Alliances in graphs were introduced first in 2000 by Kristiansen et al. in [13] and further
studied by Shafique [17] and other authors. The purpose is to form coalitions of vertices
able to defend each other from attacks of other vertices (in the case of defensive alliances)
or able to collaborate to attack non-allied vertices (in the case of offensive alliances).
Alliances can be formed between nations in a security context, between companies in a
business context, or between people wishing to gather by affinity. Alliances can be viewed
as communities. Identifying communities within social or biological networks, or within
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the web graph, is a major and fashionable concern. In the web context, a community
is defined by Flake et al. [7] as a set of web pages that links to more web pages in the
community than to pages out of the community.

Various types of alliances were formally defined. In this study, we focus on defensive
alliances. A defensive alliance is a set of vertices with the property that each vertex has
at least as many neighbors in the alliance (counting itself in) as neighbors outside the
alliance. A defensive alliance is strong if each vertex has at least as many neighbors in the
alliance (not counting itself in) as outside the alliance. This last concept was defined by
Kristiansen et al. in [13] and it corresponds to a satisfactory subset defined in [2, 3]. More
general, a k-defensive alliance is a vertex subset such that each vertex has at least k more
neighbors in the alliance than outside the alliance, see [15].

The theory of alliances in graphs was developed over the last decade both from a
combinatorial and from a computational perspective. However, the focus has mostly been
on finding small alliances, although studying large alliances do not only makes a lot of
sense from the original motivation of these notions, but was actually also delineated in the
very first papers on alliances. Carvajal et al. [4] proved that deciding if a graph contains
a strong defensive alliance of size at most ` is NP-hard. This result was generalized to
k-defensive alliances, for any k ∈ {−∆, ...,∆} [18], where ∆ is the maximum degree of
the considered graph, and in particular for k = −1, the special case that corresponds to a
defensive alliance. A survey establishing the main known results on defensive alliances in
graphs can be found in [20].

Note that being a (strong) defensive alliance is not an hereditary property, that is, a set
contained in a (strong) defensive alliance is not necessarily a (strong) defensive alliance.
Shafique [17] called an alliance a locally minimal alliance if the set obtained by removing
any vertex of the alliance is not an alliance.1 We also consider another notion of minimal
alliance (called critical alliance or minimal alliance in [17]) that we call a globally minimal
alliance or shorter minimal alliance which has the property that no proper subset is an
alliance.

In this paper we are interested in (locally) minimal (strong) alliances of maximum
size. Considering such notions can be well motivated by the community detection scenario
mentioned above: clearly, big communities where every member still matters somehow
are of more interest than really small communities. Also, there is a general mathematical
interest in such type of problems, see [14].

The paper is organized as follows. Basic definitions and properties are given in Sec-
tion 2.2 We also present examples that show that the graph parameters that we study
are substantially different. Section 3 establishes complexity results of these problems. In
particular, we prove NP-hardness results for all the graph parameters that we introduce
in this paper, even on degree-bounded graphs. We finish with presenting some research
directions.

1This corresponds to the notion of 1-minimality in [9].
2We assume knowledge on some basic notions of complexity theory, but we will indicate some related

facts through this paper.
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2 Basic notions and preliminary results

Let us recall some basic notions. Let G = (V,E) be a graph. We only consider simple
undirected graphs, i.e., the edge relation E ⊆ V × V is assumed to be symmetric and
irreflexive. The components of the smallest equivalence relation containing E are known
as connected components. A graph is connected if it has exactly one connected component.
The open neighborhood of a vertex v ∈ V is the set NG(v) = {u ∈ V : uv ∈ E} (or
shortly N(v) if G is clear from the context), and the closed neighborhood of v is the set
NG[v] = N(v) ∪ {v} (or shortly N [v]). The degree of v is d(v) = |N(v)| and the average
degree of G is equal to 2|E|/|V |. A graph is called k-regular if all its vertices have degree
k. A graph is called cubic if it is 3-regular. If U ⊆ V , then G[U ] denotes the graph induced
by U , i.e., G[U ] = (U,EU×U), where EU×U is the restriction of relation E to the set U .
We also write dU(v) = |NG[U∪{v}](v)|. If I ⊆ V satisfies that G[I] is 0-regular, then I is
called an independent set. A graph is bipartite if its vertex set can be partitioned into two
independent sets. A cycle is a connected 2-regular graph. Removing exactly one edge from
a cycle yields a path. G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E;
and G′ is an induced subgraph if G′ = G[V ′]. An induced subgraph that forms a cycle is
also known as a chordless cycle. A graph that can be embedded into the plane is called a
planar graph. A graph G = (V,E) is Hamiltonian if it has a subgraph G′ = (V ′, E ′), with
V ′ = V , that is a cycle. A set M of edges of G = (V,E) is a matching if no two edges from
M share an endpoint.

A non-empty set D ⊆ V is called

• a defensive alliance if ∀v ∈ D : |N [v] ∩D| ≥ |N(v) \D|;

• a strong defensive alliance if ∀v ∈ D : |N(v) ∩D| ≥ |N(v) \D|.

A (strong) defensive alliance is connected if the subgraph induced by D is connected.
An alliance D is called a locally minimal alliance if for any v ∈ D, D \ {v} is not an

alliance. An alliance is globally minimal alliance or shorter minimal alliance if no proper
subset is an alliance. An alliance D is called a connected locally minimal alliance if for any
v ∈ D, D \ {v} is not a connected alliance. Notice that any globally minimal alliance is
also connected.

