In Search of Co-attractants for Cetoniin Scarabs (Coleoptera: Scarabaeidae, Cetoniinae): Identification and Preliminary Field Evaluation of Volatiles from Fermenting Apple

J. VUTS'*, ZSÓFIA, LOHONYAI², Z. IMREI², ÉVA BÁLINTNÉ CSONKA², M. A. BIRKETT ${ }^{1}$ and M. TÓTH ${ }^{2}$
${ }^{1}$ Rothamsted Research, Harpenden, Hertfordshite AL5 2JQ, United Kingdom
${ }^{2}$ Plant Protection Institute CAR HAS, Herman O. u. 15. Budapest, H-I()22, Hungary

(Received: 7 February 2019; accepled: 13 March 2019)

Abstract

When applied in funnel traps, the known three-component toral Iure of Cetomia a. alrura and Potessia cuprea attracts large numbers of beetles. Further increasing the attractive power of these traps offers the opportunity to develop a more potent mass-trapping tool that directly reduces local scarab populations and, hence, fruit damage. The current study was initiated by the observation of adult beetles aggregating and feeding in large numbers on ripening fruit, accompanied by the presence of fermentation volatiles detectable by the human nose. Addition of apple pieces to the ternary C. caurata aurara / P. cuprea lure resulted in increased catches, but only in traps where the apple fermented as a result of beetle feeding. Volatile extracts collected from fermenting apple were subjected to GC-EAG, and bioactive peaks were identified as 1 -hexanol, acetic acid, n-butyric acid, isovaleric acid, hexanoic acid and 3-methylphenol by GC-MS and GC peak enhancement. In preliminary field trials, a synthetic mixture of all identified compounds reduced activity of the ternary lure, indicating that some were inhibitory. As certain individual compounds or their particular combinations enhanced activity of the temary lure only numerically, further experiments are discussed to optimize a synergistic blend of fruit fermentation and/or beetle-derived volatiles.

Keywords: Cetoniinae, attractant, mass-trapping, fermentation volatiles, searab, fruit.

Adult Cetonia a. aurata L. and Potosia cuprea Fabr. (Coleoptera: Scarabaeidae, Cetoniinae) cause damage to fruit trees and ornamental plants, primarily in the Rosaceae. by chewing the reproductive parts of flowers and, later in the growing season, the fruit as an alternative food source (Hurpin, 1962). In addition, reports of significant damage to ripening fruit in Hungary and neighbouring countries has increased in frequency (Voigt et al., 2005; Razov et al., 2009), indicating a growing economic impact of these day-active scarabs. Their control is difficult, since most insecticides cannot be applied right before fruit harvest or during flowering without negatively affecting humans, pollinators or other beneficial insects.

As an alternative management method, a ternary chemical attractant, consisting of the ubiquitous flower scent compounds (Knudsen et al., 1993) 3-methyleugenol,

[^0]($R S$) -1-phenylethanol and (E-anethol in a $1: 1: 1$ ratio (Imrei, 2003; Tóth et al., 2005), is in use in funnel traps for monitoring and mass-trapping of both C. aurata aurata and P. cuprea in peach orchards (Voigt et al., 2005; Tóth et al., 2006; Razov et al., 2008). Further increasing the activity of the ternary floral lure by the addition of volatile compounds identified from new sources could enhance the mass-trapping potential of these traps.

When observing beetles feeding on ripening fruit of a range of species (e.g. peach, cherry, apple, grapes), it was revealed that fermentation processes were initiated, causing aggregations of both species on damaged fruit, also reported by Voigt et al, (2005). This was accompanied by the presence of characteristic volatiles detectable by the human nose (J. Vuts et al., personal observation). Such volatile compounds, induced primarily by yeast fermentation, have great promise in developing novel attractants that are capable of luring high numbers of both sexes into funnel traps (Gregg et al., 2018), because they are thought to provide an honest signal for food-searching beetles to locate ephemeral sources of sugar (Madden et al., 2018). We thus hypothesized that certain ubiquitous volatile components of fruit fermentation play an important role in food source localization by C. aurata aurata and P. cuprea. A series of field trapping trials and fruit headspace analysis experiments were conducted in search for compounds that may synergise the activity of the ternary synthetic bait for the development of a more efficient mass-trapping tool.

Materials and Methods

Collection of volatiles

Ten apple pieces of similar size, which attracted adults of C. aurata aurata and P. cuprea into funnel traps, were taken into the laboratory and individually placed into the glass tube of a closed-loop stripping apparatus (CLSA) (Boland et al., 1984), equipped with a DC12/16NK vacuum pump (Erich Fürgut GmbH, Tannheim, Germany) ($5.0 \mathrm{~L} / \mathrm{min}$) and collection filter containing activated charcoal (1.5 mg) (Brechbühler AG, Schlieren, Switzerland). Collections were run for 1-2 hours. Trapped volatiles were eluted from the charcoal filter with dichloromethane (25 mL ; Merck KGaA, Darmstadt, Germany). This way, ten headspace extracts were prepared.

Electrophysiology

The activity of headspace extracts collected from fermenting apple pieces was first evaluated by electroantennography (EAG). Experimental insects were collected from the edge of an oak forest at Telki (Pest county, Hungary). An antenna freshly amputated at the base from a live beetle was mounted between two glass capillaries containing 0.1 M KCl solution, then placed at ca. 3 mm distance from a stainless steel tube (teflon-coated inside) with a constant humidified airflow exiting at ca. $0.7 \mathrm{~L} / \mathrm{min}$ (Fig. 1). The recording electrode was connected to a high-impedance DC amplifier (IDAC-232, Ockenfels Syntech GmbH, Kirchzarten, Germany), Three $\mu \mathrm{L}$ aliquots of the extracts were each administered onto a $1 \mathrm{~cm}^{2}$ piece of filter paper inside a Pasteur pipette. Stimuli consisted of pushing 1 mL of air through the Pasteur pipette into the airstream flowing towards the antenna.

Fig. 1. Mounting of an antenna from a live Cetonia a. aurata or Polosia caprea specimen between the recording (at) and ground electrode (b) for electroantennography (EAG) measurements

Three $\mu \mathrm{L}$ dichloromethane and blank air were used as control stimuli. Antennal responses were normalized against geraniol.

