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Abstract: A new synthetic method for obtaining [RhCl(cod)(NHC)] complexes (1–4) (cod = η4-1,5-
cyclooctadiene, NHC = N-heterocyclic carbene: IMes, SIMes, IPr, and SIPr, respectively) is reported
together with the catalytic properties of 1–4 in nitrile hydration. In addition to the characterization of
1–4 in solution by 13C NMR spectroscopy, the structures of complexes 3, and 4 have been established
also in the solid state with single-crystal X-ray diffraction analysis. The Rh(I)-NHC complexes
displayed excellent catalytic activity in hydration of aromatic nitriles (up to TOF = 276 h−1) in
water/2-propanol (1/1 v/v) mixtures in air.

Keywords: hydration; metal catalysis; N-heterocyclic carbenes; nitriles; rhodium; synthesis of
organometallics

1. Introduction

From the viewpoint of the industrial and pharmacological applications, amides are important
compounds in many fields and several ways are reported to obtain amides from nitriles [1,2]. Hydration
of nitriles to amides is a 100% atom economic reaction, however the procedure is biased by selectivity
issues. Traditionally, hydration of nitriles has been performed in the presence of strong inorganic acids
(H2SO4) or bases (NaOH) under harsh conditions, that often results in over-hydrolysis and produces
undesired carboxylic acids. To avoid this problem, in the last decades several remarkable catalytic
systems have been developed to stop hydration at the amide stage, e.g., using enzymes as biocatalysts
(nitrile hydratase, NHase) [3], nanocatalysts such as a Fe3O4 magnetic nanoparticles-supported Cu-NHC
complex [4], or ruthenium hydroxide nanoparticles on magnetic silica [5], silver nanoparticles [6], and
other heterogeneous [7–10] or homogenous catalysts. A broad spectrum of transition metal complexes
based on rhodium [11,12], ruthenium [12–15], nickel [16], osmium [17], and gold [18] were employed
as catalysts, and the field has been reviewed from various aspects [19–29].

Transition metal-free processes have been described, too, such as the CsOH/DMSO superbase
system [30], NaOH as catalyst [31], or tBuOK under anhydrous conditions [32]. Nitrile hydratases
catalyze the hydration of nitriles to the corresponding amides under softer conditions and have
been successfully used, for example, for production of levetiracetam (Keppra®) for the treatment
of epilepsy [3]. However, the application of most NHases is limited because of their substrate
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specificity, and the rapid decay of the catalytic activity at temperatures higher than 10–30 ◦C, not
mentioning their high cost. Despite all the mentioned results, the development of efficient new
catalysts is still required. Although the homogenous organometallic catalysts give the target amides
with high selectivity and in high yield, many of the reported reactions were carried out at high
temperature (> 150 ◦C) [33], or in several cases required specific reaction conditions such as microwave
irradiation, inert atmosphere or long reaction times. For example, Oshiki et al. described a very efficient
catalyst [33], cis-[Ru(acac)2(PPh2py)2] (acac = acetylacetonate, PPh2py = diphenyl-2-pyridylphosphine)
for hydration of benzonitrile at 180 ◦C in 1,2-dimethoxyethane under argon with the highest turnover
frequency reported to date for this reaction, i.e., TOF = 20,900 h−1 (TOF = mol amide × (mol catalyst ×
h)−1). However, this excellent activity was observed only at high temperature; the TOF value dropped
to 222 h−1 upon reducing the temperature to 150 ◦C, and no product was observed at 80 ◦C.

The field of transition metal complex-catalyzed nitrile hydration is dominated by ruthenium-based
catalysts [7,10,12–14,33,34] and only a few rhodium catalysts can be found in the literature for this
transformation. Ajjou et al. reported that the water-soluble rhodium complex generated in situ
from [RhCl(cod)]2 (cod = η4-1,5-cyclooctadiene) and P(m-C6H4SO3Na)3 (mtppts) very effectively
catalyzed the hydration of nitriles under basic conditions. As an example, benzonitrile yielded the
corresponding amide quantitatively in 24 h at 90 ◦C and at pH of ~11.7 [35]. Saito et al. described a
Rh(I)-complex prepared in situ from [Rh(cod)(OMe)]2 and PCy3 (Cy = cyclohexyl), as a remarkable
hydration catalyst for nitriles in 2-PrOH at 25 ◦C. The nitrile substrates included aromatic, aliphatic, and
olefinic substituents, however, at this low temperature, 24–72 h reaction time was required to achieve
quantitative yields [36]. Bera et al. have found that in the presence of a base, [Rh(cod)(κC2-PIN)Br] (PIN
= 1-isopropyl-3-(5,7-dimethyl-1,8-naphthyrid-2-yl)imidazol-2-ylidene) showed outstanding catalytic
activity for hydration of organonitriles in 2-PrOH. A turnover frequency of 20,000 h−1 was possible to
achieve for acrylonitrile and it was demonstrated that the naphthyridine group enhanced the hydration
activity of the metal centre [37]. Recently, Cadierno et al. disclosed that [RhCl(cod){P(NMe2)3}]
promoted very efficiently the selective hydration of an array of nitriles in water without the addition of
a base or other additive [11].

