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Abstract

A selfish bin packing game is a variant of the classical bin packing

problem in a game theoretic setting. In our model the items have not

only a size but also a nonnegative weight. Each item plays the role of a

selfish agent, and any agent/item pays some cost for being in a bin. The

cost of a bin is 1, and this cost is shared among the items being in the bin,

proportionally to their weight. A packing of the items into bins is called

a Nash equilibrium if no item can decrease its cost by moving to another

bin. In this paper we present two different settings for the weights which

provide better values for the price of anarchy (PoA) than previous settings

investigated so far. The improved PoA is not bigger than 16/11 ≈ 1.4545.

Moreover, we give a general lower bound for the price of anarchy which

holds for all possible choices of the weights.

Keywords: Selfish bin packing, price of anarchy, algorithmic game theory

1 Introduction

The bin packing problem [11] is one of the classical combinatorial optimization

problems. We are given a set I = {1, 2, ..., n} of n items, the size of item i is

si ∈ (0, 1]. The goal is to pack the items into a minimum number of bins, so

that any bin can contain only items with total size at most 1. For a survey on

approximation algorithms for bin packing problems see [3].
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In a selfish bin packing game (in our model) an item i has not only a size

but also a positive weight, denoted by gi. Each item plays the role of a selfish

agent, and any agent/item pays some cost for being in a bin. The cost of a bin

is 1, and this cost is shared among the items being in the bin, proportionally

to their weight gi; i.e., any item i packed into a bin (with total size at most 1)

pays the cost1 gi/g(B) where g(B) is the total weight of the items in the bin.

Analogously, we denote by s(B) the total size of items being packed into this

bin, also called level of the bin.

Throughout this paper we assume that all weights are positive, i.e., gi >

0 holds for all 1 ≤ i ≤ n. This condition excludes situations where certain

priviliged items make extra profit by increasing the costs of others.

Each item is interested in decreasing its own cost. So, if an item fits into

another bin, and moving there the cost of this item will be strictly smaller than

before, we call this move an improving step.

A Nash equilibrium (NE, for short) is a packing where an improving step, as

described above, does not exist for any item. Such a NE is also called a stable

packing. The following simple assertion states that a NE packing is reached

from any initial (valid) packing after finitely many selfish steps, also in a more

general model.

Observation 1 Consider a cost-sharing mechanism in which the input consists

of items i with given size si and weight gi ( i = 1, . . . , n), with the following

property:

(⋆) If in a valid packing an item i moves from a bin B to another bin B′ where

it fits and the total weight in B′ becomes larger than the original weight

in B, then i should pay less in B′; but its cost does not decrease if the

modified g(B′) remains at most the current g(B).

Then, starting from any initial packing, the game terminates in a NE after a

finite number of selfish moves.

Proof. Define a potential function ψ for all feasible packings B as

ψ(B) =
∑
B∈B

(g(B))2

where the summation is taken over all used bins B. Under a selfish move of

item i the contents of two bins, say Bj and Bk, are modified to B′
j and B′

k such

that

g(B′
j) + g(B′

k) = g(Bj) + g(Bk) and |g(B′
j)− g(B′

k)| > gi > |g(Bj)− g(Bk)|.
1One can create many other types of cost-sharing mechanisms beside this linear function,

as it happens in real life, too. The cost distribution gi/g(B) is relevant when the relative cost

is expressible by one single number.
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It follows that the value of ψ increases after every selfish move, and consequently

no B can occur more than once during a game. Since each input admits only

finitely many possible packings, the process surely terminates.

Property (⋆) is definitely more general than the cost-sharing rule gi/g(B).

For example if g1, . . . , gk are the weights of items packed in B, and instead of

1 their total cost is
√
g1 + · · ·+ gk, the cost distribution proportional to the gi

among those items satisfies (⋆). A priciple like that occurs in many real-life

situations, from the “pay 2, buy 3” promotions in stores to the shared renting

of an apartment which is more economical for the individual than renting a

separate apartment alone.

Note that in case of a NE packing, the number of used bins can be much

larger than necessary for packing the items in an optimal solution for classical

bin packing. Therefore, it is interesting to compute the price of anarchy (PoA)

[12] of the game which is in general given by the maximum ratio between the

maximum social cost of any NE, and the minimum social cost of any situation.

In our case, it is defined as

PoA = lim sup
N→∞

(sup
I

max
NE∈NE(I)

{ NE(I)

OPT (I)
| OPT (I) = N}),

where I is an arbitrary (finite) set of items, NE(I) is the set of all Nash equilibria

for I, NE(I) is the number of used bins in a Nash equilibrium packing NE of

the items, and OPT (I) denotes the number of bins used in an optimal packing

of the items. If it is clear from the context, we will write NE instead of NE(I)

and OPT instead of OPT (I), respectively.

Next, we provide a short review about selfish bin packing games. The first

such game was defined by Bilò [1] for gi = si. Consequently, the cost of an item

i for being in bin B is si/s(B) in this case. Bilò proved that 8/5 ≤ PoA ≤ 5/3

holds in this game. Epstein and Kleiman [8] tightened the gap between the

lower and upper bound to 1.6416 < PoA < 1.6428.

Ma et al. [13] defined another model. If there are k items in a bin, each item

in this bin pays 1/k cost for being in this bin. This corresponds to the case

gi = 1. It is shown that any NE packing is the output of a run of the First Fit

(FF ) algorithm (which packs the items according to some given list, and the

next item is always packed into the first bin where it fits [11]). From this, it

directly follows that the PoA of this version of the game is at most 1.7. Later

Dosa and Epstein [4] gave a more exact estimation, showing that the PoA is in

the interval (1.6966, 1.6994).

There are also many other results which correspond to the models listed

above; see, e.g., [8, 9, 10, 16]. In fact there is also a model in the literature

which generalizes all previous selfish bin packing games [15].
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Returning to our game, we have seen that the two different models (sharing

the cost proportionally to the sizes, or equally, regardless of item sizes) give two

different PoA values. For the former this is at most 1.6428, but for the latter it

is bigger than 1.6966 [8, 4]. Note that both these cost-sharing mechanisms are

special cases of our more general model, where the cost is distributed propor-

tionally to the weights of the items. It means that the weight matters. Notice

that in [4] it is proven that by any choice of the weights, the PoA is at most

1.7, and there exists a choice where this value is exactly 1.7.

In this work we attack the problem from the opposite side. Observe that PoA

is a cost which has to be paid by a community because its members behave in

a selfish non-cooperative way. For this reason the community may try to define

weights so as to decrease the price of anarchy. By this motivation, we raise and

investigate the following question.

Problem 2 How should one define the weights for the items, so that the PoA

will be as small as possible? What is the minimum or infimum of PoA achievable

by suitable weight setting?

This problem — in a more general context — sounds as follows: Can one

determine the rules of a structure2 (in our case it is the current game) in such

a way that the behavior of participants will be advantageous for the whole

community? If the answer is yes, how to do this? In the language of games:

Can one construct a game where the PoA is very small?