For analysis by coupled gas chromatography-electroantennography (GC-EAG) of the most EAG-active extract, the above apparatus was linked by an effluent conditioning assembly (Ockenfels Syntech GmbH, Kirchzarten, Germany) to a 6890 N GC (Agilent Technologies Inc., Santa Clara, USA) equipped with a DB-Wax column ($30 \mathrm{~m} \times 0.32 \mathrm{~mm}$ $\times 0.25 \mathrm{~mm}$ film thickness; J and W Scientific, Agilent Technologies, Santa Clara, USA). One $\mu \mathrm{L}$ injections were made in splitless mode $\left(220^{\circ} \mathrm{C}\right)$. The oven temperature was held at $60^{\circ} \mathrm{C}$ for 1 min , then programmed at $10^{\circ} \mathrm{C} / \mathrm{min}$ to $220^{\circ} \mathrm{C}$ and held for 10 min . The carrier gas was helium ($4.0 \mathrm{~L} / \mathrm{min}$). Decyl acetate was used as internal standard.

A synthetic mixture of the identified compounds in ratios similar to those in the test extract was also tested in GC-EAG on the antennae of both C. aurata aurata and P. cuprea. Composition of the mixture ($\mathrm{ng} / \mu \mathrm{L}$) : 1-hexanol : acetic acid : n-butyric acid : isovaleric acid : hexanoic acid : 3-methylphenol 17:350:15:35:35:1.

Identification of EAG-active peaks

Apple headspace extracts were analysed on an HP 6890 GC, equipped with a cool-on-column injector and FID, and fitted with a $30 \mathrm{~m} \times 0.32 \mathrm{~mm}$ inner dia, $\times 0.5 \mu \mathrm{~m}$ film thickness polar DB-WAX column (J and W Scientific, Folsom, CA, USA). The oven temperature was maintained at $30^{\circ} \mathrm{C}$ for 2 min and then programmed at $10^{\circ} \mathrm{C} / \mathrm{min}$ to $250^{\circ} \mathrm{C}$. The carrier gas was hydrogen. For tentative identification of EAG-active peaks, GC-MS analysis was performed on a Micromass Autospec Ultima magnetic sector mass spectrometer (Waters, Milford, MA, USA), attached to an Agilent 6890 N GC (fitted with a $30 \mathrm{~m} \times 0.32 \mathrm{~mm}$ inner dia. $\times 0.5 \mu \mathrm{~m}$ film thickness polar DB-WAX column, J and W Scientific, Folsom, CA, USA) and equipped with a cool-on-column injector: Ionization was
by electron impact ($70 \mathrm{eV}, 220^{\circ} \mathrm{C}$). The GC oven temperature was maintained at $30^{\circ} \mathrm{C}$ for 5 min and then programmed at $5^{\circ} \mathrm{C} / \mathrm{min}$ to $250^{\circ} \mathrm{C}$. Tentative identifications were obtained by comparison of mass spectra with the NIST mass spectral database (2011), and were confirmed by comparison of KI values and GC peak enhancement with authentic standards. Quantification of compounds was achieved using the single-point external standard method with a series of alkanes.

Synthetic compounds for GC peak enhancement, GC-EAG and field trials were obtained from Sigma-Aldrich Kft. (Budapest, Hungary) and were $>95 \%$ pure as stated by the supplier.

Field trapping experiments

CSALOMON ${ }^{\text {T }}$ VARb3 modified funnel traps with transparent upper panels (produced by Plant Prot. Inst., CAR HAS, Budapest, Hungary) were used, since they efficiently capture both C. aurata aurata and P. cuprea, and other related scarabs (Imrei et all., 2001; Schmera et al., 2004; www.csalomontraps.com).

For preparing the bait dispensers, a 1 cm piece of dental roll (Celluron ${ }^{\text {a }}$, Paul Hartmann AG, Heidenheim, Germany) was placed into a $1.25 \mathrm{~cm}^{2}$ polythene bag made of 0.02 mm linear polyethylene foil. The dispenser was attached to a plastic strip ($8 \times 1 \mathrm{~cm}$) for easy handling when assembling the traps. For making the baits, compounds were administered onto the dental roll and the opening of the polythene bag was heat-sealed. Earlier experience showed that the bait did not lose its activity during several weeks of field exposure; hence, we renewed the lures at $2-3$-week intervals. For the ternary Ce tonia/Potosia attractant (Tóth et al., 2005), $100 \mu \mathrm{~L}$ each of 3-methyleugenol (98.0 mg), $(R S)$-1-phenylethanol (101.2 mg) and (E)-anethol (99.8 mg) were loaded onto the same dental roll in a single dispenser.

Field trapping experiments were conducted at Telki (Pest county, Hungary) along the edge of an oak forest with mostly Rosa canina L. and Crataegus spp. (Rosaceae). Traps were set up in a randomized complete block design, with 10 m between traps within each block and 20 m between blocks. Traps were hung from the vegetation at 1.5 m height in sunny places and were inspected twice weekly, when captured beetles were removed, identified and recorded.

Experiment I was run between 19 July - 2 August 2004. The objective was to study the effect of the addition of apple pieces to the ternary floral attractant. Treatments: a) ternary attractant, b) apple pieces, c) $a+b$. One piece ($c a .10 \mathrm{~cm}^{3}$) of fresh apple was placed into the catch container of each trap in treatment b-c at each inspection. Number of blocks: 5 .

Experiment 2 was run between 15 - 19 June 2009. The objective was to study the effect of the addition of the synthetic blend of apple volatiles on the activity of the ternary floral attractant. Treatments included: a) the ternary attractant, b) synthetic apple blend, c) $a+b, d$) unbaited control traps. Number of blocks: 10. Composition of baits containing the synthetic blend of identified volatiles from fermenting apple pieces: 1-hexanol: $50 \mu \mathrm{~L}$ $(40.7 \mathrm{mg})$, acetic acid: $200 \mu \mathrm{~L}(210 \mathrm{mg}), n$-butyric acid: $50 \mu \mathrm{~L}(48 \mathrm{mg})$, isovaleric acid: $50 \mu \mathrm{~L}(46.3 \mathrm{mg})$, hexanoic acid: $50 \mu \mathrm{~L}(46.5 \mathrm{mg})$, 3-methylphenol: $10 \mu \mathrm{~L}(10.3 \mathrm{mg})$. Compounds were loaded onto the same dental roll in a single dispenser:

Experiment 3 was run between 6-10 July 2009. The objective was to study the effect of the addition of individual components of the synthetic blend of apple volatiles
($100 \mu \mathrm{~L}$ each) to the ternary floral attractant. Treatments included: a) the ternary attractant, b) a+l-hexanol, c) a +acetic acid, d) a $+n$-butyric acid, e) a+isovaleric acid, f) $a+$ hexanoic acid, g) a+3-methylphenol. Number of blocks: 6 .