In the last three decades, N-heterocyclic carbene (NHC) ligands and the transition metal complexes
of them have attracted enormous interest in organometallic chemistry, as well as catalysis [38–41]. It is
therefore surprising that Rh(I)-NHC complexes have not been employed for catalysis of nitrile hydration
reactions in aqueous or partly aqueous systems. One reason for this relative lack of prominence
may be in that generally, the Rh(I)-complexes—with a few exceptions—were found less reactive than
the Ru(II)-based complex catalysts, and in the hydration of benzonitrile they were characterized
with turnover frequencies TOF < 100 h−1. [RhCl(NHC)(cod)] complexes were first reported in 1974
by Lappert et al. [42], followed by pioneering contributions of Herrmann et al. [43]. Generally,
[RhCl(cod)(NHC)] complexes are possible to be prepared by deprotonation of the imidazolium salts in
the presence of [RhCl(cod)]2, and the reported procedures differ only in the nature of the deprotonation
agent. The synthesis may involve the direct reaction of the free carbene (isolated or in situ generated)
with [RhCl(cod)]2 [44]; reaction of an imidazolium halide salt with a [Rh(µ-OR)(cod)]2 alkoxide
complex [45]; and transmetallation of [RhCl(cod)]2 with silver-NHC complexes [46]. In 2009, it was
discovered that imidazolium-2-cyanides can transfer NHC ligands to rhodium complexes and this
finding opened a new pathway of synthesis of [RhCl(NHC)(cod)] complexes, too [47]. Plenio et al.
also reported the one-step synthesis of [RhCl(NHC)(cod)] complexes using K2CO3 as base in acetone
at 60 ◦C [48]. tBuOK in THF could also be used at room temperature [49].

The first selective catalytic hydration of nitriles under anhydrous conditions in the presence
of [RhCl(cod)(IMes)] as the catalyst was reported in 2009 by Lee et al. [50]. Hydration of
nitriles was achieved with propionaldoxime as a water source; with 1 mol% catalyst, hydration
of 4-methoxybenzonitrile yielded the respective amide with 87% conversion at 110 ◦C in 6 h. Later this
group reported the selective hydration of nitriles into the respective amides on the catalytic action of
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Wilkinson’s catalyst with acetaldoxime as the water source; various functional groups were compatible
with the reaction conditions [51].

To the best of our knowledge, there are no [RhCl(cod)(NHC)] type Rh(I)-catalysts reported until
now for the selective hydration reaction of nitriles with water in aqueous or partly aqueous solvents.
Therefore, we initiated a study of catalytic nitrile hydration with the use of the known [RhCl(cod)(NHC)]
(1–4) complexes with the NHC ligands IMes, SIMes, IPr, and SIPr, respectively (Figure 1) [44,46,48,49,52–
56]. In this article, we report on a simple, one-step synthetic procedure for obtaining these complexes
using [RhX(cod)]2 (X = Cl–, OH–) as a metal precursor, the respective imidazolium/imidazolinium
chlorides, and K2CO3 as the deprotonating agent, in toluene at 70 ◦C. Successful application of
complexes 1–4 for the selective hydration of several aromatic and heteroaromatic nitriles to the
corresponding amides is also described in detail below.
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Figure 1. The Rh(I)-NHC complexes 1–4 used in our study as catalysts for selective nitrile hydration.

2. Results and Discussion

2.1. Synthesis and Characterization of the [RhCl(cod)(NHC)] Complexes 1–4

In this work, we explored the applicability of Rh(I)-N-heterocyclic complexes 1–4 (Figure 1) for
catalysis of hydration of aromatic nitriles. We developed a synthetic method for obtaining these known
compounds [44,46,48,49,52–56], which does not require the use of the isolated free carbenes or the use
of the corresponding Ag(I)-NHC transmetallating agents.

In general, the synthesis of 1–4 (Scheme 1) involved stirring of the respective 1,3-diarylimidazolium
or 1,3-diarylimidazolinium salt in toluene at 70 ◦C together with [RhCl(cod)]2 and K2CO3 as an efficient
and mild base (A) [47] or with [Rh(OH)(cod)]2 (no base added; B). After removal of the toluene solvent
the products were dissolved in CH2Cl2-ethyl acetate and purified by passing through a short silica
column; complexes 1–4 were isolated in 58–88% yield.
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Scheme 1. Synthesis of 1 from [RhCl(cod)]2 and [IMesH]Cl with K2CO3 as deprotonating agent.

The purity of the complexes was checked by 1H and 13C{1H} NMR spectroscopy. The 13C{1H}
NMR spectra of all complexes displayed the diagnostic Rh(I)-C(carbene) doublet resonances at 183.2
and 185.5 ppm (1 and 3), and 212.4 and 214.9 ppm (2 and 4), respectively (further spectral details in the
Materials and Methods Section).

Single-crystals of 4 could be obtained by crystallization from chloroform at room temperature.
In addition, both 3 and 4 yielded single-crystals from benzene, however, these crystals contained
solvating benzene molecules, too. (Further experimental details of the X-ray structure analysis can be
found in Supplementary Materials). The crystals were subjected to X-ray diffraction measurements.
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The respective capped sticks representations are shown on Figures 2–4, while the most important bond
distances and bond angles are found in Tables 1–3.
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Table 1. Comparison of the most important bond lengths (Å) angles (◦) of [RhCl(cod)(IPr)] (3) [54] and
[RhCl(cod)(SIPr)] (4) crystallized from CHCl3 (this work).

