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 Abstract: The analysis of track based inertial measurements for common crossing fault 

detection and prediction is presented in the paper. The measurement of spatial acceleration in 

common crossing spike and impact position during overall lifecycle are studied regarding to 

rolling surface fatigue degradation. Two approaches for retrieving the relation of inertial 

parameters to common crossing lifetime are proposed. The first one is based on the statistical 

learning method - t-SNE algorithm that helps to find out similarities in measured dataset. The 

second one is a mechanical approach that handles the data with a fatigue and contact models. 

Both approaches allow the significant improvement of the common crossing fault detection as 

well as its early prediction 

 
 Keywords: Common crossing, Rolling surface fatigue, Inertial measurement systems, Fault 

detection, Predictive maintenance, t-SNE 

1. Introduction 

 Railway turnout is a relatively expensive part of railway superstructure and at the 

same time has disproportionately short lifecycle [1]. The lifecycle of turnout is limited 

with those of its highly loaded elements like switch points and common crossings. A 

common crossing degradation process is characterized with mainly rolling surface 

fatigue damages that are difficult to predict with ordinary inspection methods [2]. The 

unexpectedly appeared faults in common crossing usually demand the train speed 
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limitation and often unplanned maintenance works with long time traffic interruption. 

The unpredictable delays of some trains due to turnout faults can cause far-reaching 

consequences to highly interrelated railway transportation system [1]. Therefore the 

common crossing is one of the limiting factors of railway infrastructure. 

 The rolling surface state of common crossing is inspected with many different 

systems [3], like profile and surface scan or video inspection, microstructure imaging, 

eddy current and ultrasound, vehicle based and track based inertial measurements. 

However, none of the systems cannot yet replace the conventional inspection way with 

expert judgment that is based on visual estimation and acoustic perception of train 

impacts. 

 Vehicle based inertial measurement, e.g. axle box (Electronic System-Analysis in 

Crossing - Vehicle) ESAH-F measurement system [4] that is installed at regular trains, 

allows inspecting many turnouts with low expenses. The application of the system is 

limited to existing fault or wear detection without prediction of common surface 

damages. 

 The systems Electronic System-Analysis in Crossings - Mobile (ESAH-M) (in 

Austrian) and Electronic System-Analysis in Crossings - Stationary (ESAH-S) (in 

Austrian) are track based inertial measurement that are used for the assessment of 

common crossings loading state on German Railways (DB AG). The system ESAH-M 

provides acceleration measurements complemented by positioning sensors on track [5]. 

It is a mobile system that is installed on common crossing after welding and grinding 

works to improve the rolling surface geometry. Additionally the system can be used to 

control the loading state during the lifecycle. The system ESAH-S is a stationary 

modification that provides continuous acceleration measurements. The similar to 

ESAH-S diagnostic system is Sleeper Voids Measurement System (WSHL) (in 

Austrian) [6], which is also tested with DB AG within the project ‘Intelligent switch’. 

 Many research papers as well as a long time measurement experience with inertial 

measurements have shown a significant uncertainty of the measured data. The key 

parameters for the turnout with the application of ESAH-M, were considered in the 

experimental study [7]. The study has shown that the calculated coefficient of variation 

of the measured accelerations can reach up to 63%. The main problem of track based 

inertial measurements is a very high random measurement variance that is much higher 

than the variance due to common crossing state change during its lifecycle. That is 

explained that ESAH-S system is subjected to a big number of unknown and 

unconsidered factors, like the wheel profile irregularities and wear, lateral wheel 

position, etc. One additional systematic error source was studied in [8], where the 

influence of impact position relative the sensor position was considered. It was 

experimentally proved that the varying impact position due to the properties of wave 

propagation could cause up to 72% variation of accelerations measured with one sensor 

system. This altogether leads to a high deviation of measurement results that makes it 

very difficult to estimate the changes of common crossing state. 

 The problem is a typical application field for data mining methods. The methods are 

widely used in transportation research. The assessment of bridges’ conditions with the 

principal component analysis of data collected during visual inspections is described in 

[9]. The promising technique for application in transportation histogram based image 

segmentation method that is presented in [10]. The extraction of objects of interest from 
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point clouds and their automatic classification are used in [11] for highway image data 

processing. The machine learning based predictive detection approach that could be 

used for many similar transportation problems, is introduced in the study of [12]. The 

statistics based feature selection for evaluation of railway ballast consolidation is 

proposed in [13]. A data fusion approach is proposed in Lederman et al. [14], to 

combine acceleration measurements from multiple trains and thus enables to detect 

track changes earlier and more reliable. A data mining approach with sequential feature 

selection is proposed in the study [15] to retrieve the statistical correlation between the 

inertial measurements of operational trains and railway degradation. 