Experiment 4 was run between $20-27$ July 2009. The objective was to study the effect of the addition of a subset of components of the synthetic blend of apple volatiles ($100 \mu \mathrm{~L}$ each) to the ternary attractant ($66 \mu \mathrm{~L}$ of each component). Treatments included: a) the ternary attractant, b) a +1 -hexanol + acetic acid $+n$-butyric acid + hexanoic acid, c) a $+n$-butyric acid. Number of blocks: 10.

Experiment 5 was run between 17 July - 17 August 2017. The objective was to study the effect of the addition of selected components of the synthetic blend of apple volatiles (1 mL each) to the ternary attractant ($100 \mu \mathrm{~L}$ of each component). Treatments included: a) the ternary attractant, b) μ-butyric acid, c) μ-butyric acid + acetic acid + hexanoic acid, d) $a+b, e) a+c, f$) unbaited control traps. The baits in treatments b and c were loaded into polypropylene syringe dispensers. The dispenser consisted of a ca. 4 mL polypropylene tube, similar in shape to an injection syringe, and contained a 3 cm piece of dental roll (Celluron ${ }^{\circledR}$, Paul Hartmann AG, Heidenheim, Germany). Compounds were administered onto the dental roll through the larger opening at the end of the syringe, which was then closed. The thin tube at the other end of the syringe was cut just before field deployment, so compounds could evaporate through the resulting 4 mm ID hole. Number of blocks: 6 .

Statistics

For statistical analysis of EAG responses, ANOVA was performed, followed by Fisher's protected LSD for significance levels. Field catch data were summed over the duration of the experiment for each trap as they did not fulfil requirements for a parametric analysis, and were analysed by Kruskal-Wallis test. In case the Kruskal-Wallis test yielded significance ($P>0.05$), paired comparisons of treatments were done by MannWhitney U test. All statistical procedures were conducted using the software package Genstat ($18^{\text {th }}$ edition; VSN International Ltd, Hemel Hempstead, UK).

Results

Addition of apple pieces to the ternary floral bait significantly increased catches of both C. aurata aurata and P. cuprea as compared to the ternary bait alone (Experiment 1; Table 1). The ternary lure attracted more C. aurata aurata, but not P. cuprea, than the apple pieces alone. In case of traps containing apple pieces only, it was observed that those in which the apple started to ferment had significantly higher numbers of both species (total C. aurata aurata catch: 584, total P. cuprea catch: 95) than those in which the apple became dry (total C. aurata aurata catch: 10, total P. cuprea catch: 8) (Mann-Whitney U test, $\mathrm{p}<0.001$ for both species, $n($ fermented $)=5, \mathrm{n}(\mathrm{dry})=10)$.

GC-EAG analysis of the highly EAG-active apple extract no. 10 (Fig. 2), using the antennae of C. aurata curata and P. cuprea, located six peaks repeatedly evoking antennal responses in both species (Fig. 3). The active peaks were identified by GC-MS and GC peak enhancement with authentic standards as 1 -hexanol, acetic acid, n-butyric acid,

Table 1
Catches of Cetonia a. aurata and Potosia cuprea in Experiment 1 . Number of replicates/treatment $=5$. P values at the bottom of the table are from Kruskal-Wallis one-way analysis of variance. P values of pairwise treatment comparisons derive from Mann-Whitney U test

Treatment	Treatment abbreviation	Ceromia a arrata		Potovia couprea	
		total catch	p values for pairwise comparisons	total catch	p values for pairwise comparisons
Ternary floral attractant	a	1893	$a-b:<0.001$	131	a-b: 0.007
Ternary floral attractant + apple piece	b	4398	$\begin{aligned} & \mathrm{a}-\mathrm{c}: 0.002 \\ & \mathrm{~b}-\mathrm{c}:<0.001 \end{aligned}$	611	$\begin{aligned} & \mathrm{arc}: \mathrm{ns} \\ & \mathrm{~b}-\mathrm{c}: 0.007 \end{aligned}$
Apple piece	c	594		103	
		$\mathrm{H}(2)=20.78, \mathrm{p}<0.001$		$H(2)=13.69, p<0.001$	

ns $=$ not significant $(\mathrm{P}=0,0.5)$.

Fig. 2. Mean normalized EAG responses (\pm SE) of Cetonia a. aurata and Potosia cuprea antennae to $3 \mu \mathrm{~L}$ aliquots of headspace extracts collected from fermenting apple ($n=5 /$ species). Bars with the same letter within one species are not significantly different (ANOVA, Fisher's LSD, $\mathrm{P}=5 \%$)
isovaleric acid, hexanoic acid and 3-methylphenol. Synthetic standards of the identified compounds also elicited EAG activity on the antennae of both species (Fig. 4).

The synthetic blend of volatiles, in approximately the same ratios as identified in headspace extracts from fermenting apple pieces, on its own attracted no beetles into the traps, catches not differing from those in unbaited traps. Addition of the synthetic blend to the ternary floral attractant significantly reduced catches of both species (Experiment 2; Table 2).

Addition of 1 -hexanol, acetic acid, n-butyric acid and hexanoic acid individually to the ternary floral attractant caused numerical, but not significant, increase in C. aurata aurata catches, and 3-methylphenol reduced P. cuprea catches significantly, compared to the ternary lure (Experiment 3; Table 3).

Addition of the blend of 1 -hexanol, acetic acid, n-butyric acid and hexanoic acid, as well as n-butric acid alone to the ternary lure reduced catches of both scarabs significantly (Experiment 4; Table 4).