[RhCl(cod)(IPr)] (3) [54] [RhCl(cod)(SIPr)] (4)

Rh–Ccarbene 2.056(4) 2.052(1) 2.043(3) 2.053(1)
Rh–Cl 2.3467(12) 2.3713(12) 2.3721(11) 2.3466(10)
C2–C3 - - 1.501(7) 1.487(7)
C2=C3 1.328(6) 1.324(5) - -
Ccarbene–Rh–Cl 85.61(11) 88.26(11) 86.92(9) 84.32(10)

Table 2. The most important bond lengths (Å) angles (◦) of the four individual molecules in the unit
cells of the benzene solvate of 3, i.e., [RhCl(cod)(IPr)]_benzene_3.

[RhCl(cod)(IPr)]_benzene_3

Rh–Ccarbene 2.050(4) 2.031(4) 2.032(4) 2.051(4)
Rh–Cl 2.3752(11) 2.3726(10) 2.3706(10) 2.3775(10)
C2=C3 1.330(6) 1.338(6) 1.339(6) 1.333(6)
Ccarbene–Rh–Cl 89.01(11) 88.33(11) 87.76(11) 89.43(10)

Table 3. The most important bond lengths (Å) angles (◦) of the four individual molecules in the unit
cells of the benzene solvate of 4, i.e., [RhCl(cod)(SIPr)]_benzene_4.

[RhCl(cod)(SIPr)]_benzene_4

Rh–Ccarbene 2.028(7) 2.034(7) 2.046(7) 2.044(7)
Rh–Cl 2.3800(17) 2.3746(17) 2.3797(18) 2.3781(4)
C2–C3 1.515(11) 1.505(11) 1.497(11) 1.524(10)
Ccarbene–Rh–Cl 87.40(19) 86.03(19) 88.80(18) 88.08(19)

The solid-state crystal structure of 3 has already been determined by single crystal X-ray diffraction
and was resolved without solvent [54]. This gives a possibility to compare the structures of 3 and 4
(Table 1). The unit cell of [RhCl(cod)(SIPr)] (4), obtained from chloroform, does not contain solvent
molecules, and, in contrast to [RhCl(cod)(IPr)] (3) [54] (P21/c), it crystallizes in the monoclinic P21/nspace
group. There are two neutral Rh-complex molecules in the unit cells of both compounds. The lengths
of the unit cell edges, and the unit cell angles show only slight differences. This is not surprising,
since the sp2 or sp3 C-atoms in the IPr, and SIPr ligands, respectively, do not influence significantly
the measures of the unit cell (the same is true for the two extra hydrogen atoms in SIPr). There
are no significant differences in the Rh–Ccarbene and in the Rh–Cl bond lengths, either, however, the
C2–C3 bond lengths in the [RhCl(cod)(SIPr)] (4) molecules are 1.501(7) Å, and 1.487(7) Å, respectively,
which unambiguously refers to sp3 carbon atoms. Saturation of the heterocyclic ring does not alter
significantly the Ccarbene–Rh–Cl angles, either. Interestingly, the data of the unit cells of 3 and 4 are
almost identical to those of [IrCl(cod)(IPr)] [57]; the data are compared in Tables S2 and S3.

Crystallization of [RhCl(cod)(IPr)] and [RhCl(cod)(SIPr)] from benzene leads to incorporation
of solvent molecules into the lattice, yielding crystals of [RhCl(cod)(IPr)]_benzene_3 and
[RhCl(cod)(SIPr)]_benzene_4. Unfortunately, the benzene molecules are disordered. Both
[RhCl(cod)(IPr)]_benzene_3 and [RhCl(cod)(SIPr)]_benzene_4 crystallize in the monoclinic CC (no.
9) space group, and the unit cells contain four different neutral Rh(I)-complexes together with eight
benzene molecules. In the four molecules of [RhCl(cod)(IPr)]_benzene_3 in the unit cell, there are
no significant differences in the Rh–Cl bond lengths, however, the Rh–Ccarbene distances are slightly
lower (2.031–2.051 Å) than the average Rh–Ccarbene distances in similar complexes, 2.049 Å (CSD
Version 5.40, 2019). The crystal structure of [RhCl(cod)(SIPr)]_benzene_4 is very similar to that of
[RhCl(cod)(IPr)]_benzene_3. In this case, too, the average Rh–Ccarbene distances (2.028–2.046 Å) are
somewhat shorter than those in the benzene-free crystals of [RhCl(cod)(SIPr)] (3). The C2–C3 distance
in [RhCl(cod)(IPr)]_benzene_3 is 1.330–1.339 Å which refers to carbon atoms with sp2 hybridization,
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while the corresponding C2–C3 bond length in [RhCl(cod)(SIPr)]_benzene_4, i.e., 1.524–1.497 Å, agrees
well with the presence of sp3-hybridized carbon atoms.