In this paper we use the following notations, introduced in [17] for global minimality.
Hence, we use

• A(G) for the cardinality of the largest minimal defensive alliance in a graph G, known
as the upper defensive alliance number ;

• Â(G) for the cardinality of the largest minimal strong defensive alliance in a graph
G, known as the upper strong defensive alliance number ;

• AL(G) for the cardinality of the largest locally minimal defensive alliance in a graph
G, called local upper defensive alliance number ;
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• ÂL(G) for the cardinality of the largest locally minimal strong defensive alliance in
a graph G, called local upper strong defensive alliance number ;

• AcL(G) for the cardinality of the largest connected locally minimal defensive alliance
in a graph G, called connected local upper defensive alliance number and

• ÂcL(G) for the cardinality of the largest connected locally minimal strong defensive
alliance in a graph G, called connected local upper strong defensive alliance number.

Since any minimal (strong) defensive alliance is connected and it is a (strong) locally
minimal defensive alliance we have A(G) ≤ AL(G), A(G) ≤ AcL(G) and Â(G) ≤ ÂL(G),
Â(G) ≤ ÂcL(G). However, AcL(G) (resp. ÂcL(G)) could be smaller or larger than AL(G)
(resp. ÂL(G)).

Some upper bounds for the upper defensive alliance numbers are also contained in [13].

Example 1 We present a family of graphs where AcL (and ÂcL, respectively) is arbitrarily
smaller than AL (and ÂL, respectively).

In a cycle Cn = {v1, . . . , vn} of size n = 3t, A(Cn) = Â(Cn) = AcL(Cn) = ÂcL(Cn) = 2
(namely, take any two adjacent vertices, for example {v1, v2}), AL(Cn) = ÂL(Cn) = 2n/3
(take all vertices except vi with i = 1 mod 3, that is, an induced maximum matching). In
order to see that Â(Cn) = 2, observe that Cn is not a connected locally minimal defensive
alliance, and a path is a connected locally minimal defensive alliance if and only if it is an
edge, otherwise an end-vertex can be removed.

Example 2 We exhibit a family of graphs where ÂcL is arbitrarily larger than ÂL.
Consider the graph Gn on n vertices from Figure 1 where all vertices are of degree 2

except the 10 vertices from the gadgets at the left and at the right, that are of degree 3. We
have Â(Gn) = 4 (namely, consider a chordless cycle of size 4, for example {a2, a3, a5, a4}),
ÂcL(Gn) = n − 2 (take all vertices except a1 and its symmetric counterpart in the left
gadget), ÂL(Gn) ≈ 2n/3 (this is seen by considering a cycle of size 3, for example a1, a2, a3,
followed on the path by pairs of consecutive vertices {a6, a7}, {a9, a10}, . . . , skipping every
third vertex).

Figure 1: A graph G with Â(Gn) < ÂL(Gn) < ÂcL(Gn)

Example 3 We show a family of graphs where AcL is arbitrarily larger than AL.
Consider the graph G′n on n vertices from Figure 2 where all vertices are of degree 2

except the 12 vertices from the gadgets at the left and at the right, that are of degree 3
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and 4. We have A(G′n) = 4 (verified, e.g., by the 4-cycle a2, a4, a6, a5), AcL(G′n) = n − 4
(take all vertices except a1, a3 and the symmetric ones in the left gadget), AL(G′n) ≈ 2n/3
(also here a cycle of size 3, for example a1, a2, a3, can be supplemented on the path by pairs
of consecutive vertices a6, a7, . . .).

Figure 2: A graph G′n with A(G′n) < AL(G′n) < AcL(G′n)

Theorem 4 If G is a 3-regular graph then ÂL(G) > n/2, and if G is 3-regular and con-
nected then also ÂcL(G) > n/2. Moreover, a locally minimal strong defensive alliance
larger than n/2 can be found in polynomial time for both cases.

Proof. We note first that it suffices to prove the theorem for connected graphs. Indeed,
if G is disconnected, with components G1, . . . , Gs, then clearly ÂL(G) =

∑s
i=1 ÂL(Gi) >∑s

i=1 |V (Gi)|/2 = n/2 follows once the connected case is settled.
Hence assume that G is connected. We describe a polynomial-time procedure that

generates a locally minimal strong defensive alliance DL and a connected locally minimal
strong defensive alliance DcL, such that DL ⊆ DcL and |DL| > n/2. Initially let D := V .
Of course, G itself is a connected strong defensive alliance. In the first phase of the
algorithm, in each step, search for a vertex v such that D \ {v} is a strong defensive
alliance, moreover the induced subgraph G[D \ {v}] is connected. If no such v exists, then
the first phase terminates and we set DcL := D, otherwise we continue with D := D \ {v}.
The second phase applies essentially the same steps, except that now v can also be a cut
vertex of G[D], i.e., from then on the connectivity constraint is dropped. The second phase
terminates when D \ {v} fails to be a strong defensive alliance, for every v ∈ D. We then
define DL := D (where DL = DcL may occur).

It is clear by definition that DL is a locally minimal strong defensive alliance and DcL

is a connected locally minimal strong defensive alliance. Since G is 3-regular, after each
step the induced subgraph G[D] has minimum degree 2, therefore when we move a vertex
v from D to V \ D, this v becomes either an isolated vertex or a pendant vertex in the
re-defined G[V \D]. Consequently, G[V \DL] is acyclic.