A recent work in this direction is [17] which defines a cost-sharing mechanism

with PoA ≈ 1.467. Another similar work is [2] where the PoA is between

1.47407 and 1.4748. A third paper on a mechanism with larger PoA = 3/2

(although fast convergence to NE) is [14]. This latter result motivates the

following variant of Problem 2.

Problem 3 What is the minimum or infimum of PoA achievable by suitable

weight setting with the additional condition that a NE is reached in polynomial

time from every initial packing?

We are interested in defining a game with a PoA smaller than that in all

earlier results, i.e., we concentrate on Problem 2 without the time constraint of

Problem 3.

We will consider two settings for the weights in this paper. In the first one,

in most cases the weight of an item is equal to its size, except that the items

having sizes above one half get larger weight, namely their weight will be set

to 1. For this special setting we will see that the PoA is already at most 1.5.

2An existing example on the large scale is that different types of products include different

percentages of VAT in their price, hence orienting the consumption habits of people to some

extent.
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Although the PoA in this case is above 1.4646, the principle of the construction

provides a frame for later improvements and hence in this aspect it is crucial.

On its basis we define and investigate a more complicated setting, where the

PoA is at most 16/11 ≈ 1.4545, and at least 1.4528.

It is important to note that the PoA cannot be very small, namely we shall

prove that in a wide class of games (in not only those with weight-driven rules)

it can never be smaller than 4/3.

The paper is structured as follows. In Section 2 we present a general lower

bound for the price of anarchy. Section 3 contains the first simple setting which

has PoA of at most 3/2. In Section 4 we present the more complicated setting

with PoA at most 16/11. We finish in Section 5 with short conclusions and

open problems.

This work is a substantially extended version of the conference paper [5].

2 A General Lower Bound

In this section we present a general lower bound for the PoA, which universally

is valid no matter how the weights for the items are chosen. The construction

is based on the property that no item can move to another bin since it does not

fit. In fact the lower bound is valid for games in a more general class, too.

Theorem 4 If the rules of the game do not allow a packed item to open a new

bin and move there alone, then the PoA is at least 4/3.

Proof. We make the following construction. Let n be divisible by four, and let

ε be a sufficiently small rational number. We construct a packing into n bins

that is a NE. Then we show that the items can be packed into (3/4)n+1 bins

proving our claim.

In any NE bin there are two items, a medium item and a small item, denoted

by Mi and Si, 1 ≤ i ≤ n, respectively. In the first n/2 bins the medium items

have the same size, Mi = 1/3+ (2n− 1)ε, for 1 ≤ i ≤ n/2, these are the biggest

items in our construction. In the other bins the medium items have sizes as

follows: Mi = 1/3 + ( 52n − i)ε, for n/2 + 1 ≤ i ≤ n (then Mn/2+1 has the

same size as the previous medium items, and the sizes of the medium items are

slightly decreasing from this point.)

Now we give the sizes of the small items in the bins.

For any n/2+1 ≤ i ≤ n, let Si = 1/3−(32n−i)ε. Hence,Mi+Si = 2/3+nε.

Note that the smallest small item among these items is Sn/2+1 = 1/3− (n−1)ε.

This is the size of any further small items as well, so Si = 1/3 − (n − 1)ε for

1 ≤ i ≤ n/2. (The biggest small item has size Sn = 1/3− (n/2)ε.)

Then the levels of the bins are as follows. We have level 1/3 + (2n − 1)ε +

1/3− (n− 1)ε = 2/3 + nε in the first n/2 bins and also exactly 2/3 + nε in the
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last n/2 bins. It is trivial that this packing is a NE, as no item fits into another

bin (to see this, it is enough to see that the smallest item does not fit into any

other bin).

Now we show that the items can be packed into (3/4)n+ 1 bins.

We create n/2 − 1 bins as follows. For any n/2 + 2 ≤ i ≤ n, the bin

contains Mi, moreover Si−1 and finally Si−n/2. Let us realize that Mi +Si−1 =

2/3+ (n− 1)ε, so after packing these two items in the bin, the remaining space

in the bin is just the size of Si−n/2. So these three items fit into a common bin.

The largest medium items are packed pairwise, and so we get n/4 further

bins.

There remain one medium item and two small items unpacked (namely

Mn/2+1, Sn and finally Sn/2). We pack them into two further bins and get

in total (n/2− 1) + n/4 + 2 = (3/4)n+ 1 bins.

Observation 5 In the previous construction the level of any NE bin is exactly

2/3 + nε, and the level of any not full optimal bins is exactly 2/3− (4n− 2)ε.

Since the PoA is computed as a limes superior, it does not matter if a certain

property does not hold for a bounded number of bins. Bins for which a certain

property does not hold, will be called irregular in the following. The bins which

are not irregular are called regular bins.

At the end of this section we provide a simple lemma which will be useful

several times.

Lemma 6 Suppose that the level of any NE bin is at least l > 0 with at most

C irregular bins. Then NE ≤ (1/l) ·OPT + C.

Proof. We have OPT ≥ S ≥ l · (NE − C) where S denotes the total level of

the bins. From this we get NE ≤ (1/l) ·OPT + C.

3 Two Levels of Weights: Setting S1

In this section we will examine a simple setting, denoted as S1, in which the

weights of the items are defined as follows. Let the items be called big and

small (denoted by B and S) if their sizes are larger than 1/2, or at most 1/2,

respectively. The big items get weight 1, and each small item gets weight equal

to its size. The weights in setting S1 are illustrated in Table 1. In the following

we give lower and upper bounds for the PoA of setting S1.

3.1 Basic Lower Bound for S1

As a first step, in this subsection we prove the following lower bound for the PoA

of S1. The method will be developed further afterwards, to obtain a stronger

estimate.

6



Class Size si Weight gi

big si >
1
2 gi = 1

small si ≤ 1
2 gi = si

Table 1: Weights for setting S1

Theorem 7 For setting S1 the PoA is at least 4
3 + 1

3 ·
∑∞

k=1
1

3·2k−1
≈ 1.4589.

Proof. We extend our construction from Theorem 4. The original items of

that instance, say I, are called old items. Let us recall that in the optimum

packing of I, the n/2 largest medium items are packed pairwise into a set of

n/4 bins, which we shall denote by B. The bins in B have some space left for

further items. Let us consider any bin of B. The unused space of such a bin is

1/3 − (4n − 2)ε by Observation 5, that is, a bit below 1/3. We will use that

space for packing smaller items.

Let k ≥ 4 be a very large integer. We create a new instance I ′ which

augments I by the following new items: n/4 items of size a1 = 1/6 + nε, n/4

items of size a2 = 1/12 + nε, and so on. In general, we get for any 1 ≤ i ≤ k,

n/4 new items of size ai = 1
3·2i + nε so that the smallest item ak has size

ak = 1
3·2k + nε.

We get a packing for the items in I ′ by adding to each bin of B items of sizes

a1, a2, . . . , ak, exactly one item for each size. The total size of the items in any

such bin is

1− 1

3 · 2k
+ (kn+ 4n− 2)ε ≤ 1− 1

3 · 2k
+ 2knε.

We choose ε such that the items fit together, so let ε ≤ 1/(6kn ·2k). In this way

all bins are “almost” completely full.