Fig. 3. Coupled gas chromatography-electroantennography (GC-EAG) analysis of a headspace extract from fermenting apple on antennae of Cetonia a caurata and Potosia cuprea ($1 \mu \mathrm{~L}$ injected).
(1:1-hexanol, 2: acetic acid, $3: n$-butyric acid, 4 : isovaleric acid, 5 : hexanoic acid, 6:3-methylphenol, Int. std.: decyl acetate). Arrows inclicate EAG responses

Finally, neither n-butyric acid alone, nor the mixture of acetic acid, n-butyric acid and hexanoic acid increased the attractiveness of the ternary lure, and these baits alone caught no specimens of either species, similar to unbaited traps (Experiment 5; Table 5).

Discussion

Being present during a significant proportion of the fruit-growing period in Central Europe (May-August), C. curata aurata and P. cuprea come across both the flowering and the fruit-bearing stages of members of the Rosaceae. As well as eating the generative parts of flowers, later generations readily feed on tree sap and fermenting fruit, similar to many cetoniin scarabs. Monitoring traps and mass-trapping tools now successfully exploit the olfaction-guided attraction of C. aurata aurata and P. cuprea to floral volatiles, and a similar scenario should exist for the beetles` behaviour towards fruit fermentation odours. The emission of these volatiles is induced by microorganisms; Cotinis nitida L. (Cetoniinae) beetles pick up their gut yeast flora from peach fruit (Johnson and Vishniac, 1991). After feeding for two days on ripening fruit, attraction of the C. nitidu feeding complex to conspecifics increases due to the production of fermentation volatiles, which serve as aggregation kairomones. Johnson et al. (2009) identified several volatile compounds from such complexes and, indeed, found a synthetic mixture of these chemicals to be attractive to C. nitida.

Fig. 4. Coupled gas chromatography-electroantennography (GC-EAG) analysis of a mixture of synthetic standards of volatiles, identified from headspace extracts of fermenting apple, on antennae of Cetonia a. aurata and Potosia cuprea ($1 \mu \mathrm{~L}$ injected). (1:1-hexanol, 2 : acetic acid, $3: n$-butyric acid, 4 : isovaleric acid, 5 : hexanoic acid, $6: 3$-methylphenol, Int. std.: decyl acetate). Arrows indicate EAG responses

Both C. aurata aurata and P. cuprea are increasingly reported to attack ripening fruit, i.e. peach (Voigt et al., 2005; Razov et al., 2009), and native or acquired microflora can play a role in inducing fruit fermentation processes during feeding in these scarabs. In Experiment I, traps baited with apple pieces on their own caught both species in numbers comparable to those with the ternary floral lure; however, beetles were mostly found in traps where the apple started to ferment. Similar to C. nitida, which is only weakly attracted to undamaged or mechanically damaged fruit (Johnson et al., 2009), it is likely that C. aurata aurata and P. cuprea are initially attracted in low numbers to traps baited with fresh pieces of apple. Antennae of C. aurata aurata can selectively detect headspace components of freshly cut apple (J. Vuts et al., unpublished), which may explain their field attraction to fruit in the traps. Apple pieces successfully located are then fed upon by the beetles and fruit fermentation initiated, accompanied by the emission of characteristic volatiles, whereas those pieces of apple that are not located early enough dry out and beetle attraction ceases. It is feasible to suppose that the feeding complex will continuously attract C. aurata aurata and P. cuprea specimens until the fruit material is completely consumed. This suggested scenario correlates well with the performance of traps baited with the ternary floral lure plus apple pieces, i.e. the floral lure as a potent attractant draws beetles into traps in high enough numbers for them to start feeding on the fruit, inducing the production of fermentation volatiles and subsequent beetle mass attraction.

GC-EAG experiments located six active peaks in headspace extracts from fermenting apple, which were identified by GC-MS and GC peak enhancement with authentic standards to be compounds often produced during microbial fermentation (Quinn et al., 2007; Johnson et al., 2009 and references therein; Zhang et al., 2009; Zareba et al., 2008;

Table 2
Cutches of Cctonia a, curata and Potosia cuprea in Experiment 2. Number of replicates/treatment $=10$

Treatment	Treatment abbreviation	Cetomicr a. currata		Potosia cuprea	
		total catich	p values for pairwise comparisons	total entch	p values for pairwise comparisons
Ternary floral attractant	a	2480	a-b: <0.001	547	$a-b:<0,001$
Synthetic apple blend	b	0	a-c: 0.005	1	$a-c:<0.001$
Ternary floral attractant + synthetic apple blend	c	809	$\begin{aligned} & \mathrm{a}-\mathrm{d}:<0.001 \\ & \mathrm{~b}-\mathrm{c}:<0.001 \end{aligned}$	81	$\begin{aligned} & \mathrm{a}-\mathrm{d}:<0.001 \\ & \mathrm{~b}-\mathrm{c}:<0.001 \end{aligned}$
Unbaited	d	0	$\begin{aligned} & \mathrm{b}-\mathrm{d}: \mathrm{ns} \\ & \mathrm{c}-\mathrm{d}:<0.001 \end{aligned}$	1	$\begin{aligned} & \text { b-d: } 11 \mathrm{~s} \\ & \text { c-d: }<0.001 \end{aligned}$
		$\mathrm{H}(3)=55.45, \mathrm{p}<0.001$		$\mathrm{H}(3)=57.23, \mathrm{p}<0.001$	

For significance, refer to Table 1.
Table 3
Catches of Cetonia a, aurata and Potosia cuprea in Experiment 3. Number of replicates/treatment $=6$