2.2. Hydration of Aromatic Nitriles Catalyzed by the [RhCl(cod)(NHC)] Complexes 1–4

Due to the importance of amides in the synthesis of important pharmaceuticals, there is a strong
incentive to develop new transition metal catalysts which are able to facilitate the selective hydration
reaction of aliphatic, as well as aromatic nitriles to corresponding amides (Scheme 2) with high activity
under mild conditions (i.e., at temperatures below 100 ◦C, and preferably close to room temperature).
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It was found that complexes 1–4 efficiently catalyzed the hydration of benzonitrile to benzamide
in a water/2-propanol = 1/1 mixture in air and under mild conditions (≤80 ◦C). The choice of 2-propanol
as the organic component of the solvent was based on its unique favourable effects on certain reactions,
e.g., hydrogenation and transfer hydrogenation of ketones [58]. The reactions did not display an
induction period (Figure S1) and they proved completely selective; no products other than benzamide
were detected by GC-MS or 1H NMR spectroscopy. With these catalysts, fast hydration of benzonitrile
was observed only in the presence of bases. The data in Table 4 show that in the lack of a base no
reaction of benzonitrile was observed in 1.5 h, and even after 2 h the conversion reached only 3%.
Conversely, with bases such as tBuOK, KOH, Na2CO3, and NaOH at a [base]/[Rh] = 1/1 ratio, the
conversions in 1.5 h were in the 50–60% range and were not strongly dependent on the choice of the
particular base. The use of NaOH resulted in the highest conversion, and therefore it was chosen
for further studies. The possible catalytic effect of the bases in Table 4 were also checked in the
hydration of benzonitrile in the absence of catalysts 1–4. Under the conditions used, conversion of
benzonitrile to benzamide was < 1% with all four bases (only a trace of product could be detected
by gas chromatography). These results show that the contribution of base-catalyzed hydration is
negligible compared to the metal-complex catalyzed transformation.

Table 4. Effect of various bases on the hydration of benzonitrile catalyzed by [RhCl(cod)(IMes)] (1).

Entry Base Conversion (%) TOF a (h−1)

1 - 0(3 b) 0(4 b)
2 tBuOK 52 69
3 KOH 52 69
4 K2CO3 56 75
5 NaOH 59 79

Conditions: 1 mmol benzonitrile, 0.5 mol% [RhCl(cod)(IMes)] (1), 0.005 mmol base, 1.5 mL 2-PrOH, 1.5 mL H2O,
80 ◦C, 1.5 h. a Turnover frequencies were calculated from the conversions at the indicated reaction times. b 2 h.

The effects of various reaction parameters for the hydration of benzonitrile were studied in detail
using complex 1 as the catalyst. The progress of the reactions could be conveniently monitored by gas
chromatography. Representative results are summarized in Table 5.
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Table 5. The effect of various reaction parameters on the hydration of benzonitrile catalyzed by
[RhCl(cod)(IMes)] (1).

Entry Catalyst (mol%) Base a Phosphine T ◦C t (min) Conversion (%) b TOF c (h−1)

1 1 NaOH - 40 120 48 (0) 24
2 1 NaOH - 50 120 72 (1) 36
3 1 NaOH - 60 120 82 (1) 41
4 1 NaOH - 70 120 91 (3) 45
5 1 NaOH - 80 120 98 (6) 49
6 1 NaOH - 80 10 46 (1) 276
7 1 NaOH - 80 20 63 (1) 189
8 1 NaOH - 80 30 74 (2) 148
9 1 NaOH - 80 60 86 (3) 86

10 1 NaOH - 80 90 94 (5) 63
11 5 - - reflux 60 0 0
12 5 - - reflux 120 18 2
13 5 - - reflux 180 26 2
14 5 NaOH - reflux 10 96 115
15 5 NaOH - reflux 20 97 58
16 5 NaOH - reflux 60 >99 20

17 5 - 0.05 mmol
PTA reflux 60 17 3

18 5 - 0.15 mmol
PTA reflux 60 70 14

19 5 - 0.25 mmol
PTA reflux 60 78 16

20 5 - 0.05 mmol
mtppms reflux 60 75 15

21 5 - 0.15 mmol
mtppms reflux 60 76 15

22 5 - 0.25 mmol
mtppms reflux 60 94 19

Conditions: 1 mmol benzonitrile, 2-PrOH/H2O = 1:1 V = 3 mL. a [NaOH]/[Rh] = 1; b Conversions of base-catalyzed
hydrations in parentheses (NaOH only). c Turnover frequencies were calculated from the conversions at the
indicated reaction times.

The data in Table 5 show that [RhCl(cod)(IMes)] (1) is an active catalyst for benzonitrile hydration.
The TOF values (up to 276 h−1) compare well with those of most transition metal catalysts although
fall behind the highest activities [33]. With increasing temperatures, the yield of benzamide increased
and reached a maximum (98%) at 80 ◦C. It is also evident from Table 5, that under the applied reaction
conditions, 2 h is the optimum reaction time for the catalytic hydration of benzonitrile to benzamide. For
the entries 1–10 of Table 5, the effect of the base (NaOH) alone (i.e., in the absence of the Rh(I)-complex
catalyst) has been checked and the results are shown in parentheses in the Conversion (%) column
of the Table, next to the values obtained with catalyst 1 + NaOH. Here, again, it can be concluded,
that the base-catalyzed hydration increases the total benzamide yield only to a minor extent even at
higher reaction temperatures and longer reaction times (entries 5 and 10). In order to determine the
efficiency of the catalyst in the absence of NaOH, we had to increase the catalyst concentration to 5
mol% (entries 11–13). Even then, no reaction was observed at reflux conditions (approximately 81 ◦C,
see Experimental) in 60 min, and only 26% conversion of benzonitrile was obtained after 180 min
reaction time. In contrast, the reaction with 1 + NaOH led to 86% conversion already after 10 min
(entry 14).