The optimal packing for I used (3/4)/n+1 bins. Consequently, the optimal

packing for I ′ does also use not more than (3/4)/n+ 1 bins.

Now we construct a NE for the instance I ′. Without loss of generality, we

suppose that n is divisible by 3 · 2k − 1 for any 1 ≤ i ≤ k. The old items

are packed as before. In any new bin, items of the same size ai (i = 1, . . . , k)

are packed. That means, there are bins containing five a1 items, also there are

bins containing eleven a2 items, and so on. Generally, there are bins containing

3 ·2i−1 items of type ai, 1 ≤ i ≤ k. It follows that the number of newly created

bins is

n

4
·

k∑
i=1

1

3 · 2i − 1
.
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The total number of bins in the packing is

n+
n

4
·

k∑
i=1

1

3 · 2i − 1
,

while there is an optimal packing using only (3/4)n + 1 bins. Thus the lower

bound follows, once we prove that this packing is a NE.

We show that no item can make an improving step. It is trivial that no old

item can move as it fits into no other bin. Let us suppose that the bins containing

the new items are ordered in nonincreasing order of their levels. Then, we have:

• No new item fits into a bin to the right.

• No new item wants to move to the left.

This completes the proof of the theorem.

3.2 A More Complex Construction: PoA > 1.46460806

Here we give a more involved construction to obtain an improved lower bound

for the PoA as follows.

Theorem 8 The PoA is at least 3543193
2419209 ≈ 1.46460806.

Proof. The better lower bound is achieved by a more tricky construction, again

using the one from Theorem 4. Its old items are given in n optimal bins. Among

these optimal bins there are n/4 bins, each having a room of 1/3 − (4n − 2)ε

(see Observation 5). We will use this room for packing new items, and we call

these bins recycled bins.

The new items will have sizes approximately 1/6, 1/12, 1/24 and 1/48. There

are three subtypes from each type, these subtypes are denoted by the symbols

“−”, “+”, and “++”. The exact sizes are as follows:

1/6+ = 1/6 + 19α 1/6− = 1/6− 20α 1/6++ = 1/6 + 999α

1/12+ = 1/12 + 19β 1/12− = 1/12− 20β 1/12++ = 1/12 + 999β

1/24+ = 1/24 + 19γ 1/24− = 1/24− 20γ 1/24++ = 1/24 + 999γ

1/48+ = 1/48 + 19δ 1/48− = 1/48− 20δ 1/48++ = 1/48 + 999δ

where the values of α, β, γ, and δ are as follows: α = (4n − 2)ε, β = 1000α,

γ = 1000β and δ = 1000γ. We ensure that δ is still very small, for example

δ < 10−100 applies.

We give the types of the recycled bins of the optimal packing. We list only

the new items in these bins (any such recycled bin already contains two old

medium sized items.) We will need new parameters of a, b, c, d, e.
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• There are a bins containing one 1/6+ and one 1/6−-item.

• There are b bins containing one 1/6++-item, one 1/12+ and one 1/12−-

item.

• There are c bins containing one 1/6++ and one 1/12++-item, moreover

one 1/24+ and one 1/24−-item.

• There are d bins containing one 1/6++, one 1/12++ and one 1/24++-item,

and one 1/48+ and one 1/48−-item.

• There are e bins containing one 1/6++, one 1/12++, one 1/24++ and one

1/48++-item.

It is easy to see that based on the definition of the sizes of the items, all such

bins are valid (i.e., the items fit into the bins); in fact, all these bins are fully

packed, except the last subtype where among other items the 1/48++-items are

packed. Now we give the new bins that are created in the NE. For this we need

some new parameters, as x, y, z, u, t, s, v, w.

• There are x bins containing one 1/6− and four 1/6+-items, and y bins

containing three 1/6− and two 1/6++-items.

• There are z bins containing four 1/12− and seven 1/12+-items, and u bins

containing nine 1/12− and two 1/12++-items.

• There are t bins containing ten 1/24− and thirteen 1/24+-items, and s

bins containing twenty-one 1/24− and two 1/24++-items.

• There are v bins containing twenty-two 1/48− and twenty-five 1/48+ -

items, and w bins containing forty-five 1/48− and two 1/48++-items.

We need to ensure that the number of items of each subtype is the same in

the two (i.e., optimal and NE) packings. For this we get the next system of

equations:
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b+ c+ d+ e = 2y (1)

a = 4x (2)

a = x+ 3y (3)

c+ d+ e = 2u (4)

b = 7z (5)

b = 4z + 9u (6)

d+ e = 2s (7)

c = 13t (8)

c = 10t+ 21s (9)

e = 2w (10)

d = 25v (11)

d = 22v + 45w (12)

Here (1) stands for the number of 1/6++-items in the OPT packing and

in the NE packing on the left-hand side and the right-hand side, respectively.

Similarly, (4), (7), and (10) count the number of 1/12++-items, 1/24++-items

and 1/48++-items, respectively.

Moreover, (2) stands for the number of 1/6+-items, in the OPT packing and

in the NE packing on the left-hand side and the right-hand side, respectively.

Similarly, (3) stands for the number of 1/6−-items. Following the list, (5) and

(6) count the number of 1/12+ and 1/12−-items, (8) and (9) count the number

of 1/24+ and 1/24−-items, and finally (11) and (12) count the number of 1/48+

and 1/48−-items.

We have 12 equations and 13 variables, the degree of freedom is one. Let us

choose w = 8, then the unique solution for the variables is as follows: w = 8,

v = 120, s = 1508, t = 10556, u = 70122, z = 210366, x = y = 806403,

moreover a = 3225612, b = 1472562, c = 137228, d = 3000, e = 16. Note that

a+ b+ c+ d+ e = 4838418 while x+ y + z + u+ t+ s+ v + w = 1905486.

Now let us see what is the new lower bound. The number of optimal bins is

(3/4)n+1. Within these bins, there are n/4 recycled bins. Let us choose a new

integer variable g, such that n/4 = 4838418g. Then there are 1905486g new

bins in the NE packing, thus OPT = (3/4)n + 1 while NE′ = n + 1905486g

(here NE′ means the new value of the bins in the equilibrium). It means that

by letting g → ∞, our improved lower bound is

PoA ≥ NE′

OPT − 1
=

4 · 4838418 + 1905486

3 · 4838418
=

3543193

2419209
≈ 1.46460806.

We still need to prove that the new packing is really a stable packing. We

will call the new bins in the NE as x-bins, y-bins, ..., w-bins, according to the
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number of those bins. By easy calculation we get the levels of the different types

of bins. This is given in the table below. For the sake of simplicity, we use the

notation l(x) for the level of x-bins, l(y) for the level of y-bins, and so on.

l(x) = 5/6 + 56α l(y) = 5/6 + 1938α

l(z) = 11/12 + 53β l(u) = 11/12 + 1818β

l(t) = 23/24 + 47γ l(s) = 23/24 + 1578γ

l(v) = 47/48 + 35δ l(w) = 47/48 + 1098δ

In what follows, we show that no item moves in the NE packing. A k-bin

means a bin with exactly k items, and a k+-bin means a bin with at least k

items. We illustrate the principle with the 5-bins (i.e., the x-bins and y-bins)

and items therein.