Treatment	Treatment abbreviation	Cetoniar a curnara		Potosia cuprea	
		total catch	p values for pairwise comparisons	total catch	p values for pairwise comparisons
Ternary floral attractant	a	706	$\mathrm{a}-\mathrm{b}$: ns	64	a-b: ns
Ternary floral attractant + acetic acid	b	707	$\begin{aligned} & a-c: n s \\ & a-d: n s \end{aligned}$	65	$\begin{aligned} & \text { a-c: ns } \\ & \text { a-d: ns } \end{aligned}$
Ternary floral attractant $+n$-butyric acid	c	1193	$\begin{aligned} & \mathrm{a}-\mathrm{e}: \mathrm{ns} \\ & \mathrm{a}-\mathrm{f}: \mathrm{ns} \end{aligned}$	54	$\begin{aligned} & \text { a-e: ns } \\ & \text { a-f: ns } \end{aligned}$
Ternary floral attractant +hexanoic acid	d	902	a-g: 0.029 $\mathrm{b-c}$: ns	60	$\begin{aligned} & a-g:<0.001 \\ & b-c: n s \end{aligned}$
Ternary floral attractant +1-hexanol	e	848	$\begin{aligned} & \mathrm{b}-\mathrm{d}: \mathrm{ns} \\ & \mathrm{~b}-\mathrm{e}: \mathrm{ns} \end{aligned}$	79	$\begin{aligned} & \text { b-d: ns } \\ & \text { b-e: } n s \end{aligned}$
Ternary floral attractant + isovaleric acid Ternary floral attractant +3-methylphenol	f	605	$\begin{aligned} & \mathrm{b}-\mathrm{g} ; 0.012 \\ & \mathrm{c}-\mathrm{d}: \mathrm{ns} \end{aligned}$	46	$\begin{aligned} & \mathrm{b}-\mathrm{g}:<0.001 \\ & \mathrm{c}-\mathrm{d}: \mathrm{ns} \end{aligned}$
	g	295	$\begin{aligned} & \mathrm{c}-\mathrm{e}: \mathrm{ns} \\ & \mathrm{c}-\mathrm{f}: \mathrm{ns} \\ & \mathrm{c}-\mathrm{g}: 0.001 \\ & \mathrm{~d}-\mathrm{e}: \mathrm{ns} \\ & \mathrm{~d}-\mathrm{f}: \mathrm{ns} \\ & \mathrm{~d}-\mathrm{g}: 0.014 \\ & \mathrm{e}-\mathrm{f}: \mathrm{ns} \\ & \mathrm{e}-\mathrm{g}: 0.012 \\ & \mathrm{f}-\mathrm{g}: 0.014 \end{aligned}$	13	c-e: ns c-f: ns c-g: 0.009 d-e: ns d-f: ns d-g: 0.008 e-f: ns e-g: <0.001 $\mathrm{f}-\mathrm{g}: 0.008$
		$\mathrm{H}(6)=12.93, \mathrm{p}=0.044$		$H(6)=18$	$p=0.004$

[^1]Steinhaus and Schieberle, 2005), and which can function as insect semiochemicals (Davis et al., 2013; Vuts et al., 2014). Of these, 1-hexanol is an attractant of Grapholita molesta Busck (Lepidoptera: Tortricidae) (Pinero and Dorn, 2007), Phyllopertha horticola L. (Coleoptera: Scarabaeidae) (Ruther and Mayer, 2005) and Melolontha melolontha L. (Coleoptera: Scarabaeidae) (Imrei and Tóth, 2002). However, it can inhibit aggregation in bark beetles (Coleoptera: Scolytidae) (Deglow and Borden, 1998; Huber and Borden, 2001, 2003; Poland et al., 2004; Sullivan et al., 2007). Acetic acid attracts Vespa spp. (Hymenoptera: Vespidae) (Landolt et al., 1999, 2000), Chrysoperla carnea s.l. (Neuroptera: Chrysopidae) (Tóth et al., 2009) and moths (Lepidoptera: Noctuidae, Pyralidae and Phycitidae) (Landolt and Alfaro 2001; Tóth et al., 2002; Landolt et al., 2013). n-Butyric acid

Table 4
Catches of Cetomia a. aurata and Potosia criprea in Experiment 4. Number of replicates/treatment $=10$

Treatment	Treament abbreviation	Celonia a. ammata		Porosio cuprea	
		total catch	p values for pairwise comparisons	total catch	p values for pairwise comparisons
Teruary floral attractant	a	1425	a-b: 0.024	114	a-b:0.015
Ternary tloral attractant + n-butyric acid	b	1174	$\begin{aligned} & a-c: 0.007 \\ & b-c: 0.024 \end{aligned}$	92	$\begin{aligned} & \text { a-c: } 0.004 \\ & \mathrm{b-c}: 0.015 \end{aligned}$
Ternary floral attractant +4-component apple blend	c	912		59	
		$H(2)=8.395, p=0.015$		$\mathrm{H}(2)=9.519, \mathrm{p}=0.008$	

For significance, refer to Table 1 .
Table 5
Catches of Cetonia a. aurata and Potosia cuprea in Experiment 5. Number of replicates/treatment $=6$

Treatment	Treatment abbreviation	Cotonia a. curata		Porosia cuprea	
		total catch	p values f or pairwise comparisons	totul catch	p values for pairwise comparisons
Termary floral attractant	a	57	a-b: 0.032	6	a-b: ns
Ternary floral attractant $+\mu$-butyric acid	b	40	$\begin{aligned} & \text { a-c: ns } \\ & \text { a-d: }<0.001 \end{aligned}$	4	$\begin{aligned} & a-c: 11 s \\ & a-d: n s \end{aligned}$
Ternary floral attractant + acetic acid $+\mu$-butyric acid + hexanoic acid	c	36	$\begin{aligned} & a-e:<0.001 \\ & a-f:<0.001 \\ & b-c: n s \end{aligned}$	6	$\begin{aligned} & \text { a-e: ns } \\ & \text { a-f: ns } \\ & \text { b-c:ns } \end{aligned}$
Acetic acid $+\mu$-butyric Acid + hexanoic acid μ-butyric acid Unbaited	d e t	0 0 0	$\begin{aligned} & b-d: 0.002 \\ & b-e: 0.002 \\ & b-f: 0.002 \\ & c-d:<0.001 \\ & c-e:<0.001 \\ & c-f:<0.001 \\ & d-e: n s \\ & d-f: n s \\ & e-f: n s \end{aligned}$	0 0 0	b-d: ns b-e: ns b-f: ns c-d: ns c-e: ns c-f: ns d-e: ns d-f: ns e-f: ns
		$H(5)=29.76, p=<0.00!$		$H(5)=2.04, p=0.015$	