 Except of purely statistical approaches, the combined ones with mechanical model 

approaches are recently used. The analysis carried out in [16] has shown, that despite of 

all power of big data and deep learning methods that are based on enormous datasets, 

the best practical results can be reached in combination with mechanical engineering 

approach. Thus, the mechanical simulation is used for unsupervised change and feature 

detection in [14], while rail-infrastructure monitoring is based on operational trains. 

 In the present paper, the statistical and mechanical approaches are used to recover 

the statistical correlation between the inertial measurement parameters and common 

crossing lifetime and state. 

2. Preliminary data analysis 

 The statistical analysis is based on the acceleration measurements of ESAH-M 

system of DB System-technic together with High Resolution Photo Imaging (HRPI) 

inspection. The measurements were carried out at turnout with 1/10 crossing angle, built 

up common crossing from rail steel R350. The inertial parameters were measured in 11 

lifetime days during common crossing lifecycle 315 days or 29 Mt. Each lifetime days 

included 4-6 measurements of train passing with up to 50 axles. The measurement for 1 

axle consists of 3 acceleration components and the impact position. The overall 

statistics contains 2263 observations. HRPI inspection was carried out until the first 

visible surface damages appeared at 275 day (or 28 Mt (million tons)). Fig. 1 shows the 

images from the lifecycle beginning, and the first damages. 

 

Fig. 1. The rolling surface state inspection images 

 The change of maximal impact accelerations and their mean values over the switch 

lifecycle is depicted in Fig. 2. All three acceleration components are characterized with 
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a high random variation of measured values. No systematic change of acceleration mean 

values can be observed. The increased accelerations after 250 days of the lifecycle can 

be explained with the appeared damages itself. The similar progress can be observed at 

Fig. 3 of impact longitudinal position. The insignificant systematic mean value variation 

appears in first 100 days and after that is almost constant in range 290-320 mm. The 

mean value variation is many times covered with the random variance of each 

measurement. 

 

Fig. 2. Maximal impact accelerations and their mean values over the common crossing lifecycle 

 

Fig. 3. Impact longitudinal positions over the common crossing lifecycle 

 Apparently, no conclusions about the common crossing state could be done with 

only mean value analysis of acceleration components and impacts position. In the 

following chapters two approaches are proposed that enable us to recover the hidden 

relations in the statistic and use them to estimate common crossing state. 

3. Statistical approach to recover the relation to life time 

 The algorithm t-distributed Stochastic Neighbor Embedding (t-SNE) is used for the 

statistics structure analysis. This is a machine learning algorithm for dimensionality 

reduction that is well-suited to visualizing high-dimensional data [17]. High 
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dimensional data are embedded in low two or three dimensions in a way that respects 

similarities between points. The result of embedding is a plot of original data points that 

are grouped in clusters with same similarity. Therefore, the result is only qualitative 

expression of similarities in the statistic without considering their reasons. 

 The t-SNE algorithm is based on two calculation steps. In the first step the similarity 

matrix is determined on construction of a distance probability distribution over pairs of 

high-dimensional data. The different distance metrics can be used, such as ‘Chebychev’, 

‘Mahalanobis’ metrics etc., the usual is ‘Euclidean’. The value of similarity is 

controlled with a parameter of the effective number of local neighbors of each point that 

is called perplexity. In the second step a similar probability distribution over the points 

is projected in the low-dimensional plot. The iterative optimization procedure is used to 

minimize the Kullback-Leibler divergence between a t-distribution in the low-

dimensional space and a Gaussian distribution in the high-dimensional space [18]. 

 The results of t-SNE analysis for the common crossing statistics are shown in Fig. 4. 

All the observations are plotted as points with 3 different colors according to the 

lifetime. Remark that there are no clear groups belonging to the same lifetime. Some 

low prevailing concentration of red points and blue points is visible, but the zones are 

relatively small and cannot be exactly separated from overall statistics. The green points 

that correspond to the middle lifecycle are almost uniformly distributed. 