Consider any tree component T of G[V \DL]. Say, T has t vertices. The degree sum in
G[T ] is 2t− 2, hence 3-regularity implies that there are exactly t+ 2 edges from T to DL,
i.e., more edges than |V (T )|. Since all degrees inside G[DL] are at least 2, the edges from
V \ DL to DL have mutually distinct endpoints in DL. This implies |DL| > |V | − |DL|,
thus

ÂcL(G) ≥ |DcL| ≥ |DL| > n/2,
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and of course |DL| is a lower bound on ÂL(G). It is also clear that the above steps can be
performed efficiently. �

Consider in the following a simple computational aspect. It is clear that (connected)
local minimality of a (strong) defensive alliance can be detected in polynomial time. This
is less clear for the (more usual) inclusion-wise notion of minimality, that is, for global
minimality. In fact, by its definition, this notion of global minimality seems to require going
through all subsets of the alliance in question. However, we can establish the following
result.

Proposition 5 There is a polynomial-time algorithm to determine whether a (strong) de-
fensive alliance D is minimal or not.

Proof. We describe first an algorithm to determine if a vertex set D is a minimal defensive
alliance. Consider some vertex v ∈ D. If D \ {v} is a defensive alliance, then we know
that D is not minimal and we can stop. If D \ {v} is not a defensive alliance, then there
must be a reason for this. Namely, while |NG[u] ∩ D| ≥ |NG(u) \ D| for all u ∈ D, this
condition is violated for D′ = D \ {v}. Hence, there is some vertex u ∈ D′ such that
|NG[u] ∩ D′| < |NG(u) \ D′|. Clearly, u ∈ NG(v). Hence, in order to find a subset of D′

that is a defensive alliance, any x ∈ D′ that satisfies |NG[x] ∩D′| < |NG(x) \D′| must be
removed from D′. The set D′′ obtained this way might be a defensive alliance (in which
case we can terminate the procedure), or it is empty (which causes us to conclude that the
v ∈ D that we originally considered cannot be removed in order to produce a subset of D
that is a defensive alliance), or we find (recursively) more vertices that should be removed.
Doing this kind of testing for all v ∈ D allows us to conclude (in polynomial time) whether
or not D is minimal.

The algorithm for determining if a set D is a minimal strong defensive alliance is very
similar, we only have to change the condition that each vertex must satisfy. �

The preceding result has the following (trivial) consequences; recall that theO∗-notation
neglects polynomial factors.

Corollary 6 There are algorithms that compute A(G), Â(G), AL(G), ÂL(G), ÂcL(G) and
AcL(G) for a given graph of order n in time O∗(2n).

For the following results, it is important to know that Hamiltonian Cycle (i.e.,
given a graph G, is G Hamiltonian?) is NP-hard. Related decision problems are Longest
Cycle (i.e., given a graph G and an integer k, does G possess a cycle on at least k vertices
as a subgraph?) and Longest Path (i.e., given a graph G and an integer k, does G
possess a path on k vertices as a subgraph?); slightly abusing terminology, we name the
corresponding maximization problems the same. Another important NP-hard problem is
Minimum Maximal Matching, i.e., given a graph G and an integer k, does G possess
an inclusion-wise maximal matching with at most k edges?
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3 Complexity results

In this section, we show that computing all these six numbers A(G), AL(G), AcL(G) and
Â(G), ÂL(G), ÂcL(G) is NP-hard. Together with Proposition 5 this means that the six
decision problems associated to these graph parameters are NP-complete. We also consider
these parameters under the perspective of approximability and concerning the impossibility
for certain exact algorithms, assuming the Exponential Time Hypothesis (or ETH for short)
to hold. ETH basically states that there are no sub-exponential algorithms for solving 3-
SAT, one of the core problems of NP-completeness theory. Recall that if ETH is true, then
P is not equal to NP, but if ETH fails, then it is still unclear if P is equal to NP or not.
For more details, we refer to [12].

In order to get the NP-hardness in the globally minimal case we use the following
remarks. (i) In a cubic graph, finding a globally minimal strong defensive alliance of
maximum size is equivalent to finding a longest chordless cycle (or a maximum induced
cycle). (ii) In a graph with degrees 3 or 4, a globally minimal defensive alliance of maximum
size corresponds to a longest chordless path between two vertices of degree 3 where vertices
inside the path have degree 4 or a longest chordless cycle among vertices of degree 4.

Theorem 7 Deciding if a graph contains a globally minimal strong defensive alliance of
size at least k is NP-complete, even for cubic graphs. Moreover, deciding if a graph contains
a globally minimal defensive alliance of size at least k is NP-complete, even for graphs of
degree 3 or 4.

Proof. Both decision problems belong to NP, due to Proposition 5.
In order to obtain the NP-hardness result for the strong version, we establish a poly-

nomial reduction from Longest Cycle on cubic graphs proved NP-hard in [1]. Given
a graph G = (V,E), |V | = n, V = {v1, . . . , vn}, |E| = m = 3n/2 and an integer k we
construct an instance of our problem G′ = (V ′, E ′) as follows (see Figure 3): each edge vivj
of E is replaced by the edges viaij, aijbij, aijdij, bijcij, bijdij, cijdij, cijvj where aij, bij, cij, dij
are new vertices. Thus G′ contains n+ 4m = 7n vertices and 7m = 21n/2 edges. We show
that G contains a cycle of size at least k if and only if G′ contains an induced cycle of size
at least 4k.

Figure 3: The replacement gadget of an edge vivj
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Let C be a cycle of size at least k in G. Then the cycle C ′ in G′ obtained by replacing
any edge vivj of C by edges viaij, aijbij, bijcij, cijvj is a chordless cycle of size 4|C| that is
at least 4k.