A 1/6+-item or a 1/6−-item does not want to go to a 2-bin, since there the

level of the bin is 2/3 + nε < 2/3 + α (see Observation 5), and the size of an

x-item is at most 1/6 + 19α, thus the increased level of the target bin would

be at most 5/6 + 20α, which is smaller than l(x). A 1/6++-item would create

a higher level, but still lower than l(y), therefore an item of that size does not

want to move either. A 1/6-type item does not fit into any other 5-bin, neither

into any 11+-bin. We conclude that no 1/6-type item moves.

In a very similar way, which is a matter of routine to check, it can be verified

that the other items do not move either. Details are left to the reader.

Notes. We do not apply any big item in our construction. The reason is that

the weight of a big item itself is 1, and the weight of any bin not containing

a big item is at most 1. It follows that if there is at least one bin containing

a big item, any small item wants to move there. As a consequence, the bin of

any big item will be almost completely full in any NE packing (more exactly,

if x is the size of the smallest item being packed into a bin without a big item,

then the level of any bin with a big item is bigger than 1− x). Hence, it seems

that applying big items in a construction is not advantageous if we want to get

a large NE/OPT ratio in the considered setting.

We also note that our construction applies to items of sizes around 1/6,

1/12, 1/24, 1/48. If we go further and include also items of sizes around 1/96

(or even smaller ones) we will get certain improvement on the lower bound, but

this improvement is really very small. If the smallest items were about 1/24

(instead of about 1/48), the implied lower bound would be about 1.464599.

11



3.3 An Upper Bound of 3/2 for S1

Here we prove the following bound.

Theorem 9 For setting S1 the PoA is at most 3/2.

Proof. Let us consider an arbitrary NE packing. Recall that an item is called

big if its size is above 1/2 otherwise it is small. We define the following two bin

types:

B1: The bin contains one big item, and possibly several further (small) items.

B2: The bin contains only small items.

Since all big items have weight 1, the weight of any B1-bin is at least 1, while

the weight of any B2-bin is at most 1. It follows that any item of a B2-bin has

the intention to move into a B1-bin. Since the considered packing is a NE, no

item of a B2-bin fits into a B1-bin.

If there is no B2-bin, then everyNE bin contains a big item, thus the packing

is optimal. If there is only one B2-bin, still NE ≤ OPT + 1 holds. Thus, let

us suppose that there exist at least two B2-bins. Consider the B2-bin with the

smallest level — let l1 denote this level — and let X be the smallest item in this

bin. Now consider the B2-bin with the second smallest level — let l2 denote

this level, then l2 ≥ l1 — and let Y be the smallest item in this bin.

We distinguish two cases.

Case 1: l2 > 2/3.

It means that the level of any B2-bin is above 2/3, except possibly the bin

containing X. If also the level of any B1-bin is above 2/3, we are done by an

averaging argument. Thus let us suppose that there is a B1-bin with smaller

level. Since no item of a B2-bin fits into a B1-bin, it follows that any small item

in the B2-bins has size above 1/3. Let us denote the number of B1 and B2-bins

by x and y, respectively. Obviously, OPT ≥ x.

If y ≤ x/2, we have

NE = x+ y ≤ 3

2
x ≤ (3/2)OPT.

Suppose now that y > x/2. Every B2-bin contains exactly two items, both are

larger than 1/3, and any B1-bin contains a big item. Two big items cannot be

packed into a common bin, and a big item can share a bin with at most one

small item which is larger than 1/3. Thus OPT ≥ x + (2y − x)/2 = x/2 + y.

Hence,

NE

OPT
≤ x+ y

x/2 + y
= 1 +

x/2

x/2 + y
≤ 1 +

x/2

x/2 + x/2
= 3/2.
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Case 2: l1 ≤ l2 ≤ 2/3.

Under this assumption it follows that X > 1/3, as X would like to go into

the bin of Y , but cannot move, since X does not fit into the bin of Y .

Assume Y ≤ 1/3. Since Y does not fit into any other bin apart from the bin

of X, the level of any bin apart from the bins of X and Y is above 2/3. Thus,

NE ≤ (3/2)OPT + 2 and we are done.

Therefore, also Y > 1/3 holds. If there are at least two items in the bin of

X, then X ≤ 1/3 would follow, also if there were at least two items in the bin

of Y . We conclude that both X and Y are the only items in their bins. This is

a contradiction, since both are small items. They rather share their bins than

stay alone. This completes the proof of the theorem.

4 Three Levels of Weights: Setting S2

We found quite close bounds in the considered simple setting S1. In this section

we consider another, more complicated setting, denoted as S2, where the PoA

is a bit smaller. For this, we give larger weights to certain smaller items as well,

but then it is necessary to make a more detailed analysis.

We choose the item weights as follows. Let the items be denoted as big,

medium, small, and tiny if their sizes are larger than 1/2, larger than 1/3 and at

most 1/2, larger than 1/4 and at most 1/3, and finally at most 1/4, respectively.

The classes and their weights are described in Table 2. In the relation between

size and weight, ‘small’ and ‘tiny’ behave in the same way, but their distinction

will play a role in the analysis of PoA.

Class Size si Weight gi

big 1/2 < si gi = 1

medium 1/3 < si ≤ 1/2 gi = 1/2

small 1/4 < si ≤ 1/3 gi = si

tiny si ≤ 1/4 gi = si

Table 2: Weights for setting S2
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4.1 A Lower Bound for S2

Here we give a lower bound for the PoA as

PoA ≥ 4

3
+

1

11
+

1

3
·

∞∑
k=3

1

3 · 2k − 1
≈ 1.4528

Theorem 10 For setting S2 the PoA is at least 1.4528.

Proof. Consider the construction given in Theorem 7 where we gave a packing

for instance I ′ which was a NE for setting S1. This packing is not a NE for

S2 since any bin containing a medium item has level close to 2/3 and weight

close to 5/6. Thus, we would get an improving step by moving an item of size

a1 = 1/6 + nε into that bin.

Hence, we construct a new instance I ′′ where each item of size a1 is replaced

by two items of size a2 = 1/12+nε and the other items of I ′ are left unchanged.

Again, there is an optimal packing using only (3/4)n + 1 bins. We use the

same packing strategy for the items in I ′′ as for the items in I ′.

Now in the NE packing the a1 items are missing, but there are three times

more bins of type B2 containing eleven a2 items. The number of newly created

bins is therefore

n

4
·
( 3

3 · 22 − 1
+

k∑
i=3

1

3 · 2k − 1

)
.

The total number of bins in the packing is

n+
n

4
·
( 3

3 · 22 − 1
+

k∑
i=3

1

3 · 2k − 1

)
.