 

Fig. 4. The results of t-SNE analysis (Pc1-first principal component, Pc2-second principal 

component) 

 Two main clusters can be clear observed: the smaller one contains about 10% 

observations. The perplexity parameter is used 50 points. The right cluster is almost 

completely assigned to the observations with the vertical accelerations more than 150 g 

and impact points with coordinates more than 360 mm. The points are marked with 

cross.  
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 There are some points that are not marked in the right cluster and also some few 

crossed points in the big cluster. The outlier points could be explained with the fact that 

the longitudinal and horizontal accelerations are not taken into account. For simplicity 

only the vertical acceleration and impact position parameters are taken into account. 

 The data points selected in t-SNE analysis are used to study the correlation to 

lifetime. Fig. 5 shows the accelerations and their mean values over the lifecycle for 

observations with vertical acceleration more than 150 g and impacts zone further than 

360 mm. The apparent increase of vertical and horizontal accelerations until the damage 

can be observed. The vertical acceleration dataset is fitted with cubic relation. The cubic 

fit does not show the best results for all lifecycle comparing to the first or second order 

polynomials. The reason of the choice is the lowest polynomial order that can describe 

the inherent, typical technical system deterioration process. The fit shows the 

monotonous increase of vertical accelerations until about 200 days. After that, the 

growth stops and even falls down. 

 

Fig. 5. Maximal impact accelerations and their mean values over the switch lifecycle for 

observations with vertical acceleration more than 150 g and impacts zone further than 360 mm 

 Nevertheless the evident improvement of the relation, comparing this to the initial 

data (Fig. 2), the reliability of the prediction is relatively low. The systematic increase 

of predicted acceleration over the lifetime is about the same as the uncertainty range 

with 95% function prediction reliability. The main reason is a low number of 

observations. Additionally, the relative high variation between some measurements 

could be caused by the short time of measurements (4-6 trains) that do not take into 

account all train types as well as many other factors. 

 Remark that the maximal values of the accelerations show much higher increase 

than their mean values. That means that the prediction could be further improved, if 

more observations could be provided. Interesting is the position of impacts points found 

from t-SNE analysis (more than 360 mm) corresponds to those with damage appeared 

near the lifetime end (Fig. 1). 
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4. Mechanical approach to recover the relation to lifetime 

 The analysis has shown that the strong statistical correlation can be found in the 

relative small subgroup of observations. This subgroup differs from the overall statistic 

with the upper vertical acceleration range and the small impact zone, that near coincide 

with the damage zone. However, the relation is found, the statistical approach cannot 

explain the reason of damage appearance. For that reason, the simple mechanical 

approach is used to recover the relation to the lifetime of the common crossing. The 

approach is based on the well-known relations between loadings and cycles in fracture 

mechanics, surface curvature influence from contact mechanics, wear influences. 

 The distributions of impact positions and accelerations are studied at first. Fig. 6 

shows a scatter plot of observations of the vertical acceleration and impacts position 

together with their distribution histograms. The scatter plot depicts the measurement 

time during the lifecycle. 

 

Fig. 6. The vertical acceleration and impact position distribution 

 Visual estimation of the diagram shows no evident prevailing relation of 

measurement time to impact position and vertical acceleration. Except of some small 

zones with big loading (>270 g) and the beginning of impact zone (< 250 mm) where all 

measurements correspond to early lifetime. The impact zone (> 300 mm) in the same 

loading range differs in contrast to the first one in almost absent early lifetime 

observations. 

 The impact distribution demonstrates the maximal number of impacts in range 220-

320 mm. The vertical acceleration distribution is broader with the most number of 

impacts in range 100-250 g. 
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 Fig. 7 shows the detail analysis of impact position distribution divided in different 

acceleration classes. The 3 lower histograms for loading classes up to 300 g have 

similar form as the upper histogram for the overall statistics. The histogram for loading 

class more than 300 g is quite different with maximal number of loadings in zone 350-

425 mm. The zone corresponds to the inspected damage (Fig. 1) at the end of frog 

lifecycle. 

 

Fig. 7. Impact position distribution for loading classes 

 From the analysis it is evident that the damages are not caused with major loading 

set but with the small number of very big loadings. The damage zone  

350-450 mm is subjected to 10 measured impacts with loading more than 300 g, 160 

impacts of loading class 200-300 g and 120 impacts of lower loading. To take into 

account the influence of all loading classes the equivalent loading impacts are calculated 

with the relation: 

m
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= −

σ
σ 1 , (1) 

where 1−σ  is the base fatigue stress limit corresponding to the NG loading cycles; m is 

the material dependent fatigue parameter; 1−> σσa  is the stress for calculation of N 

loading cycles. 