[^2]Acta Phytopathologica et Entomologica Hungarica
is a pheromone component of Riptortus serripes Fabr. and Mirperus scutellaris Puton (Hemiptera: Alydidae and Coreidae, resp.) (Aldrich et al., 1993), and attracts Anopheles gambiae s.s. Giles mosquitoes (Constantini et al., 2001) and Dacus tryoni Froggat flies (Eisemann and Rice, 1992) (Diptera: Culicidae and Tephritidae, resp.). n-Butyric acid also acts as an allomone produced by Alydus eurinus Say (Hemiptera: Alydidae) (Aldrich et all, 2000). Isovaleric acid is an attractant of A. gambiae s.s. Giles (Diptera) (Constantini et al., 2001), as well as Kaniska canace L. and Vanessa indica Herbst (Lepidoptera: Nymphalidae) (Omurat et al., 2000). Hexanoic acid attracts a number of beetles in the Scarabaeidae, Silvanidae and Laemophloeidae families (Poprawski and Yule, 1992; Williams et al., 2000; Collins et al., 2007), as well as Lutzomyia spp. (Andrade et al., 2008) and Aedes aegypti L. (Williams et al., 2006) (Diptera: Psychodidae and Culicidae, resp.). Finally, 3-methylphenol is a pheromone component of Trichoplusia ni Hübner (Lepidoptera: Noctuidae) (Heath et al., 1992).

Contrary to our expectation, field trapping experiments testing the synthetic blend of EAG-active volatiles revealed its inhibitory effect upon the ternary floral attractant. It is worth noting that if a compound elicits high EAG responses, it does not necessarily mean that it will also have behavioural activity, nor does it indicate what type of behaviour (attraction, repellence etc.) is to be expected (Roelofs, 1977). It is likely that the compounds identified as electrophysiologically active in the headspace extracts of fermenting apple fed upon by C. curata aurata and P. cuprea chafers bear no attractiveness, but some of them rather have repellent activity, such as 3 -methylphenol in Experiment 3, reducing beetle attraction to the ternary floral lure. Also, 1-hexanol in mixture with three acids in Experiment 4 was likely to be an inhibitory compound, because in Experiment 5, addition of the acids to the ternary floral lure did not reduce catches significantly. 1-Hexanol inhibited field attraction of a mirid bug in recent experiments (S . Koczor et al., unpublished). Formulation issues (dispenser type, composition, dose etc.) may have also played some part in the unsuccessful demonstration of the attractiveness of the newly identified compounds.

More importantly, we suggest new work to be done to isolate bioactive compounds connected to fruit fermentation. Rather than collecting from the headspace of fruit after being fed upon by the beetles, the feeding complex as a whole should be sampled, similar to the work by Hammons et al. (2009) on C. nitida and Popillia japonica Newman (Rutelinae) on grape berries. Such an approach might enable the identification of new fruit volatiles induced by beetle-mediated yeast contamination and fermentation, or those of beetle origin. To this end, feeding can induce pheromone production in many insects, such as bark beetles (Blomquist et al., 2010), and Foster (2009) showed that sucrose consumption increased sex pheromone titre in mated females of a moth. Also, pheromones and food-related volatiles often synergise each other's activity (Reddy and Guerrero, 2004), thus, a combined lure of floral, fermentation and/or pheromone compounds may comprise a more potent lure for the mass-trapping of C. aurata aurata and P. cuprea, leading to the direct reduction of local populations.

Acknowledgements

This work was partially funded by the Hungarian Scientific Research Fund (OTKA) (grant K81494), and by the Research and Technology Imovation Fund (grant OMFB 00609/2010). The work at Rothamsted forms part of the Smarl Crop Protection (SCP) strategic programme (BBS/OS/CP/OOOOO1) tunded through Biotechnology and Biological Sciences Research Council's Industrial Strategy Challenge Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriph.

Literature

Aldrich, J. R., Waite, G. K., Moore, C., Payne, J. A., Lusby, W. R, and Kochansky, J. P. (1993): Male-specific volatiles from nearctic and australasian true bugs (Heteroptera, Coreidae and Alydidae). J. Chem. Ecol. 19. 2767-2781. doi: 10.1007/BF00980582

Aldrich, J. R., Zhang, A. and Oliver, J. E. (2000): Attractant pheromone and allomone from the metathoracic scent gland of a broad-headed bug (Hemiptera: Alydidae). Can. Entomol. 132, 915-923. doi: 10.4039/ Ent132915-6
Andrade, A. J., Andrade, M. R., Dias, E. S., Pinto, M. C. and Eirus, A. E. (2008); Are light traps baited with kairomones effective in the capture of Lutzomyia longipalpis and Lutzomyia intermedia? An evaluation of synthetic human odor as an attractant for phJebotomine sand flies (Diptera: Psychodidae; Phlebotominae). Mem. I. Oswaldo Cruz 103, 337-343.
Blomquist, G. J., Figueroa-Teran, R., Aw, M., Song, M., Gorzalski, A., Abbott, N. L., Chang, E. and Tittiger, C. (2010): Pheromone production in bark beetles. Insect Biochem. Mol. Biol, 40, 699-712. doi: 10.1016/j, jbmb.2010.07.013
Boland. W., Ney, P., Jaenickea, L. and Gassmann, G. (1984): A "closed-loop-stripping" technique as a versatile tool for metabolic studies of volatiles. In: P. Schreier (ed.): Analysis of Volatiles. Walter de Gruyter, Berlin, pp, 371-380.
Collins, L. E., Bryning, G. P., Wakefield, M. E., Chambers, J. and Cox, P. D. (2007); Progress towards a mul-ti-species lure: Identification of components of food volatiles as attractants for three storage beetles. J. Stored Prod. Res. 43, 53-63. doi: 10.1016/j. jspr:2005.10.001

Constantini, C., Birkett, M. A., Gibson, G., Ziesmann, J., Sagnon, N. F., Moharnıned, H. A., Coluzzi, M. and Pickett, J. A. (2001): Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. Med. Vet. Entomol. 15, 259-266. doi: 10.1046/j.026928.3x. 2001.00297.x