Table 5 also shows the effect of the water-soluble tertiary phosphines PTA
(1,3,5-triaza-7-phosphaadamantane) and mtppms-Na (sodium diphenylphosphinobenzene-3-sulfonate
or monosulfonated triphenylphosphine Na-salt). Compared to catalyst 1 (entry 11, 0% conversion
in 60 min), both PTA and mtppms increased the reaction rate and at a [phosphine]/[Rh] ratio their
effect is about the same (entries 18 and 21). In general, however, mtppms proved to be more effective.
Nevertheless, with regard to the rate increase, both phosphines were much inferior to NaOH (entry 14).
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The precedents in the literature show that with bmim (1-butyl-3-methyl-imidazole-2-ylidene) as
the NHC ligand, PTA and mtppms form [Rh(cod)(bmim)(PTA)]Cl, and [Rh(cod)(bmim)(mtppms)] (a
neutral zwitterionic complex), respectively [59]. In accordance with these earlier results, we expect that
tertiary phosphines coordinate to the central Rh(I) ion in [RhCl(cod)(NHC)] complexes. However, the
resulting complex species are coordinatively saturated and coordination of the nitrile substrate and/or
H2O or OH– to the metal ion in a Rh(I)-complex seems unlikely. In the case of [RuCl2(PTA)4]-catalyzed
nitrile hydration, Frost suggested that the increased catalytic activity in the presence of a large excess
of PTA was due to the pH shift into the alkaline region in concentrated PTA solutions caused by
the protonation of PTA [34]. This may happen in our reactions with added PTA, too, however, it is
certainly not the case with mtppms which is protonated only in concentrated aqueous acid solutions.
Nevertheless, since the roles of PTA and mtppms were not clarified in detail, our observations on the
effect of PTA and mtppms on the Rh(I)-complex catalyzed hydration of benzonitrile can be regarded
only as an information of practical importance. Details of these phosphine effects were not scrutinized.

Table 6 presents the results of benzonitrile hydration with [RhCl(cod)(NHC)] complexes 1–4. It can
be seen that in the presence of NaOH, high conversions (93 – >99%) could be obtained in reasonable
reaction times (1–3 h) with all four catalysts (entries 2, 5, 8, 11). Conversely, in the absence of NaOH,
each catalyst showed only low activity, and the highest conversion under such conditions was only 26%
in 3 h (entry 1). It seems from the conversion data for the first hour of the reactions, that the evolution
of the real catalytic species in the water/2-propanol mixed solvent from the precursor complexes 1–4
and NaOH needs noticeable time. It is fast with 1 and 2 (entries 2, 5), somewhat slower with 4 (entry
11) and significantly slower in the case of 3 (entry 8). Note, that even with catalyst 3, the conversion of
benzonitrile to benzamide reached 93% in 3 h. Compared to NaOH, lower rates were achieved with
PTA in the case of all four catalysts, similar to the observations discussed above in conjunction with
Table 5.

Table 6. Hydration of benzonitrile with [RhCl(cod)(NHC)] catalyst 1–4.

Entry Catalyst Conversion (%)

1 h 2 h 3 h

1 1 0 18 26
2 1 + NaOH >99 - -
3 1 + PTA 70 71 77
4 2 0 0 10
5 2 + NaOH 99 >99 -
6 2 + PTA 69 78 88
7 3 0 1 2
8 3 + NaOH 66 86 93
9 3 + PTA 54 61 64

10 4 0 0 12
11 4 + NaOH 94 98 -
12 4 + PTA 1 47 53

Conditions: 1 mmol benzonitrile, 5 mol% [RhCl(cod)(NHC)], 1.5 mL 2-PrOH, 1.5 mL H2O, 0.05 mmol NaOH or
0.15 mmol PTA, reflux temperature.

[RhCl(cod)(IMes)] (1) proved suitable for hydration of benzonitriles with both electron donating
and electron withdrawing substituents (Table 7). High conversions were achieved with as low as 1
mol% of catalyst. Para-chlorobenzonitrile showed more efficient conversion to p-chlorobenzamide
than p-methylbenzonitrile which has an electron donating group in 4-position. Electron-withdrawing
groups make the nitrile carbon more susceptible to nucleophilic attack by the activated water molecule
or OH−. These findings are in agreement with the previously reported observations [6,10].
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Table 7. Hydration of various nitriles into amides with catalyst 1 with NaOH and catalysis of the same
reaction with NaOH only.

Entry Nitrile t(h)
1 + NaOH NaOH

Conversion (%) TOF b(h−1) Conversion c (%)

1
benzonitrile

1 93 93 3
2 2 98 49 6
3

4-chlorobenzonitrile
1 88 88 4

4 2 94 47 6
5 4-methylbenzonitrile 1 70 70 1
6 2 84 42 2
7 4-chlorophenyl-acetonitrile 1 58 58 0
8 2 62 31 2

Conditions:a 1 mol% [RhCl(cod)(IMes)] (1), 1 mmol nitrile, 0.01 mmol NaOH, 1 mL 2-PrOH, 1 mL H2O, 80 ◦C. c

Same as in a, but without [RhCl(cod)(IMes)] (1). b Turnover frequencies were calculated from the conversions at the
indicated reaction times.

The conversions of various pyridine-carbonitriles to the corresponding amides (picolinamide,
nicotinamide, isonicotinamide) were explored with 5 mol% catalyst 1 and the results are summarized
in Table 8. Remarkably, the reactions of 3- and 4-pyridinecarbonitrile proceeded efficiently even in the
absence of NaOH; apparently the pyridine moiety provided the sufficient basicity. The coordinating
ability of the pyridyl functionality of 2-pyridinecarbonitrile reduced the activity as a catalyst of
the complex and the reaction resulted only in 9% picolinamide. However, heteroaromatic nitriles
with the N heteroatom adjacent to the β or γ position of the CN group (3-pyridinecarbonitrile and
4-pyridinecarbonitrile) showed high reactivity. Addition of three equivalents of PTA increased the
catalytic activity in all cases, and 3-pyridinecarbonitrile, too, was hydrated with > 99% conversion in
only 1 h.