Consider now a chordless cycle C ′ in G′ of size at least 4k. Then if edges viaij and
cijvj are on C ′ then C ′ contains either aijbij and bijcij or aijdij and cijdij since C ′ does not
contain chords. The cycle C obtained from C ′ by considering edges vivj when viaij and
cijvj are on C ′ is of size at least k.

In order to obtain the NP-hardness result for the globally minimal defensive alliance,
we establish a polynomial reduction from Longest Path on cubic graphs proved NP-hard
in [1]. Given a graph G = (V,E), |V | = n, V = {v1, . . . , vn}, |E| = m = 3n/2 and an
integer k we construct an instance of our problem G′′ = (V ′′, E ′′) using the gadget H from
Figure 4. The gadget H corresponds to the complete graph on 5 vertices K5 minus one
edge, that is, it contains vertices s, f, g, h, t and edges sf , sg, sh, fg, gh, fh, tf , tg, th,
i.e., edge st is missing. Graph G′′ is obtained from G as follows: Each edge vivj of E is
replaced by a copy of H denoted Hij, with vertices fij, gij, hij, sij and tij, and we add
edges visij, tijvj. At each vertex vj we attached a copy of H denoted Hj, with vertices fj,
gj, hj, sj and tj, and we add the edge tjvj. Thus G′′ has 6n + 5m = 27n/2 vertices and
10n + 11m = 53n/2 edges. Graph G′′ has only vertices of degree 3 and 4, and the only
vertices of degree 3 are vertices sj, j = 1, . . . , n. We show that G contains a path of size at
least k if and only if G′′ contains an induced path of size at least 4k+ 6 between 2 vertices
of degree 3 and containing only vertices of degree 4.

Figure 4: The gadget H

Let P be a path of size at least k in G between two vertices v` and vp. Then the path P ′′

in G′′ s`f`, f`t`, t`v`, followed by replacing any edge vivj of P by edges visij, sijfij, fijtij, tijvj
and finally vptp, tpfp, fpsp is a chordless path between two vertices of degree 3 and using
only vertices of degree 4 inside and of size at least 4k + 6.

Consider now a chordless path P ′′ in G′′ of size at least 4k + 6 between 2 vertices of
degree 3, s` and sp, and containing only vertices of degree 4. Then P ′′ induces a path in
G of size at least k between v` and vp. �

Theorem 8 For any ε > 0, finding a globally minimal strong defensive alliance of maxi-
mum size is not 2O(log1−ε n)-approximable on graphs with n vertices, unless NP ⊆ DTIME(2O(log1/ε n)),
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even for cubic graphs. Moreover, for any ε > 0, finding a globally minimal defensive al-
liance of maximum size is not 2O(log1−ε n)-approximable on graphs with n vertices, unless
NP ⊆ DTIME(2O(log1/ε n)), even for graphs of degree 3 or 4.

Proof. For any ε > 0, Longest Path and Longest Cycle on cubic graphs are not
2O(log1−ε n)-approximable, unless NP ⊆ DTIME(2O(log1/ε n)), as shown in [1]. The reductions
from the previous proof of Theorem 7 are E-reductions (see [10]) and hence preserve non-
approximability. �

It was mentioned in [12] that Hamiltonian Cycle (and hence Longest Cycle)
admits no O∗(2o(n)) algorithm under ETH because the standard reduction from 3-SAT is
strong. The reduction for Hamiltonian Cycle on cubic (planar) graphs presented in [8]
(from 3-SAT) yields a graph whose number of vertices is in a linear relation to the number
of variables and clauses of the given 3-SAT instance, so that also such a restricted variant
of Hamiltonian Cycle (and hence Longest Cycle) admits no O∗(2o(n)) algorithm
under ETH. Re-using our previous construction, we can hence conclude:

Corollary 9 Assuming ETH, there is no O∗(2o(|V |+|E|))-algorithm that decides, given a cu-
bic graph G = (V,E) and some integer k, if G contains a globally minimal strong defensive
alliance of size at least k. Moreover, deciding if a graph contains a globally minimal defen-
sive alliance of size at least k is not possible in time O∗(2o(|V |+|E|)) either, when restricted
to graphs with all vertex degrees 3 or 4, assuming that ETH holds true.

In order to prove NP-hardness for the locally minimal case, we apply a reduction from
Minimum Maximal Matching. This problem is well-known to be NP-complete on
general graphs. It was proved to be NP-hard even in several special classes of graphs,
including planar cubic graphs by Horton and Kilakos [11], and k-regular bipartite graphs
for any fixed k ≥ 3 by Demange and Ekim [6]. We have put all these NP-hardness results
into one theorem, as the proofs are similar and somehow connected to each other.

Theorem 10 The following problems are NP-complete:

(i) deciding if a graph contains a locally minimal strong defensive alliance of size at
least k, even for bipartite graphs with average degree less than 3.6;

(ii) deciding if a graph contains a locally minimal defensive alliance of size at least k,
even for bipartite graphs with average degree less than 5.6;

(iii) deciding if a graph contains a connected locally minimal strong defensive alliance of
size at least k, even for bipartite graphs with average degree less than 2 + ε, for any
ε > 0;

(iv) deciding if a graph contains a connected locally minimal defensive alliance of size at
least k, even for bipartite graphs with average degree less than 2 + ε, for any ε > 0.
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Proof. All these decision problems are trivially in NP. For NP-hardness we first describe
the reductions and proofs for the parts (i) and (ii), which will provide the basis for the
other two parts. The next two arguments work for all n ≥ 4, while the other two will work
for n ≥ n0 for some n0 ≤ 10. Regarding complexity, the small inputs are irrelevant.