Thus, the lower bound follows, once we show that this packing is aNE. We show

that no item can make an improving step. Now the difference is only regarding

the option that a new item perhaps wants (and can) move into a bin of a medium

item. It is sufficient to see that an item a2 does not want to move into a bin of

a medium item. In such a target bin the total weight is maximal if the biggest

small item is packed together with a medium item. Hence the maximum weight

is bounded by 1/2 + Sn = 1/2 + 1/3− (n/2)ε = 5/6− (n/2)ε. The weight of a

current bin of an a2 item is 11 ·(1/12+nε). Should the a2-item move, the weight

in the target bin would become 5/6 − (n/2)ε + 1/12 + nε = 11/12 + (n/2)ε,

which is smaller than the weight of the current a2-bin. Hence, this packing gives

a NE.

Let us remark that in the previous construction there are no big items as

their bins would be filled too much. We have medium items, and considerably

smaller items which are close to 1/12, and even smaller items. It means that

14



if we want to define a “better” weighting system which makes the PoA (much)

smaller, it does not help if we give larger weight for the items between 1/3 and

1/12 + δ for some δ > 0.

4.2 An Upper Bound of 16/11 ≈ 1.4545 for S2

In this section we prove that the PoA of our game is at most 16/11 ≈ 1.4545.

For this, we have to make a much more detailed classification of the bins in a

NE.

4.2.1 Classification of Bin Types and Some Simple Observations

In this subsection, we will classify the bins in a NE with respect to the corre-

sponding items. This is accompanied by some simple, but useful observations.

Let us consider an arbitrary NE packing. We define the following basic bin

types:

B The bin contains one big item, and possibly several further items.

MM The bin contains two medium items, and possibly several further (i.e.,

small or tiny) items.

M The bin contains exactly one medium item, no big item, and possibly

several further (i.e., small or tiny) items.

ST The bin contains only small or tiny items.

Some of the bin types will be further divided later. First, we make several

simple observations which hold for a NE.

The weight of any B-bin or MM-bin is at least 1, and the weight of any

ST-bin is at most 1. It follows that any item of a ST-bin would like to move

into a B-bin or into a MM-bin. We get our first observation.

Observation 11 No item of a ST-bin fits into a B-bin or into a MM-bin in a

NE.

A medium item has an intention to go into a B-bin. The reason is that the

increased weight in the target B-bin would be at least 3/2, while the weight of a

MM-bin is smaller than 2 ·1/2+1/3 = 4/3, and the weight of a M-bin is smaller

than 1/2 + 2/3 = 7/6. This results in the next observation.

Observation 12 No medium item of a MM-bin or M-bin fits into a B-bin in

a NE.
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Any small item and any tiny item with size above 1/6 in an M-bin has an

intention to go into a B-bin. The reason is that the increased weight in the

target B-bin would be at least 1 + 1/6, and the weight of an M-bin is smaller

than 1/2 + 2/3 = 7/6. We conclude the following observation.

Observation 13 No small item and no tiny item of size above 1/6 in a M-bin

fits into a B-bin in a NE.

Now we distinguish the bin types more detailed and divide them into several

subtypes. Any subtype will have certain properties. To make this possible,

we will use irregular bins, which possibly do not satisfy some of the required

properties. These irregular bins are excluded from later consideration. At any

time when we encounter an irregular bin, the number C of irregular bins is

increased by one.

Type B

Type B is divided into the following four subtypes:

B0 The bin contains a big item, and no other item. The big item in this kind

of bin is also called superbig.

BTf The bin contains a big item, at least one tiny item, and possibly several

further items.

BM The bin contains a big item and a medium item and no further item.

BS The bin contains a big item and a small item and no further item.

Note that any B-bin falls into exactly one subtype. Moreover the level of a

BM-bin is above 5/6, and the level of a BS-bin is above 3/4.

Now we focus on the BTf-bins, if there are any. Let us consider the bin among

the BTf-bins with smallest weight. Consider a tiny item in this bin. This item

has an intention to go into any other BTf-bin. It cannot move, it means that

the level of any other BTf-bin is above 3/4. The BTf-bin with smallest level

is considered as an irregular bin. That means, we now have C = 1, and any

regular BTf-bin has a level above 3/4.

Type MM

The MM type is not divided into subtypes.

Type M

There can be at most one M-bin with a single medium item in a NE. We

exclude this bin from consideration, hence C = 2. Among the remaining M-bins,

we define the following subtypes:
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MTf The bin contains among other items at least one tiny item.

MS1 The bin contains one medium item and one small item and no other item.

MS2 The bin contains one medium item and two small items and no other item.

Note that the classification is complete, i.e., any M-bin belongs to one of the

subtypes MTf, MS1, MS2.

Among the MTf-bins (if there are any), consider the bin with smallest weight.

The tiny item in this bin would like to move into any other MTf-bin but cannot

in a NE. The MTf-bin with smallest weight is irregular and we set C = 3. All

regular MTf-bins have level greater than 3/4.

The medium and the small item of a MS1-bin will be called supermedium

and supersmall, respectively. Any small item in a MS1-bin has the intention to

move to any other MS1-bin. Since it cannot move in a NE, it means that the

level of any MS1-bin is above 2/3. This argument works whenever the number

of MS1-bins is different from 1. For the case when there is just one MS1 bin,

we exclude this, and from now C = 4.

Type ST

Let us consider the ST-bins which do not have any tiny item. Any such bin

contains several small items only. Since any three small items fit into a common

bin (and the total size of three small items is larger than 3/4 and the total size

of at most two small items is at most 2/3), there can be at most one ST-bin

with at most two small items. If there is such a bin, it is considered as irregular,

hence C = 5. All other ST-bins without tiny items contain exactly three small

items. We obtain a partition into the following subtypes:

Tf The ST-bin contains at least one tiny item.

S3 The ST-bin contains exactly three small items.

This is again a complete classification, as all regular ST-bins are either Tf-

bins or S3-bins.

Consider the Tf-bin with smallest level. A tiny item in this bin has an

intention to go into any other Tf-bin. Since it cannot move in a NE, the level

of any other Tf-bin is above 3/4. The Tf-bin with smallest level is considered

as an irregular bin, hence C = 6.

We conclude that the level of any regular ST-bin is above 3/4. Small items

in a S3-bin are also called distinguished small items. All special items which

have been introduced for the different bin types are listed in Table 3.

During the classification of the bins we get strict lower bounds for the levels

of all regular bins in any NE, i.e., the levels of bins of that type are higher

than the given value. These lower bounds, denoted as “minimum level”, are

summarized in Table 4 with respect to the corresponding bin type.
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Name of special item Definition

superbig big item in B0-bin

supermedium medium item in MS1-bin

supersmall small item in MS1-bin

distinguished small small item in S3-bin

Table 3: Special items of the bin types

Bin type B0 BTf BM BS MM

Minimum level 1/2 3/4 5/6 3/4 2/3

Bin type MTf MS1 MS2 Tf S3

Minimum level 3/4 2/3 5/6 3/4 3/4

Table 4: Minimum level of regular bins

4.2.2 Proof of the Upper Bound

The proof of our upper bound of 16/11 is based on case distinction. In this

case distinction we will introduce an additional weight for the items. This new

weight will be denoted by v, and will be called the value. The value v(a) of any

item a consists of the sum of two parts. One part is the scaled size c(a), another

part is the bonus b(a). Both the scaled size and the bonus are nonnegative.