Table 8. Hydration of substituted pyridinecarbonitriles with catalyst 1 in the absence of added base.

Entry Substrate Phosphine Conversion (%)

1 h 2 h 3 h

1 2-pyridinecarbonitrile - 6 8 9
2 2-pyridinecarbonitrile PTA 8 10 11
3 3-pyridinecarbonitrile - 88 96 96
4 3-pyridinecarbonitrile PTA > 99 - -
5 4-pyridinecarbonitrile - > 99 - -
6 4-pyridinecarbonitrile PTA > 99 - -

7 a 4-pyridinecarbonitrile - 90 > 99 -

Conditions: 1 mmol nitrile, 5 mol% [RhCl(cod)(IMes)] (1), 1.5 mL 2-PrOH, 1.5 mL H2O, 0.15 mmol PTA, reflux
temperature. a 1 mol% [RhCl(cod)(IMes)] (1).

Finally, we studied the hydration of benzonitrile at 25 ◦C. It was found, that the use of 1 mol%
catalyst 1 was sufficient to give a reasonable yield in 40 h (Table 9, entry 3). However, with a higher
catalyst loading (2.5 mol%) 99% conversion was reached in 24 h (Table 9, entry 8). Lowering the
concentration of 2-PrOH in the aqueous solvent mixture from 50% to 20% v/v, lead to a decrease in the
conversion (entries 9, 10 vs. 1–3). The origin of this latter effect is presently unclear, since even at the
lower 2-propanol concentration the reaction mixtures were homogeneous, and—formally—2-propanol
is not involved in the hydration of benzonitrile.
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Table 9. Hydration of benzonitrile at 25 ◦C catalyzed by [RhCl(cod)(IMes)] (1) with equimolar amounts
of NaOH a.

Entry 1 (mol%) b t (h) Conversion (%) TOF (h−1)

1 1 17 73 4.3
2 1 22 79 3.6
3 1 40 94 2.4
4 2 17 84 2.5
5 2 22 85 1.9
6 2.5 17 94 2.2
7 2.5 19 96 2.0
8 2.5 24 99 1.7

9 c 1 17 34 2.0
10 c 1 34 60 1.8

Conditions: 1 mmol benzonitrile, 1 mL 2-PrOH, 1 mL H2O, 25 ◦C; a [NaOH]/[Rh] = 1; b Relative to benzonitrile; c

20% v/v 2-PrOH.

The above results did not allow the suggestion of a detailed reaction mechanism. Nevertheless,
the findings are in accord with the nucleophilic attack of a Rh(I)-coordinated hydroxide onto the nitrile
carbon atom (Scheme 3), similar to the mechanism suggested in [17]. It is an important observation,
that the hydration reactions proceed with high rate already with 1 equivalent of base per Rh(I). Since
there is hardly any conversion of benzonitrile in the absence of a base, this points to an intermediate
formation of a Rh(I)-OH hydroxo-complex. On the other hand, the complete selectivity of the reaction
to benzamide shows that most probably the nitrile also coordinates to the Rh-based catalyst, thereby
activating the nitrile carbon against a nucleophilic attack. It should also be mentioned, that at the
moment the role of the cod ligand is unclear. It may stay coordinated to the rhodium throughout
the catalytic cycle, but in the reductive milieu of basic 2-propanol it may also be hydrogenated and
replaced by other ligands present in the solution.
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3. Materials and Methods

3.1. Materials

All chemicals and reagents used in this work were purchased from Sigma-Aldrich, St. Louis,
Missouri, USA; Molar Chemicals Kft., Halásztelek, Hungary and VWR International, West Chester,
Pennsylvania, USA and were used as received without further purification. Analytical thin-layer
chromatography (TLC) was performed on Merck Kieselgel 60 F254 plates (Merck, Darmstadt, Germany),
TLC plates were visualised by UV fluorescence at 254 nm. Column chromatography was performed
on silica gel (70–230 mesh, 63–200 µm, Sigma-Aldrich). The metal precursors [RhCl(cod)]2 [60],
[Rh(OH)(cod)]2 [61], the ligands PTA [62], and mtppms-Na [63] were prepared by the methods
described in the literature.

3.2. General Procedure for the Synthesis of [RhCl(cod)(NHC)] Complexes

Starting from [Rh(cod)X]2 (X = Cl–, OH–) and the appropriate 1,3-diaryl-imidazoli-um/

imidazolinium salts the corresponding rhodium complexes 1–4, were prepared in 58–88% yield
(Scheme 1).

Method A: To a solution of 0.88 mmol of the imidazolium/imidazolinium salt in 30 mL of toluene
were added 0.44 mmol of [RhCl(cod)]2 and 8.88 mmol of K2CO3 in one portion. The mixture was
stirred at 70 ◦C for 3–24 h (followed by TLC). After removal of the solvent the product was purified by
passing through a short silica column in dichloromethane:ethyl acetate = 1:1 as solvent. The coloured
fraction of the complex was collected, evaporated to dryness, and the yellow solid was vacuum-dried,
characterized by 1H, 13C NMR, and HR ESI-MS.