(i) For the strong version, we establish a polynomial reduction from Minimum Maxi-
mal Matching in 3-regular graphs. Given a 3-regular graph G = (V,E), |V | = n,
|E| = m = 3n/2, and an integer k, we construct an instance of our alliance problem
by considering the incidence graph of G. It has vertex set V ∪E, and there is an edge
between v ∈ V and e ∈ E if v is an endpoint of e. We obtain the graph G′ = (V ′, E ′)
by inserting a new vertex x that is adjacent to every e ∈ E. Since the number of
vertices of G′ is 5n/2 + 1 and the number of edges is 9n/2, the average degree of G′

is less than 18/5. We show that G contains a maximal matching of size at most k
if and only if G′ contains a locally minimal strong defensive alliance of size at least
n+m− k.

If M is a maximal matching in G of size k then D = V ∪ (E \M) is a locally minimal
strong defensive alliance of G′. Indeed, every vertex in V has degree at least 2 in
D and every vertex in E has degree 2 in D. Since M is maximal, it is not possible
to remove a vertex from D ∩ E and keep a strong defensive alliance. Also, it is not
possible to remove a vertex from D ∩ V since otherwise some vertices from D ∩ E
will have degree less than 2 inside D.

Consider now a locally minimal strong defensive alliance D in G′. Any vertex v ∈ D
satisfies the following conditions:

• dD(v) ≥ m/2 if v = x, and dD(v) ≥ 2 if v ∈ V ∪ E.

Suppose that D has size at least n + m − k. We show in the following that there
exists a locally minimal strong defensive alliance D′ in G′ such that |D′| ≥ |D| and
x /∈ D′. If x /∈ D then D′ = D. If x ∈ D then the set D′ can be obtained from D in
several steps: remove x; add all vertices u ∈ V \D; add a minimal set A of vertices
e ∈ E \D in order that the previously added vertices from V \ (V ∩D) satisfy the
condition of strong defensive alliance; remove a set B of vertices from E ∩D in order
that the new set is a locally minimal strong defensive alliance.

We show now that |D′| ≥ |D|. Indeed, if x ∈ D, since D is locally minimal, there is
at least one vertex u ∈ V \ D and an edge e ∈ E ∩ D such that e is adjacent to u
and x in G′, so x is compensated with the vertices from (V ∩D′) \D. Further, every
vertex from A has either one or two neighbors in V \ (V ∩D), and since every such
vertex is of degree 2 in G′[V ∪E], we have that every vertex from A has degree 0 or 1
in V ∩D, that is, |N(A)∩ (V ∩D)| ≤ |A|. Finally, for each vertex in N(A)∩ (V ∩D)
we removed at most one vertex in E ∩D since each such vertex has to have degree
at least 2 in D′. Thus the number of vertices removed from E ∩D is at most |A|.
From D′ we define M as the set of edges of G that are in E and not in D′. Since
x /∈ D′, M is a matching; and M is maximal because D′ is minimal.
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(ii) For locally minimal defensive alliances, we consider a similar reduction except that
instead of one vertex x we add two vertices x1, x2, joined to every e ∈ E, and
moreover, we add one vertex y, joined to every v ∈ V . Denote by G′′ the obtained
bipartite graph. Since the number of vertices of G′′ is 5n/2 + 3 and the number of
edges is 7n, the average degree of G′′ is less than 28/5. We show that G contains
a maximal matching of size at most k if and only if G′′ contains a locally minimal
defensive alliance of size at least n + m − k. We note that k ≤ n/2 and m = 3n/2,
therefore we have n+m− k ≥ 2n.

In one direction, it can be justified as in the previous proof that if M is a maximal
matching in G, say of size k, then D = V ∪ (E \M) is a locally minimal defensive
alliance of size n+m− k in G′′.

In the other direction, consider now a locally minimal defensive alliance D in G′′.
Each vertex v ∈ D satisfies the following conditions:

• dD(v) ≥ m−1
2

if v = x1 or v = x2, dD(v) ≥ 2 if v ∈ V ∪ E, and dD(v) ≥ n−1
2

if v = y. In particular, if y ∈ D and v ∈ V ∩ D, then the requirement is
dV ∪E(v) ≥ 1.

Suppose that |D| = n+m− k. We show in the following that there exists a set D′′

with |D′′| ≥ |D| such that D′′ is a locally minimal defensive alliance and x1, x2, y /∈
D′′. This is very easy if |D| = 2n, because every matching in G has at most n/2
edges, hence any maximal one provides a suitable solution and can be determined in
polynomial time. For this reason we may and will assume without loss of generality
that |D| > 2n. The case of y /∈ D falls into two simple subcases:

– If y /∈ D and at most one of x1, x2 is in D then we define D′′ as described above
for the strong case, and the proof is done by the argument given in (i).

– If y /∈ D and x1, x2 ∈ D, then V ∩D = ∅ since if there is a v ∈ V ∩D then v
can be removed and the remaining set is also a defensive alliance. Consequently,
|D| =

⌊
m
2

⌋
+ 2 =

⌊
3
4
n
⌋

+ 2 < 2n, so that this case is excluded.

It remains to study the case y ∈ D. We are going to prove that this assumption
implies |D| ≤ 2n, thus it cannot occur under the condition |D| > 2n.