Formally, the value of an item a is

v(a) = c(a) + b(a).

This type of weight was efficiently applied in [7].

We assign the values to the items so that the total value of the items in any

regular NE bin will be at least one. We will also show that the total value of

any bin (i.e., any set of items with total size at most 1) is at most 16/11. If this

holds, then the claimed upper bound follows by the following lemma.

Lemma 14 Suppose that the value of any regular NE bin is at least 1, there

are at most C irregular bins, and the value of any optimal bin is at most 16/11.

Then, NE ≤ 16
11 ·OPT + C.

Proof. Let the total value of the items be denoted by W . Then NE − C ≤
W ≤ 16

11 ·OPT .
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Now we distinguish several cases.

Case 1. There exists a B0-bin with level below 2/3.

Obviously, the space left in the B0-bin with smallest level is larger than 1/3,

i.e., any small item fits into this room. Thus, by Observations 11, 12, and 13 we

can exclude the existence of bins which contain tiny or small items and these

items have an intention to move into the B-bin. In particular, we can exclude

the existence of any ST-bin, any MS1-bin, and any MS2-bin. We consider two

subcases.

Case 1.1. The level of every B0-bin is at least 7/12.

Set c(a) = 12/11 · s(a). The medium items of MM and MTf-bins get 2/11

bonus, the big items that are not superbig get also 2/11 bonus, and the superbig

items get 4/11 bonus. (The other, not mentioned items do not have positive

bonus.) The total scaled size of any bin is at most 12/11. Thus, in order to

show that the value of any optimal bin is at most 16/11, we have to guarantee

that the total bonus of any bin is at most 4/11. If the bin contains a superbig

item, this holds, as no other big item fits into the bin, moreover no medium

item of some MM or MTf-bin fits into the bin by Observation 12. Otherwise,

the bin contains at most two items with positive bonus, and the total bonus is

at most 2 · 2/11.
Now we show that the value of any regular bin in a NE is at least 1. The

value of any of the MTf, BM, BTf, BS-bins is at least 12/11 · 3/4 + 2/11 = 1,

since the level of any such bin is at least 3/4, and the bin has an item with

positive bonus. The value of a B0-bin is at least 12/11 · 7/12 + 4/11 = 1.

Finally, the level of any MM-bin is above 2/3, thus the value of such a bin is at

least 12/11 · 2/3 + 4/11 = 12/11 > 1.

Case 1.2. There exists a B0-bin with level below 7/12.

Now the available space in the B0-bin with smallest level is larger than 5/12.

It follows that any medium item in a MM or MTf-bin is larger than 5/12. Recall

that neither MS1 nor MS2-bins exist.

We define the values for this case. Set c(a) = 10/11 · s(a). The medium

items of MM and MTf-bins get 2/11 bonus, the big items that are not superbig

get 4/11 bonus, and the superbig items get 6/11 bonus.

We show that the value of any optimal bin is at most 16/11 by ensuring that

the total bonus of any optimal bin is at most 6/11. If the bin contains a superbig

item, this holds, as no other big item fits into the bin, and no medium item with

positive bonus fits into the bin by Observation 12. Suppose the bin contains a

big item that is not superbig. Obviously, the bin cannot contain another big

item and it can contain at most one medium item with bonus 2/11. Finally,

if the bin contains no big item, it can contain at most two medium items with

total bonus 4/11.
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Now let us compute the values of the NE bins. The value of a B0-bin is

at least 1/2 · 10
11 + 6/11 = 1. The value of any of the BM, BTf, BS-bins is

at least 10/11 · 3/4 + 4/11 = 23/22 > 1, since the level of any such bin is at

least 3/4, and the big item has bonus 4/11. The value of a MM-bin is at least

10/12 · 10
11 + 2 · 2/11 = 37

33 .

Since no MS1, MS2, ST-bins exist, it remains to examine the MTf-bins. If

the level of a MTf-bin is at least 9/10, the value of the bin is at least 9/10 ·
10/11+2/11 = 1. If there is only one MTf-bin with level below 9/10, we exclude

this bin by calling it irregular, C is increased by one to C = 7 and we are done

again. Let us suppose there are at least two such bins and consider the bin β

with smallest weight. The bin β contains a tiny item τ since it is a MTf-bin.

Tiny item τ has an intention to go into another MTf-bin with level below 9/10,

but cannot move, which means that the size of τ is larger than 1/10. Hence,

τ would fit into the B0-bin with level below 7/12 and the target B0-bin would

get a weight larger than 1 + 1/10 = 11/10. Bin β consists of a medium item

with weight equal to 1/2 plus further items of total size at most 2/3. Thus, the

weight of β without τ is at most 1/2 + 2/3 − 1/10 = 16/15 < 11/10. Since we

considered a NE, we get a contradiction. Consequently, any regular NE bin

has value at least 1. This finishes Case 1.

After the investigation of Case 1, we suppose in the following that the level

of any B0-bin is at least 2/3.

Case 2. The level of any MS1-bin is at least 3/4.

For any item a let the scaled size be c(a) = 4/3 ·s(a). Note that bins have value

at least 1 if the level of the bin is at least 3/4. So we assign a positive bonus

only to those NE bins where the level is possibly below 3/4. This concerns the

following two bin types:

– B0-bins. The superbig items get 4/33 bonus.

– MM-bins. Any medium item in these bins gets 2/33 bonus.

First we have to show that the total value of any (optimal) bin is at most

16/11. The total scaled size of the items in a bin is at most 4/3. Thus it suffices

to show that the total bonus of items in any bin is at most 16/11− 4/3 = 4/33.

Three medium or big items cannot be in the same bin. If there is only one item

with positive bonus in a bin, this bonus is at most 4/33 and we are done. If

there are two items with positive bonus and both are medium items, we are

again done. Finally suppose that there is one superbig item in the bin, and one

medium item from some MM-bin. This is a contradiction by Observation 12.

Now we bound the value of the NE bins. It is clear that the value of any

regular NE bin is at least 1, except possibly MM-bins and B0-bins. But for
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MM-bins the value is at least 4/3 · 2/3 + 2 · 2/33 = 100/99 > 1. Analogously,

for B0-bins the value is at least 4/3 · 2/3 + 4/33 = 100/99 > 1.

In the following we suppose that the level of any B0-bin is at least 2/3 and

there is a MS1-bin with level below 3/4.

Next, we prove two lemmas which are required for the further case distinc-

tion.

Lemma 15 Apart from at most one irregular bin the level of any MTf-bin in a

NE is larger than 19/24.

Proof. Let us focus on the MTf-bins with level at most 19/24; denote this

subtype by MT2. Any tiny item in such a bin would like to move into another

MT2-bin with larger or the same weight, but cannot. It means that any tiny

item has size above 5/24 in any MT2-bin apart from at most one irregular bin.

Exclude this irregular bin.