Method B: To a solution of 0.88 mmol of the imidazolium/imidazolinium salt in 30 mL of toluene
was added 0.44 of 0.44 mmol of [Rh(OH)(cod)]2 and the mixture was stirred at 70 ◦C for the required
time (followed by TLC). After removal of the solvent the product was purified by passing through a
short silica column in dichloromethane:ethyl acetate = 1:1 as solvent, and the complex was isolated
and characterized as in Method A.

Chloro(η4-1,5-cyclooctadiene)(1,3-dimesitylimidazole-2-ylidene)rhodium(I), [RhCl(cod)(IMes)] (1). 302 mg
(0.888 mmol) IMes HCl, 220 mg (0.444 mmol) [RhCl(cod)]2, 1228 mg (8.88 mmol) K2CO3, 3 h, yield of
1: A) 345 mg (0.627 mmol) 71%; B) 399 mg (0.725 mmol), 83%. 1H NMR (360 MHz, CD2Cl2) δ/ppm:
7.12–7.11 (m, 4H, HAr), 7.04 (s, 2H, NCH), 4.48 (br, 2H, Hcod), 3.38 (br, 2H, Hcod), 2.46–2.42 (m, 12H,
Me), 2.18 (s, 6H, Me), 1.92–1.89 (m, 4H, Hcod), 1.63–1.59 (m, 4H, Hcod); 13C{1H} NMR (CD2Cl2), δ/ppm:
183.2 (d, 1JRh–C = 52.3 Hz); 138.6; 137.4; 136.5; 134.5; 129.3; 128.3; 123.7; 95.7 (d, 1JRh–C = 7.2 Hz); 68.1
(d, 1JRh-C = 14.3 Hz); 32.6; 28.3; 20.8; 19.5; 17.9. MS(ESI), positive mode, in MeOH, m/z for 1, [M]+

(C29H36N2Rh), calculated: 515.1928, found: 515.1928.

Chloro(η4-1,5-cyclooctadiene)(1,3-dimesitylimidazolidin-2-ylidene)rhodium(I), [RhCl(cod)(SIMes)] (2). 304 mg
(0.888 mmol) SIMes HCl, 220 mg (0.444 mmol) [RhCl(cod)]2, 1228 mg (8.88 mmol) K2CO3, 22 h, yield
of 2: A) 350 mg (0.632 mmol), 71%, B) 428 mg (0.773 mmol), 88%. 1H NMR (360 MHz, CD2Cl2)
δ/ppm: 7.09–7.06 (m, 4H, HAr), 4.43 (br, 2H, Hcod), 3.89 (br, 4H, NCH2), 3.46 (br, 2H, Hcod), 2.62 (s, 6H,
Me), 2.41–2.38 (m, 12H, Me), 1.85–1.80 (m, 4H, Hcod), 1.64–1.55 (m, 4H, Hcod);13C{1H} NMR (90 MHz,
CD2Cl2), δ/ppm: 212.4 (d, 1JRh–C = 48.4 Hz); 138.2; 137.7; 136.6; 135.4; 129.6; 128.5; 96.8 (d,1JRh–C= 6.4
Hz); 67.8 (d, 1JRh–C = 14.3 Hz); 51.47; 32.6; 28.1; 20.8; 19.7; 18.2. MS(ESI), positive mode, in MeOH, m/z
for 2, [M]+ (C29H38N2Rh), calculated: 517.2085, found: 517.2085.

Chloro(η4-1,5-cyclooctadiene)(1,3-bis(2,6-diisopropylphenylimidazol)-2-ylidene)rhodium(I), [Rh(Cl)(cod)(IPr)]
(3). 378 mg (0.888 mmol) IPr HCl, 220 mg (0.444 mmol) [RhCl(cod)]2, 1228 mg (8.88 mmol) K2CO3,
21 h, yield of 3: A) 494 mg (0.777 mmol), 88%; B) 389 mg (0.612 mmol), 69%. 1H NMR (360 MHz,
dmso-d6) δ/ppm: 7.62 (s, 2H, NCH), 7.54 (t, J = 7.7 Hz, 2H, HAr), 7.39 (br, 4H, HAr), 4.33 (br, 2H, Hcod),
3.51 (br, 2H, CH(CH3)2), 3.23 (s, 2H, Hcod), 2.35–2.31 (br, 2H, CH(CH3)2), 1.71–1.27 (m, 8H, Hcod +12H,
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CH(CH3)2), 1.06 (d, J = 6.8 Hz, 12H, CH(CH3)2);13C{1H} NMR (90 MHz, CDCl3), δ/ppm: 186.1 (d,
1JRh–C = 52.2 Hz); 147.9; 145.3; 136.4; 129.8; 124.6; 122.9; 96.4 (d, 1JRh–C = 7.2 Hz); 67.8 (d, 1JRh–C =

14.4 Hz); 32.7; 28.8; 28.3; 26.6; 22.8. MS(ESI), positive mode, in MeOH, m/z for 3, [M]+ (C35H48N2Rh),
calculated: 599.2867, found: 599.2867.