Davis T. S., Crippen, T. L., Hofstetter, R. W. and Tomberlin, J. K. (2013): Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39, 840-859. doi: 10.1007/s10886-013-0306-z
Deglow, E. K. and Borden, J. H. (1998): Green leaf volatiles disrupt and enhance response to aggregation pheromones by the ambrosia beetle, Gnathotrichus sulcatus (Coleoptera : Scolytidae). Can. J. Forest Res. 28, 1697-1705. doi: 10.1139/x98-143
Eisemam, C. H. and Rice, M. J. (1992): Attractants for the gravid Queensland fruit-fly Ducus trvoni, Entomol. Exp. Appl. 62, J25-130. doi: 10.1111/j.1570-7458.1992.tb00651.x
Foster; S. (2009): Sugar feeding via trehalose haemolymph concentration affects sex pheromone production in mated Heliothis virescens moths. J. Exp. Biol. 212, 2789-2794. doi: 10. I242/jeb. 030676
Gregg, P. C., Del Socorro, A. P. and Landolt, P. J. (2018): Advances in attract-and-kill for agricultural pests: Beyond pheromones. Annu. Rev. Entomol. 63, 453-470. doi: 10.1146/annurev-ento-031616-035040
Hammons, D. L., Kurtural, S. K., Newman, M. C. and Potter, D. A. (2009): Invasive Japanese beetles facilitate aggregation and injury by a native scarab pest of ripening fruits. PNAS 106, 3686-3691. doi: 10.1073/ pnas.0811097106
Heath, R. R., Landolt, P. J., Dueben, B. D., Murphy, R. E. and Schneider, R. E. (1992): Identification of male cabbage-looper sex-pheromone attractive to females. J. Chem. Ecol, 18, 441-453. doi: 10.1007/ BF00994243
Huber: D. P. W. and Borden, J. H. (2001): Angiosperm bark volatiles disrupt response of Douglas-fir beetle, Dendroctonus pseudotsugae, to attractant-baited traps. J. Chem. Ecol. 27, 217-233. doi: 10.|023/A:1005668019434

Huber, D. P. W. and Borden. J. H. (2003): Comparative behavioural responses of Dryocoetes confiusus Swaine, Dendroctontas rufifemis (Kirby), and Dendroctomas ponderosae Hopkins (Coleoptera: Scolytidae) to angiosperm tree bark volatiles. Environ. Entomol. 32, 742-751. doi: 10.1603/0046-225X-32.4.742
Hupin, B. (1962): The Scarabueoidea superfamily. In: A. S. Balachowsky (ed.): Entomologie Appliquée al'Agriculture, Masson et Cie Éditeurs, Paris, pp. 24-204. (in French).
Imrei, Z. (2003): Chemical communication of pest beetles. PhD thesis, Corvinus Univ, Budapest (in Hungarian).
Imrei, Z. and Tóth, M. (2002): European common cockchafer (Mclolontha melolontha L.): Preliminary results of attraction to green leaf odours. Zool. Acad. Sci. Hung. 48, 151-155.
Imrei, Z., Tóth, M., Tolasch, T. and Francke, W. (2001): 1,4-Benzoquinone attracts males of Rhizotrogus vermus Germ. Z. Naturforsch. C 57, 177-181. doi: 10.1515/Znc-2002-1-229
Johnson, D. T. and Vishniac, H. S. (1991): The role of Trichosporon chtaneum in eliciting aggregation behavior: in Cotinis nitida. Environ. Entomol. 20, 15-21. doi: 10.1093/ee/20.1.15
Johnson, D. T., Lewis, B. A., Bryant, R. J., Liyanage, R., Lay, J. O. and Pszczolkowski, M. A. (2009)): Attractants for the green June beetle (Coleoptera: Scarabaeidae). J. Econ. Entomol. 102, 2224-22.32. doi: 10.1603/029.102.0627

Knudsen, J. T., Tollsten, L. and Bergström, L. G. (1993): Floral scents - a checklist of volateile compounds isolated by head-sprace technicques. Phytochem. 33, 25.3-280. doi: $10.1016 / 0031$-9422(93)85502-I
Landolt, P. J. and Alfaro, J. F. (2001): Trapping Lacanobia subjuncta, Xestia c-nigram, and Mamestra configurata (Lepidoptera: Noctuidae) with acetic acid and 3 -methyl-1-butanol in controlled release dispensers. Environ. Entomol. 30, 656-662. doi: 10.1603/0046-225X-30.4.6.66
Landolt, P. J., Reed, H. C., Aldrich, J. R., Antonelli, A. L. and Dickey, C. (1999): Social wasps (Hymenoptera, Vespidae) trapped with acetic-acid and isobutanol. Fla. Entomol. 82, 609-614. doi: 10.2307/3496477
Landolt, P. J., Smithhisler, C. S., Reed, H. C. and MeDonough, L. M. (2000): Trapping social wasps (Hymenoptera, Vespidae) with acetic-acid and saturated short-chain alcohols. J. Econ. Entomol. 93, 1613-I618. doi: 10.1603/0022-0493-93.6.1613
Landolt, P. J., Tóth, M., Meagher, R. L. and Szarukán, I. (2013): Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae). Pest Manag. Sci. 69, 245-249. doi: $10.1002 / \mathrm{ps} .3381$
Madden, A. A., Epps, M. J., Fukami, T., Irwin, R. E., Sheppard, J., Sorger, D. M. and Dunn, R. R. (2018): The ecology of insect-ycast relationships and its relevance to human industry. Proc. R. Soc. B 285, 20172733. doi: $10.1098 / \mathrm{rspb} .2017 .2733$
Onura, H., Honda, K. and Hayashi, N. (2000): Identification of feeding attractants in oak sap for adults of two nymphalid butterllies, Kaniska canace and Venessa indica. Physiol. Entomol. 25, 281-287. doi: 10. 1046/j. 1365-3032.2000.00193.x

Pinero, J. C. and Dom, S. (2007): Synergism between aromatic compounds and green leaf volatiles derived from the host plant underlies female attraction in the oriental fruit moth. Entomol. Exp. Appl. 125, 185-194. doj: $10.1111 / \mathrm{j} .1570-7458.2007 .00614 . \mathrm{x}$
Poland, T. M., De Groot, P., Burke, S., Wakarchuk, D., Haack, R. A. and Nott, R. (2004): Semiochemical disruption of the pine shoot beetle, Tomicus piniperda (Coleoptera : Scolytidac). Environ. Entomol. 33, 221-226. doi: 10.1603/0046-225X-33.2.221
Poprawski, T. J. and Yule, W. N. (1992): Field assays to determine attractancy of natural and synthetic lures to Phyllophaga anvia (LeConte) (Col, Scarabaeidae). J. Appl. Entomol. 114, 305-314. doi: 10. 1111/j. 14390418.1992.tb01131.x