Let us introduce the notations V ′ = D ∩ V , E ′ = D ∩ E, n′ = |V ′|, and m′ = |E ′|.
Also, let d′(x) denote the degree of an x ∈ D in the subgraph induced by D in G′′.
The minimality of D means that each x ∈ D has at least one neighbor x′ ∈ D such
that d′(x′) =

⌊
1
2
dG′′(x

′)
⌋
.

Next, we prove that m′ ≤
⌊
3
4
n
⌋
. This is immediate (in fact with equality) if each

neighbor v of some e ∈ E ′ has d′(v) ≥ 3, because only x1 or x2 (or both) can play the
role of a neighbor x′ of v whose D-degree is

⌊
1
2
dG′′(x

′)
⌋
. If m′ is larger, then for each

e ∈ E ′ we can specify a ve ∈ V ′ whose unique neighbor in E ′ is e. Let V ′′ denote the
set of those ve; we have |V ′′| = m′. Each e ∈ E ′ has its other neighbor in V \ V ′′,
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hence there are exactly m′ edges joining E ′ with V \ V ′′. On the other hand, there
exist at most 3(n − m′) such edges, since G is 3-regular. This implies the claimed
inequality m′ ≤

⌊
3
4
n
⌋
.

Now we are in a position to prove that y ∈ D implies |D| ≤ 2n. Note that n ≥ 4
and n is even. If n′ = 1

2
n (the smallest possible case, as dG′′(y) = n) then

|D| ≤ n′ +m′ + 3 ≤ 1
2
n+

⌊
3
4
n
⌋

+ 3 ≤ 2n

is valid for all even integers n ≥ 4. Also, if n′ is in the range 1
2
n+ 1 ≤ n′ ≤ n− 1, we

cannot have both x1 ∈ D and x2 ∈ D because otherwise D\{v} would be a defensive
alliance for any v ∈ V ′, contradicting the minimality of D. Thus, in this case,

|D| ≤ n′ +m′ + 2 ≤ n− 1 +
⌊
3
4
n
⌋

+ 2 ≤ 2n

as
⌊
3
4
n
⌋
≤ n − 1 holds for all even n ≥ 4. Finally, if n′ = n, then every e ∈ E ′ has

both of its neighbors v in V ′, therefore the presence of x1 or x2 in D would imply
the contradiction that D \ {v} is a defensive alliance for any v. This implies

|D| ≤ n′ +m′ + 1 ≤ n+
⌊
3
4
n
⌋

+ 1 ≤ 2n

which is the same conclusion as the one for n′ < n.

This contradiction completes the proof of part (ii).

Now we turn to the parts (iii) and (iv), assuming that n is sufficiently large. We shall
make use of the graphs G′ and G′′ constructed in (i) and (ii), respectively. The substantial
difference between (i)–(ii) and (iii)–(iv) is that the cut vertices do not have to satisfy
any degree constraints in a locally minimal alliance. For this reason we first describe both
constructions and prove that if some cut vertices of an alliance D arise from the vertices
of G′ or G′′, then D cannot be too large. Afterwards we complete the proofs for (iii) and
(iv) separately. Note that here we do not analyze small graphs anymore, we assume that
n is sufficiently large.

From any 3-regular graph G = (V,E), the graphs G′c for (iii) and G′′c for (iv) are
constructed as follows. Both constructions share the idea to take two slightly modified
copies of a previously constructed graph and join them by a path of sufficient length in
order to arrive at the desired average degree upper bound. We refrain from giving an
illustration, as similar ideas were used in the introductory examples.

• Supplement G′ with two new vertices y1, y2 joined completely to the set V , i.e.,
G′[V ∪ {y1, y2}] is a complete bipartite graph K2,|V |; join a new vertex z to both y1
and y2; take two vertex-disjoint copies of this graph, and connect them with a path P
whose endpoints are the copies of z and whose length is Cn, where C is a sufficiently
large constant. This yields an instance G′c for the connected strong defensive alliance
problem. Since the average degree of G′ is less than 18/5, there is a suitable choice
of C to ensure an average degree of at most 2 + ε in G′c.

12



• The construction of the graph G′′c is fairly similar, now starting from G′′, in which
we rename y as y1. Supplement G′′ with two new vertices y2, y3 joined completely to
the set V ; join a new vertex z to all of y1, y2, y3; take two vertex-disjoint copies of
this graph, and connect them with a path P whose endpoints are the copies of z and
whose length is Cn, where C is a sufficiently large constant. This yields an instance
G′′c for the connected defensive alliance problem. Here again, there is a suitable choice
of C to ensure an average degree of at most 2 + ε in G′′c .

To unify notation, we rename x of G′ as x1. Throughout, D will denote a connected
defensive alliance or a connected strong defensive alliance, locally minimal in either case.
From above, we keep the notation n′ = |V ∩D| and m′ = |E∩D|, where V and E are meant
as the corresponding sets in a copy of G′ or G′′ in the construction. The next part of the
discussion assumes that y1 ∈ D at an end of P — more precisely that the corresponding
copy of y1 belongs to D; this will later turn out to be necessary in order to have a large D
— and analyzes the possibilities of cut vertices in the subgraph induced by D in G′c or G′′c .

Fact X. The vertex x1 cannot be a cut vertex in D.
Indeed, otherwise there would be two edges e, e′ ∈ E which are in distinct components

of D\{x1}. Only one of e and e′ — say, e — can be adjacent to V ∩D, because V ⊂ N(y1).
By the alliance degree condition this requires the two neighbors x1, x2 for e′ to lie inside of
D, but then x1 cannot be a cut vertex.

Fact E. If some e ∈ E is a cut vertex in D and n is sufficiently large, then |D| has fewer
than 2n vertices in G′ ∪ {y1, y2} or in G′′ ∪ {y1, y2, y3}.