Chloro(η4-1,5-cyclooctadiene)(1,3-bis(2,6-diisopropylphenylimidazolidin)-2-ylidene)rhodium(I),
[RhCl(cod)(SIPr)] (4). 380 mg (0.888 mmol) SIPr HCl, 220 mg (0.444 mmol) [RhCl(cod)]2,

1228 mg (8.88 mmol) K2CO3, 24 h, yield of 4: A) 400 mg (0.627 mmol) 70%, B) 386 mg (0.605 mmol)
68%.1H NMR (360 MHz, C6D6) δ/ppm: 7.31–7.24 (m, 4H, HAr), 7.15 (d, J = 6.8 Hz, 2H, HAr), 4.99 (br,
2H, Hcod), 4.43–3.36 (m, 4H, NCH2), 3.73–3.68 (m, 2H, Hcod), 3.43–3.39 (m, 2H, CH(CH3)2), 3.10–3.03
(m, 2H, CH(CH3)2), 1.82–1.70 (m, 10H, Hcod), 1.45–1.18 (m, 18H, CH(CH3)2), 1.05 (d, J = 6.8 Hz, 6H,
CH(CH3)2); 13C{1H} NMR (90 MHz, CDCl2), δ/ppm: 214.9 (d, 1JRh–C = 47.7 Hz); 149.3; 146.4; 136.9;
128.8; 124.8; 123.3; 96.4 (d, 1JRh–C = 7.1 Hz); 67.8 (d, 1JRh–C = 13.9 Hz); 53.4; 32.4; 28.9; 28.6; 27.9; 26.6;
24.0; 22.7. MS(ESI), positive mode, in MeOH, m/z for 4, [M]+ (C35H50N2Rh), calculated: 601.3024,
found: 601.3025.

3.3. General Methods

1H and 13C{1H} NMR spectra were recorded on a Bruker Avance 360 MHz spectrometer (Bruker,
Billerica, MA, USA) and were referenced to residual solvent peaks. Single crystal X-ray diffraction
(SCXRD) measurements were performed using a Bruker D8 Venture diffractometer and the methods
and software were described in [64–70]. Gas chromatographic measurements were done with the use
of an Agilent Technologies 7890 A instrument (HP-5, 0.25 µm × 30 m × 0.32 mm, FID 300 ◦C (Agilent
Technologies, Santa Clara, CA, USA); carrier gas: Nitrogen 1.9 mL/min). ESI-TOF-MS measurements
were carried out on a Bruker maXis II MicroTOF-Q type Qq-TOF-MS instrument (Bruker Daltonik,
Bremen, Germany) in positive ion mode. The mass spectra were calibrated internally using the exact
masses of sodium formate clusters. The spectra were evaluated using the Compass Data Analysis 4.4
software from Bruker.

All catalytic reactions were carried out under air. The reaction temperatures were kept constant
either by using a thermostated circulator (set e.g., to 80.0 ± 0.1 ◦C), or by running the reactions under
reflux (lit. b.p. of 50% aqueous 2-propanol: 81.1 ◦C [71]). The products were identified by comparison
of their retention time with known standard compounds.

a) Hydration of Benzonitrile without Product Isolation

100 µL (1.0 mmol) benzonitrile, 5.5 mg (0.01 mmol) [RhCl(cod)(IMes)] (1), 0.4 mg (0.01 mmol)
NaOH, and 12.8 mg (0.1 mmol, 10 mol% of the substrate) naphthalene (internal standard) were
dissolved in a mixture of 1.5 mL 2-propanol and 1.5 mL deionized water. This reaction mixture was
placed into a temperature-controlled bath and stirred at 80 ◦C for 2 h. A 0.10 mL part of the resulting
hot solution was extracted with 2 mL CH2Cl2, passed through a short MgSO4 column and subjected to
gas chromatography. Conversion of benzonitrile: 98%.

b) Hydration of Benzonitrile with Product Isolation

200 µL (2.0 mmol) benzonitrile, 11 mg (0.02 mmol) [RhCl(cod)(IMes)] (1), and 0.8 mg (0.02 mmol)
NaOH were stirred in a mixture of 1.5 mL 2-PrOH and 1.5 mL deionized water, at 80 ◦C. After 3 h
reaction time, the resulting solution was evaporated to dryness on a rotary evaporator and the residue
was chromatographed on a short silica gel column using ethyl acetate as the eluent. Yield of benzamide:
217.3 mg (89%).

4. Conclusions

We have realized one-step syntheses of the [RhCl(cod)(NHC)] complexes 1–4 without generation
of the free carbene ligands or the silver-NHC complexes. The metal precursor [RhCl(cod)]2 and the
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respective imidazolium/imidazolinium salt was stirred overnight in toluene at 70 ◦C, and the desired
complexes were produced in good to excellent yields. An efficient catalytic system for the selective
hydration of nitriles to the corresponding amides in a water/2-propanol solvent, with tolerance of
air and several functional groups, is also described. The suggested reaction mechanism considers
the nucleophilic attack of a Rh(I)-coordinated OH– onto the nitrile carbon atom activated by the
N-coordination of nitrile group to the metal ion.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/1/0/s1. Table
S1. Retention times of nitriles and amides used in this study; Table S2. Experimental conditions of X-ray diffraction
measurements of Rh(I)-complexes; Table S3. Unit cell data of [RhCl(cod)(IPr)] [54] and [IrCl(cod)(IPr)] [57];
Figure S1. Time course of the conversion of benzonitrile with 1 mol% of catalyst 1; Figure S2 and S3. GC
separation of benzonitrile/benzamide and 2-pyridinecarbonitrile/2-pyridin-carboxamide; Figures S4–S11. 1H and
13C{1H} NMR spectra of [RhCl(cod)(IMes)] (1), [RhCl(cod)(SIMes)] (2), [RhCl(cod)(IPr)] (3), [RhCl(cod)(SIPr)]
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