Now let us focus on the remaining MT2-bins. Any such bin has level at most

19/24, and any tiny item in the bin has size above 5/24. If the bin contains

one medium item, a small item and also a tiny item, the level of the bin is

above 1/3 + 1/4 + 5/24 = 19/24, a contradiction. Thus the bin contains only

one medium item and several tiny items. The bin cannot contain three tiny

items, because the level would be above 1/3 + 3 · 5/24 = 23/24. Analogously,

the bin cannot contain only one tiny item, because the level would be at most

1/2 + 1/4 = 3/4, although we have previously seen that any MTf-bin has level

above 3/4. Thus we conclude that a regular MT2-bin contains a medium item,

and exactly two tiny items.

The weight of any regular MT2-bin is at most 1/2 + 19/24 − 1/3 = 23/24

(the weight of the medium item plus the maximum total size for the two tiny

items in the bin). Recall that there is a MS1-bin with level at most 3/4. If a

tiny item moves into that MS1-bin, the total weight in the target MS1-bin is

above 1/2 + 1/4 + 5/24 = 23/24. It means that there is at most one MT2-bin

which has been counted as irregular.

According to lemma, C is possibly increased by one, so we have now C = 8.

Moreover we know that any regular MTf-bin has level above 19/24. In the

following we will use that there are at least two MS1 bins. If this is not the case

(there is at most one MS1 bin), we consider this bin as irregular, so from now

C = 9.

Lemma 16 (i) No supersmall item and no distinguished small item fits into

another MS1-bin.

(ii) Let M1 and M2 be two different supermedium items and let S be a super-

small or distinguished small item. Then M1 +M2 + S > 1.
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(iii) Let M1 be a supermedium item and let S be a supersmall or distinguished

small item. Moreover, let M be a medium item (which is not necessarily super-

medium). Then, M1 +M + S > 1.

Proof. Recall that the supermedium and supersmall items are packed into

MS1-bins, and distinguished small items are packed into S3-bins.

(i) The weight of a MS1-bin is at most 1/2 + 1/3 = 5/6, as the weight of a

medium item is 1/2, and the weight of a small item is at most 1/3. Similarly,

the weight of a S3-bin is at most 1. On the other hand the weight of the target

MS1-bin is larger than 1/2 + 2 · 1/4 = 1 if the moving small item fits there.

(ii) No matter whether S is a supersmall or distinguished small item, S

cannot be in the same bin together with both supermedium items. Suppose

without loss of generality that S is not in the same bin together with M1. Let

S1 be the supersmall item in the MS1-bin ofM1. Note thatM2 > S1 because any

medium item is larger than any small item. ThenM1+M2+S > M1+S1+S > 1,

where the second inequality follows by (i).

(iii) If S is a supermedium item in the same bin as M1, then no supersmall

item from some other MS1-bin fits here by (i). Since M is larger than a su-

persmall item, the claim holds. Now suppose that S1 is the supersmall item in

the MS1-bin of M1, and S is different from S1. We get again M1 +M + S >

M1 + S1 + S > 1. The first inequality holds as a medium item is larger than a

small item and the second inequality follows again by (i).

Now we continue with our main case distinction. We will distinguish between

the existence or non-existence of Tf-bins.

Case 3. There is no Tf-bin.

We introduce the following values for the items. Let c(a) = 12/11 · s(a).
The superbig items get 3/11 bonus, the further big items that are not superbig

get 2/11 bonus. The supermedium items get 2/11 bonus. The medium items

of MM, MTf and MS2-bins get 3/22 bonus. Finally, the supersmall items and

distinguished small items get 1/11 bonus.

To show that the value of any optimal bin is at most 16/11, it suffices to see

that the total bonus of any bin is at most 4/11. Consider a bin with a superbig

item. Of course, no other big item fits into the bin. Moreover, no medium item

of some MM or M-bin fits into the bin, by Observation 12. If there is a further

item with positive bonus together with the superbig item, it is a supersmall or

distinguished small item. But there can be at most one small item in this bin,

and it has bonus at most 1/11. We are done in this case.

Suppose there is a big item in the bin which is not superbig. There can be

at most one further item in the bin (which is not big) with positive bonus, and

the total bonus is at most two times 2/11. Suppose next that there are two

medium items in the bin (three or more is not possible). If at least one of them
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is supermedium, then there is no more item in the bin with positive bonus by

Lemma 16(iii). If both medium items are medium but not supermedium, there

can be at most one further item in the bin with positive bonus. This must be

a supersmall or distinguished small item. Hence, the total bonus is at most

2 · 3/22 + 1/11 = 4/11. Finally, if there is at most one medium item in the bin,

there can be at most two further items in the bin each having at most 1/11

bonus. Hence, the total bonus is at most 2/11 + 2 · 1/11, and we are done.

Now we show that the value of any regular NE bin is at least 1. The value

of a B0-bin is at least 12/11 · 2/3 + 3/11 = 1. The value of any of the BTf,

BM, BS-bins is at least 12/11 · 3/4 + 2/11 = 1, since the level of any such

bin is at least 3/4, and the bin has an item with 2/11 bonus. The weight

of a MM-bin is at least 12/11 · 2/3 + 2 · 3/22 = 1. The weight of a S3-bin

is at least 12/11 · 3/4 + 3 · 1/11 = 12/11 > 1. The weight of a MS1-bin is

at least 12/11 · 2/3 + 2/11 + 1/11 = 1. The weight of a MS2-bin is at least

12/11 · 5/6 + 3/22 = 23/22 > 1. Finally by Lemma 15 the weight of a MTf-bin

is at least 12/11 · 19/24 + 3/22 = 1, since there is a medium item with 3/22

bonus in the bin.

Now we are at the last case to be considered. Recall that the level of any

B0-bin is at least 2/3, and there is a MS1-bin with level below 3/4.

Case 4. There exists at least one Tf-bin.

In this final case the analysis is more difficult. Recall that any small item of a

MS1-bin has an intention to go into another MS1-bin but cannot fit. Let the level

of the MS1-bin with smallest level be denoted by ℓ, where 2/3 < ℓ < 3/4. We

consider this bin as irregular, increasing C to C = 10. If there is no other MS1-

bin, we are done with this subcase, as it may be treated like Case 2. Otherwise,

we conclude that the level of any regular MS1-bin is at least ℓ, and any small

item in that MS1-bin is larger than 1−ℓ. For convenience, let ℓ = 2/3+2x with

0 < x < 1/24. Consequently, the size of any small item in a regular MS1-bin is

above 1 − (2/3 + 2x) = 1/3 − 2x. Thus, the weight of any regular MS1-bin is

above 1/2 + 1/3− 2x = 5/6− 2x.

Let us now consider the Tf-bins. Suppose there are two Tf-bins with level at

most 11/12 − x. Consider the bin with smallest weight among these two bins.

Any item in this bin has the intention to move to the other Tf-bin. It follows

that any such item has size above 1/12 + x.

But such an item has also an intention to move into the MS1-bin with level

below 3/4: It fits there as there is at least 1/4 idle space in the target bin.

Moreover, the increased weight of the target bin will be more than (5/6− 2x)+

(1/12 + x) = 11/12 − x. This is a contradiction since the weight of the bin of

the considered item is at most 11/12− x.