Quinn, B. P., Berniera, U. R., Gedena, C. J., Hogsettea, J. A. and Carlson. D. A. (2007): Analysis of extracted and volatile components in blackstrap molasses feed as candidate house fly attractants. J. Chromatogr. A $1139,279-284$. doi: $10.1016 / \mathrm{j}$.chroma.2006. 11.039
Razov, J., Baric, B. and Tóth, M. (2008): Population dynamics and damage analysis of Cetonita auratalPotosia cuprea in Croatian peach orchards. Abstracts of the VII. IOBC Intl. Conf. Integr. Fruit Prod., Avignon, France, 27-30 October 2008.
Razov, J., Tóth, M. and Baric, B. (2009): Harmfulness of adult rose chafers Cetonia curata L. and Potosia cuprea Fabricius on fruits of represented peach and nectarine cultivars in Ravni kotari. Glasnik zastite bilja 3/2009, 19-26 (in Croatian).

Reddy, G. V. P. and Guerrero, A. (2004): Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci. 9, 253-261. doi: $10.1016 / \mathrm{j}$ tplants. 2004.03.009
Roelofs, W. L. (1977): The scope and limitations of the electroantennogram technique in identifying pheromone components. In: N. R. McFarlane (ed.): Crop Protection Agents - Their Biological Evaluation. Academic Press, New York, pp. 147-165.
Ruther, J. and Mayer, C. J. (2005): Response of garden chater, Phyllopertha horticola, to plant volatiles: from screening to application. Entomol. Exp. Appl. 115, 5I-59. doi: 10.1111/j.1570-7458.2005.00264.x
Schmera, D., Tóth, M., Subchev, M., Sredkov, I., Szarukín, I., Jermy, T. and Szentesi, Á. (2004): Importance of visual and chemical cues in the development of an attractant trap for Epicometis (Tropinota) hirta Poda (Coleoptera: Scarabaeidae). Crop Prot. 23, 939-944. doi: 10.1016/j.cropro. 2004.02.006
Steinhaus, M. and Schieberle, P. (2005): Role of the fermentation process in off-odorant formation in white pepper: On-site trial in Thailand. J. Agric. Foosl Chem. 53, 6056-6060. doi: 10.1021/jf050604s
Sulljvan, B. T., Dalusky, M. J., Wakarchuk, D. and Berisford, C. W. (2007): Field evaluations of polential aggregation inhibitors for the southern pine beetle, Dendroctonts frontalis (Coleoptera: Curculionidae). J. Entomol. Sci. 42, 139-149. doi: 10.18474/0749-8004-42.2.139

Tóth, M., Répási, V. and Szöcs, G. (2002): Chemical attractants for females of pest pyralids and phycitids (Lepidoptera: Pyralidae, Phycitidae). Acta Phytopathol. et Entomol. Hung. 37, 375-384. doi: 10.1556/ APhyl.37.2002.4.8
Tóth, M., Imrei, Z., Szarukán, I., Voigt, E., Schmera, D., Vuts, J., Harmincz, K. and Subchev, M. (2005): Chemical communication of fruit- and flower-damaging scarabs: Results of one decade's research efforts, Növényvédelem 41, 581-588 (in Hungarian).
Tóth, M., Voigt, E., Imrei, Z., Szarukàn, I., Schmera, D., Vuts, J., Harmincz, K., Subchev, M. and Sivcev, I. (2006): Semiochemical-baited traps for scarab pests damaging fruits and blossoms. Abstracts of the 58 th Intl. Symp. Crop. Prol, Gent, Belgium, 23 May 2006.
Tóth, M., Szentkirályi, F., Vuts, J., Letardi, A., Tabilio, M. R., Jaastad, G. and Knudsen, G. K. (2009): Optimization of a phenylacetaldehyde-based attractant for common green lacewings (Chrysoperla carnea s.l.). J. Chem. Ecol. 35, 449-458. doi: 10.1007/s10886-009-9614-8

Voigt, E., Tóth, M., Imrei, Z., Vuts, J., Szöllös, L. and Szarukón, I. (2005): Damages by Anomala vitis and Cetonia curata (Coleoptera: Scarabaeidae) and possibilities for environmentally harmless control. Agrofórum 16, 63-64 (in Hungarian).
Vuts, J., Inrrei, Z, Birkett, M. A., Pickett, J. A., Wootlcock, C. M. and Tóth, M. (2014): Semiochemistry of the Scarabaeoidea. J. Chem. Ecol. 40, 190-2 10. doi: 10. 1007/s 10886-014-0377-5
Williams, R. N., Fickle. D. S., McGovern, T. P. and Klein, M. G. (2000): Develnpment of an attractant for the scarab pest Macrodactylus subspinosus (Coleoptera: Scarabaeidae), J. Econ. Entomol. 93, 1480-1484. doi: 10.1603/0022-0493-93.5.1480
Williams, C. R., Ritchie, S. A., Russell, R. C., Eiras, A. E., Kline, D. L. and Gejer, M. (2006): Geographic variation in attraction to human odor compounds by Aedes caegypti mosquitoes (Diptera: Culicidae): A laboratory study, J. Chem. Ecol. 32, 1625-1634. doi: 10. 1007/s 10886-006-9097-9
Zareba, D., Ziarno, M., Obiedzinski, M. and Bzducha, A. (2008): Profile of volatile compounds produced in models of non-fermented and fermented milk with the use of yoghurt bacteria. Zywnose. Nauka Technologia Jakosc. 15, 60-73.
Zhang, C., Yang, H., Yang, F. and Ma, Y. (2009): Current progress on n-butyric acid production by fermentation. Curr: Microbiol. 59, 656-663, cloi: 10.1007/s00284-009-9491-y

[^0]: *Corresponding authol; e-mail: joci0617@gmail.com

[^1]: For significance, refer to Table I.

[^2]: For significance, refer to Table 1.