To prove this, we first note that e cannot separate vertices of V ∩D from each other,
because V ⊂ N(y1). Hence e separates x1 or x2 (or both) from V ∩D. In particular, we
may assume that x1 ∈ D, and this implies m′ ≥ m−1

2
> 1. Thus there exists e′ ∈ E ∩ D

with e′ 6= e and (N(e′)∩V )∩D = ∅. Such an e′ needs two neighbors in D, which can now
only be x1 and x2. This is impossible in G′c. In G′′c assume that x1, x2 ∈ D. Since e′ has
no other neighbors, and D \ {e′} is not an alliance, we obtain that e′ is locally critical for
x1, therefore E ∩D contains exactly dm−3

2
e vertices different from e. From them there are

at least m− 3 edges to V , incident with at least m−3
3

= n
2
− 1 vertices of V , none of which

can belong to D. Consequently n′ + m′ < 2n − 5 if n is sufficiently large, thus D cannot
have 2n vertices or more in this part of the graph even if we count all of x1, x2, y1, y2, y3.

Fact V. If some v ∈ V is a cut vertex in D and n is sufficiently large, then |D| has fewer
than 2n vertices in G′ ∪ {y1, y2} or in G′′ ∪ {y1, y2, y3}.

Choose an e ∈ E ∩D which becomes separated from y1 in the subgraph D \ {v}. We
may assume that e is not a cut vertex, otherwise Fact E applies and the proof is done. The
unique neighbor of this e in V ∩D is v, therefore e needs a further neighbor in D; hence
x1 ∈ D (or x2 ∈ D). Moreover, v has a further neighbor e′ ∈ E ∩ D because e is not a
cut vertex. Hence v has at least three neighbors in D, but D \ {e} is not an alliance while
still connected, thus m′ = dm−1

2
e or m′ = dm

2
e. Among those m′ vertices at least m′ − 3

(namely the non-neighbors of v) have no neighbors in V ∩ D. From each of them, two
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edges go to V , hence n− n′ = |V \D| ≥ 2m′/3− c ≈ n/2− c for a small constant c. This
leads to the same conclusion as above, namely n′ +m′ < 2n− 5 if n is sufficiently large.

The relevance of the upper bound in Facts E and V is that — as we shall see soon —
such a small D cannot be an optimal solution to the alliance problems considered. Hence,
in the rest of the proof we restrict our attention to alliances in which no vertex originating
from G′ or G′′ is a cut-vertex, except for y1.

(iii) For connected strong defensive alliances we consider the graph G′c.

A strong defensive alliance D puts the following set of conditions for a vertex v ∈ D;
for simplicity we omit the word “copy” from phrasing, e.g., ‘v = x’ will mean that v
is one of the two copies of x in G′c.

• dD(v) ≥ 1
2
m if v = x, dD(v) ≥ 2 if v ∈ E, dD(v) ≥ 3 if v ∈ V , dD(v) ≥ 1

2
(n+ 1)

if v = yj, dD(v) ≥ 2 if v = z, and dD(v) ≥ 1 if v is an internal vertex of P .

We claim that a largest connected locally minimal strong defensive alliance of G′c can
be obtained by taking a largest locally minimal strong defensive alliance in each of
the two copies of G′, plus exactly one yj (j = 1 or j = 2) in each copy, plus the path P
connecting the two copies. (This means, in particular, that the two copies of V can
entirely be contained in the alliance in question.) It is clear that such a subgraph
satisfies the degree conditions of a strong alliance, and it is minimal because the
vertices in P and the yj are critical for connectivity, and the vertices in the copies of
V and E cannot be deleted due to the degree constraints for E and V , respectively.

Consider any connected locally minimal strong defensive alliance D in G′c. If no yj is
involved in D at some end of P , then its neighbor z cannot belong to D, and then the
internal vertices of P but the one preceding the other copy of z would be removable
(unless D is an internal edge of P ), hence at most 4 vertices of D are outside a copy
of G′. Thus, in this case we have |D| ≤ 5n/2 + 5, while the alliance constructed
above has at least 4n+ |P | vertices.

Hence, we may assume without loss of generality that D contains one or two of the
yj in each copy. Consider now the situation in any one copy. If D contains precisely
one yj, then this yj is critical for connectivity, and its presence reduces the degree
constraints within the corresponding copy of G′ as follows:

• dD(v) ≥ m/2 if v = x, and dD(v) ≥ 2 if v ∈ V ∪ E.

This is exactly the set of conditions listed in (i), consequently in this case the maxi-
mum of |D| is attained by precisely the construction described above.

Suppose now that D contains both y1 and y2 in the copy considered. Then the degree
constraints within the corresponding copy of G′ are modified as follows:

• dD(v) ≥ m/2 if v = x, dD(v) ≥ 2 if v ∈ E, and dD(v) ≥ 1 if v ∈ V .
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This situation has also been analyzed already, namely in part (ii), within the subcase
y ∈ D (this corresponds to the sub-subcase x1 ∈ D, x2 /∈ D), where we have seen
that it cannot lead to any alliance larger than the one constructed above.

(iv) For connected (not strong) defensive alliances we consider the graph G′′c .

A defensive alliance D now puts the following set of conditions for a vertex v ∈ D;
as in (iii), also here we omit the word “copy” from phrasing.

• dD(v) ≥ m−1
2

if v = xi, dD(v) ≥ 2 if v ∈ E, dD(v) ≥ 3 if v ∈ V , dD(v) ≥ n/2 if
v = yj, and dD(v) ≥ 1 if v is on P (also including its end z).