It follows that the level of any Tf-bin is above 11/12− x, with at most one
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irregular bin. We exclude this bin, and we have now C = 11. Let the tiny item

of an arbitrary (but fixed) regular Tf-bin be denoted by X.

We will assign now values to the items. The coefficient of the scaled size is

the reciprocal of 11/12− x, i.e.,

c(a) =
12

11− 12x
· s(a)

for any item a.

Let us consider the other bin types.

(i) B-bins: The big item in a B-bin gets bonus 2−12x
11−12x . Since the tiny item

X in a regular Tf-bin has an intention to move into a B-bin but cannot move,

it follows that the level of any B-bin is above 3/4. Thus, the total value of a

B-bin is at least

3/4 · 12

11− 12x
+

2− 12x

11− 12x
= 1.

(ii) MM-bins: The level of any such bin is at least 3/4, since otherwise X

would move here. Any medium item in the MM-bins gets bonus 1−6x
11−12x . Thus

the value of the MM-bin is at least

3/4 · 12

11− 12x
+ 2 · 1− 6x

11− 12x
= 1.

(iii) M-bins: We know that the level of any regular MTf-bin is above 19/24.

We give 3−24x
22−24x bonus to the medium item of the MTf-bin. Then the value of

any such bin is at least

19/24 · 12

11− 12x
+

3− 24x

22− 24x
= 1.

Consider the MS1-bins. In any such bin there is a supermedium item, and a

supersmall item. The supermedium item gets bonus 2−12x
11−12x and the supersmall

item gets bonus 1−6x
11−12x . Recall that the level of a regular MS1-bin is at least

ℓ = 2/3 + 2x. Then the value of such a bin is at least

(2/3 + 2x) · 12

11− 12x
+

2− 12x

11− 12x
+

1− 6x

11− 12x
=

11 + 6x

11− 12x
≥ 1.

In any MS2-bin there is one medium item and two small items, and the level

of the bin is at least 5/6. The medium item gets bonus 1−6x
11−12x . Then the total

value of the bin is at least

5/6 · 12

11− 12x
+

1− 6x

11− 12x
=

11− 6x

11− 12x
≥ 1.

(iv) ST-bins: By definition, the value of any Tf-bin is at least 1 without

bonus. As a final case, we give bonus for the items in the S3-bins. The level of
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any such bin is above 3/4, and the bin contains three distinguished small items.

Any distinguished small item gets bonus 1−6x
11−12x . The value of the bin is at least

3/4 · 12

11− 12x
+ 3 · 1− 6x

11− 12x
=

12− 18x

11− 12x
>

11− 12x

11− 12x
= 1,

since 0 < x < 1/24. We conclude that any regular NE bin has value at least 1.

We show now that any optimal bin has value at most 16/11. The scaled size

of the items in the bin is at most 12
11−12x . Thus we have only to prove that the

total bonus of the items is at most 16
11 − 12

11−12x = 44−192x
121−132x . Instead of this, we

show that the total bonus is at most 4−24x
11−12x in any bin. This is sufficient, as

44− 192x

121− 132x
− 4− 24x

11− 12x
=

72x

121− 132x
≥ 0.

(i) There is a big item in the bin: In this case the bin can contain at most one

further item with positive bonus. Hence, the total bonus is at most 2 · 2−12x
11−12x =

4−24x
11−12x .

(ii) There are two medium items in the bin: The biggest bonus among the

medium items belongs to the supermedium items, and this bonus is 2−12x
11−12x . If

no further item has bonus in the bin, we are done.

Suppose there are some other items in the bin with positive bonus. That

can be at most one small item as otherwise the level would be greater than

one. Assume that there is one supersmall or a distinguished small item in the

bin, together with the two medium items. In this case, by Lemma 16(iii), both

medium items are simple medium items, i.e., none of them is supermedium.

Since 3−24x
22−24x is the largest bonus among the simple medium items, the total

bonus is at most

2 · 3− 24x

22− 24x
+

1− 6x

11− 12x
=

4− 30x

11− 12x
≤ 4− 24x

11− 12x
.

(iii) There is one medium item in the bin: Then, there can be at most two

more items in the bin with positive bonus. In this case the total bonus is at

most
2− 12x

11− 12x
+ 2 · 1− 6x

11− 12x
=

4− 24x

11− 12x
.

(iv) There is no medium item in the bin: Then there are at most three small

items in the bin with total bonus at most

3 · 1− 6x

11− 12x
=

3− 18x

11− 12x
≤ 4− 24x

11− 12x
.

This completes the analysis of the final Case 4.

The main result of Section 4 is summarized in the following theorem.

Theorem 17 The PoA of the game in setting S2 is at most 16/11.
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5 Conclusions

We have investigated the price of anarchy in selfish bin packing games under two

types of weight assignments. In the setting of weights which is more sensitive

to item size, the PoA is proven to be between 1.4528 and 16/11 ≈ 1.4545. The

lower bound is definitely not tight, as it can slightly be improved by a more

complicated construction. Also, it is possible that the upper bound could be

decreased a bit. It is very likely, however, that the exact determination of the

PoA will require a rather complicated argument.

Parametric version. The construction in the proof of our Theorem 8 does

not apply any items larger than 1/2. In this way it also yields a modest im-

provement for the parametric version of size-proportional cost sharing in the

case of t = 2 (i.e., where every item size is at most 1/t = 1/2). The previously

best lower bound of 1.464571 on the PoA is due to Epstein et al. [10], which is

now improved to a value slightly larger than 1.464608.

Beyond S1 and S2. Another option would be to introduce a refinement of

setting S2. We follow the harmonic sequence, define weight 1 for items having

sizes above 1/2, weight 1/2 for items having sizes at most 1/2 and bigger than

1/3, weight 1/3 for items having sizes above 1/4 but at most 1/3, and the weight

of any smaller item equals the size of the item. In this setting called S3, perhaps

the PoA is smaller, but even if this is true, the investigation seems hard. An

analogous sequence of settings S4, S5, . . . can be defined in the obvious way;

nevertheless it is not at all clear whether the PoA of these models decreases as

the index gets large.

Restrictions on selfish moves. In connection with the processes of selfish

moves, one can make further refinements inside the weighting classes by impos-

ing restrictions on the moves. We mention two such possibilities:

• there is a complete linear order (or only a partial order) on the set of

items, indicating their relative importance, and an item i is allowed to

move only if no item more important than i can make a selfish move;

• every item is allowed to move, but if an item moves, it must move in the

most advantageous way, i.e., into a bin in which it minimizes its current

cost.

The effect of these assumptions on the PoA, and probably also of some further

ones, would be worth investigating.
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Flexible weights. Finally, we may consider weights which may depend on

the packing. In this model an input of items is given, and the items are already

packed. Depending on the current packing we may enforce the items to move,

by giving appropriate weights to them. Hence, for different packings, the same

item may have different weights. Do we gain from this relaxation in the sense of

decreasing the PoA? Applying the proof of Theorem 4, the PoA cannot go below

4/3, no matter how the weights are given, because no item can move in that

construction. But possibly the PoA can go below our bound 16/11 ≈ 1.4545.

There are no results available for this version so far.
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