 According to the relation (1), under the simplified assumption of dynamic, contact 

and wear influences, the following equation of equivalent impacts number Neq is  

derived [19]: 
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where Nref  is the reference maximal load cycles for ordinary track; refz
⋅⋅

 is the reference 

acceleration that corresponds to Nref  ; min is the inertial mass; Pst is the statistical wheel 

loading; 
⋅⋅
z  is the impact acceleration, to which Neq number of impacts is calculated; 

f1(x), f2(x), f3(x) are the influence parameters of contact and wear and tension depending 

on longitudinal coordinate of impact. 

 The results of equivalent impact calculation are presented in Fig. 8 in form of 

accumulated impact distribution up to some time. The diagram shows the movement of 

maximal often loaded rolling surface from 220 mm at the beginning to 400 mm at the 

end of lifecycle. 

 

Fig. 8. Equivalent impact position distribution (left: up to 100 days, middle: up to 230 days, right: 

overall lifecycle) 

 The maximal value of equivalent impacts per 25 mm bar depending on the common 

crossing lifetime is depicted in Fig. 9 together with power and exponential fits. The 

diagram shows the initial step of Neq	 parameter due to high loading impacts at the 

lifetime beginning. After that the parameter stays almost the same until 220 days of 

operation. After that the parameter grows quickly. 

 The stepwise growth of equivalent impact curve is explained with the fragmental 

and short experiment measurement and insufficient amount of trains a day. The real 

relation with more statistic information should be more fluent as shown with fitted 

exponential and power curves. 

 The depicted Fig. 5 cubic fit of vertical acceleration can be significantly improved 

with taking into account the mechanical consideration. According to it, each data point 

becomes different weight of influence, depending on the equivalent impact number. 

Fig. 10 shows the cubic fit with the new approach. The data points with high 

acceleration have usually a high weight and thus pull the regression line. The influence 

of data points with low accelerations is reduced. The approach enables us to increase 
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significantly the coefficient of determination of the prediction, though the deviations 

predicted are the same as for the initial data. 

 

Fig. 9. The change of the maximal equivalent impact density over the common crossing lifecycle 

 

Fig. 10. Improvement of the statistical prediction with the mechanical approach 

5. Discussion 

 The presented study shows the comparing results of statistical and mechanical 

approaches for recovering the relation of measured dynamical parameters to the lifetime 

of the common crossing. Both statistical and mechanical approaches are able to find 

clear relations. Moreover, the mechanical approach, distinct to statistical, can determine 

the accelerated changes of parameters, and thus can be used for prediction of rolling 

surface damages. The significant changes could be observed up to 50-100 days before 

the first damages appear. Statistical approach could produce the better result if more 

data were present. 
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 Nevertheless, the mechanical approach has a significant drawback - it is based at 

accumulated statistic data. This approach could be used with a stationary monitoring 

system that collects data continuously. The portable inspection system has the 

measurement information from relatively short span of lifetime without the information 

before. The fusion of statistical and mechanical approaches is a most promising way to 

solve the problem. 

6. Conclusion and subsequent studies 

 The early prediction of turnout faults is crucial for the reliability of railway 

transportation networks. The inertial measurements are one of the perspective 

techniques for creating cost efficient predictive and prescriptive maintenance system. 

This paper shows how the use of modern statistical tool together with simple 

mechanical ones helps to recover the statistical relationship between the inertial 

measurement and the common crossing lifetime. The relationship could be used for 

common crossing early fault prediction. The analysis has shown that the faults appear 

not accidentally and are caused with some small set of critical wheel impacts. The 

reason of the impact formation is still unclear and is the aim of the subsequent studies as 

well as the improvement steps of the measurement system: 

1. Taking into account the information not only about the maximal acceleration 

and its position, but also other 2 components together with spectral parameters. 

Derivation of one parameter that represents common crossing state with 

principal component analysis and supervised learning methods; 

2. Exclusion of systematical measurement errors, such as error due to different 

wave decay value for different distance from impact to sensor; 

3. Estimation of the necessary configuration for the measurement system, the 

acceleration sensors position, number of sensors; 

4. Gathering the additional information from new data sources, and more useful 

utilizing the existing data sources, e.g. estimation of analogous information from 

proximity sensors to determine the cross position of wheel flange in a flange 

way gap. 
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