Now a largest connected locally minimal defensive alliance of G′′c can be obtained by
taking a largest locally minimal defensive alliance in each of the two copies of G′,
plus exactly one yj (j ∈ {1, 2, 3}) in each copy, plus the path P connecting the two
copies. It can be seen as before that this set satisfies the requirements.

Consider any connected locally minimal defensive alliance D in G′′c . We see that D
contains at least one yj from each copy of G′′, for otherwise |D| is far from being
largest. Hence, we may assume without loss of generality that D contains one or
two or three of the yj in each copy. Consider now the situation in any one copy. If
D contains precisely one yj, then this yj is critical for connectivity, and its presence
reduces the degree constraints inside the corresponding copy of G′ as follows:

• dD(v) ≥ m−1
2

if v = xi, and dD(v) ≥ 2 if v ∈ V ∪ E.

Compared to the subcase y /∈ D of (ii) the only difference is that yj now requires
n/2 − 1 vertices, one fewer than previously. However, this relaxed condition has no
essential effect on the argument given earlier. Indeed, with reference to the relevant
paragraph of the proof of (ii), if D contains at most one of x1 and x2 then the proof
goes back to a subcase of part (i), where no y occurs (hence the actual degree of yj
is irrelevant); and if both x1 and x2 are in D then the difference is that instead of
V ∩D = ∅ we now must have |V ∩D| = n/2− 1, hence we obtain the upper bound
|D| ≤ 3n/4 + n/2 + c with a small constant c, which is still smaller than 2n if n is
sufficiently large.

IfD contains two of the vertices y1, y2, y3 in the copy ofG′′, then the degree constraints
inside the corresponding copy of G′ are modified to

• dD(v) ≥ m−1
2

if v = xi, dD(v) ≥ 2 if v ∈ E, and dD(v) ≥ 1 if v ∈ V .

This is essentially the case y ∈ D of (ii). We note that the yj cannot be critical
for connectivity anymore, therefore the degree requirements concerning a critical
neighbor are valid also here for the vertices. The corresponding computation in (ii)
yields an upper bound around 7n/4.

Finally, if all of y1, y2, y3 are in D, then we have the degree requirements
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• dD(v) ≥ m−1
2

if v = xi, dD(v) ≥ 2 if v ∈ E, and no condition if v ∈ V .

Moreover, y1 ∈ D requires n′ ≥ n/2. By assumption, the set D \ {y1} is not an
alliance, therefore V ∩D contains a vertex v whose only neighbors in D are y1, y2, y3.
Since D \ {v} is not an alliance either, we see that n′ = n/2. Further, the removal
of any e ∈ E ∩D violates the alliance property, which can happen only to x1 or x2,
thus m′ = dm−1

2
e. In this way we again obtain an upper bound around 7n/4.

This completes the proof of the theorem. �

Proposition 11 Unless ETH fails, there is no algorithm that determines if there is a
locally minimal (strong) defensive alliance of size at least k in a given graph G of order n
in time O(2o(n)), even on bipartite graphs with the restrictions from the preceding theorem.
A similar statement holds for the connected locally minimal (strong) defensive alliance
problems.

Proof. It has been argued in [16] that no O(2o(n)) algorithm exists for solving Vertex
Cover on cubic graphs unless ETH fails. Consider now the reduction of Theorem 1
in [19]. This shows that no O(2o(n)) algorithm exists for solving Edge Dominating Set
on subcubic bipartite graphs unless ETH fails, which is equivalent to the non-existence of
an O(2o(n)) algorithm for Minimum Maximal Matching in subcubic bipartite graphs
of order n. Zito has shown in [21, Lemma 29] how to replace vertices of degree one by
four-vertex-graphs, so that an ETH-based lower bound also holds for Minimum Maximal
Matching in bipartite graphs with vertex degrees two or three. The construction of
Theorem 7 in [6] shows that there is no O(2o(n)) algorithm for solving Minimum Maximal
Matching on cubic bipartite graphs, unless ETH fails. The reasoning of the preceding
theorem shows the claim. For the connected locally minimal (strong) defensive alliance
problems, observe that the resulting graphs have a linear number of vertices (compared
to the original graph as an instance of Minimum Maximal Matching); notice that the
linearity factor depends on the chosen ε. �

The preceding proposition shows that the algorithms mentioned in Corollary 6 for
determining AL(G) and ÂL(G), as well as the connected variants, are essentially optimal.

Concerning the inapproximability of our problem, we remark that the reductions in
Theorem 10 are L-reductions (see [10]). Using the result from [5] that Minimum Maximal
Matching in cubic graphs is NP-hard to approximate within a factor 1 + 1

487
, we can

conclude that the optimization versions of all the problems studied in Theorem 10 have
no polynomial-time approximation scheme (that is, they do not admit a polynomial-time
(1 + ε)-approximation algorithm for very small ε > 0) if P 6= NP.

4 Conclusions

In this paper, we commenced a complexity-theoretic study of several variations of maximum
minimal defensive alliances. Many graph-theoretic questions are still to be explored for
the new parameters that we introduced.
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Also, we think that the connectivity requirement that we introduced for the locally
minimal type are of more general interest for any type of alliance problem, because (in
particular for the strategic motivations for these graph parameters) it seems reasonable to
look for connected alliances, as this also models the aspect of mutual (quick) help.

Finally, notice that the different notions of minimality can also be studied in connection
with other types of alliances with the same motivation. This is also left for future work.
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