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Research Paper

Modeling Schumann resonances with schupy

Abstract

Schupy is an open-source python package aimed at modeling and analyzing Schumann resonances 
(SRs), the global electromagnetic resonances of the Earth-ionosphere cavity resonator in the lowest 

part of the extremely low frequency band (  100 Hz). Its very-first function forward_tdte applies 
the solution of the 2-D telegraph equation obtainedintroduced recently by Prácser et al. (2019) for a 
uniform cavity and is able to determine theoretical SR spectra for arbitrary source-observer 
configurations. It can be applied for both modeling extraordinarily large SR-transients or 
“background” SRs excited by incoherently superimposed lightning strokes within an extended 
source region. Three short studies are presented which might be important for SR related research. 
With the forward_tdte function our aim is to provide a medium complexity numerical background 
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for the interpretation of SR observations. We would like to encourage the community to join our 
project in developing open-source analyzing capacities for SR research as part of the schupy 
package.

Keywords: Schumann resonances; Earth-ionosphere cavity; Numerical model; Python package

1. Introduction

Schumann resonances (SRs) are the global electromagnetic resonances of the Earth-ionosphere cavity, 
characterized by peak frequencies of about 8, 14, 21, 26 etc. Hz (Balser and Wagner, 1960; Galejs, 1972; 
Madden and Thompson, 1965; Nickolaenko and Hayakawa, 2002; Price, 2016; Sátori, 1996; Schumann, 1952; 
Wait, 1996). They are known as a powerful tool for monitoring lightning activity on regional and global scales 
(Boldi et al., 2018; Dyrda et al., 2014; Sátori and Zieger, 1999; Williams and Sátori, 2004) and also as an 
important source of information about the global state of the lowest part of the ionosphere (Dyrda et al., 2015; 
Kudintseva et al., 2018; Nickolaenko et al., 2012; Roldugin et al., 2003, 2004; Sátori et al., 2016; Shvets et al., 
2017; Williams and Sátori, 2007). Recently, a major interest arose for SRs in connection with gravitational 
wave detection (Coughlin et al., 2016, 2018; Kowalska-Leszczynska et al., 2017).

BasicallyEssentially, it is the very weak attenuation rate (about 0.5 dB/Mm, Chapman et al., 1966; Wait, 1996) 
of electromagnetic (EM) waves in the lowest part of the extremely low frequency band ( 100 Hz) that enables 
the formation of SRs. Lightning radiated EM waves can travel a number of times around the globe before 
losing most of their energy and the constructive interference of the waves propagating in the opposite 
directions (direct and antipodal waves) forms the resonance structure. Most of the lightning strokes formare 
part of a quasi-steady “background” field from where individual lightning discharges cannot be distinguished, 
while there also exist extremely large excitation events known as SR-transients or Q-bursts (Boccippio et al., 
1995; Guha et al., 2017; Ogawa et al., 1967) which largely exceed the “background”s signal strength.

In the last decades several approaches have been published about the numerical modeling of SRs with various 
complexity (Kulak et al., 2003b; Kulak and Mlynarczyk, 2013; Morente et al., 2003; Toledo-Redondo et al., 
2016; Yang and Pasko, 2006). Many of them were applied with great success to understand peculiar 
observational phenomena (e.g. Kudintseva et al., 2018; Kulak et al., 2003a; Yang and Pasko, 2006, 2007). On 
the other hand there are observations where detailed numerical interpretations are still desired (e.g. Sátori, 
1996; Satori, 2003; Satori and Zieger, 2003). In order to facilitate such kind of scientific objectives here we 
present a new python function forward_tdte which is capable of modeling the theoretical SR spectraum for 
arbitrary source-observer configurations with medium complexity. The basis of the code is the forward 
modeling part of Prácser et al. (2019) rewritten in python. This function is part of the newly established open-
source python package callednamed schupy. In Section  we introduce the applied 2-Dtwo-dimensional 
telegraph equation (TDTE) framework. Following that, we describe the schupy package and the forward_tdte 
function in Section  and then carry out three short studies in Section . Finally, we summarize our main 
conclusions in Section .

2. Theoretical background
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The theoretical description of SRs is most naturally formulated in spherical coordinates (r, ϑ, φ). The radius 
of the inner boundary, the Earth's surface, is denoted by R and the height of the ionosphere by h. Furthermore, 
we use the following notation conventions:

• standard physical quantities (i.e. voltages, V, currents, I, admittances, Y, etc.) are denoted by 
capital letters,

• the surface densities of the same quantities are denoted by calligraphic letters (e.g. , ),

• while linear densities are denoted by lowercase letters (e.g. i).

During our derivation we assumeuse the fact that the time evolution of the solution can be separated from its 
spatial dependence, and takes the form of    with various ω frequencies, where j is the imaginary unit. 
We assume that the Earth-ionosphere waveguide can be modeled as a 2-D transmission line ( Fig. 1 ) which is a 
valid approximation, as the wavelengths of the guided waves are much longer than the distance between the 
Earth's surface and the ionosphere. In a local treatment the transmission surface can be represented by 
elementary circuit components. These elementary components can be described by four quantities, namely  

  (admittance) and    (impedance), where C and L denote the capacitive and the inductive elements, 
respectively, and can be expressed in the following general form:

where G is the conductance, B is the susceptance, R is the Ohmic resistance, and X is the reactance.

(1)

Fig. 1



From charge conservation on the surface the divergence of the surface current density vector in the ionosphere 
can be written as:

where    is the current density of the source and V is the electric potential between the ionosphere and the 
Earth's surface. An additional equation can be obtained from the differential Ohm's law:

It follows that the natural variables of the TDTE approach are the voltage (V) and the surface current density 
vector (  ), while the electric and magnetic field components can be expressed as:

from V and    (Madden and Thompson, 1965 ).

If we assume, that the surface of the Earth and the ionosphere are perfect conductors and there is vacuum 
between them, then:

where    and    denotes the capacitance and inductance, respectively.

In addition, we also assume, that the impedance and admittance are constants on the surface, i.e. we have a 
uniform Earth-ionosphere cavity. In this case Eqs.  (2) and (3) can be combined to arrive at the telegraph 
equation:

Circuit network of the 2-D transmission line (from Madden and Thompson, 1965). The inductive elements cover the ionosphere 
while the capacitive elements connect it with the Earth's surface.

(2)

(3)

(4)

(5)

(6)

(7)



In order to find the solution for this equation, first we assume, that the source term  can be described by a 
vertical Dirac-δ current impulse (representing a single lightning stroke) and construct our coordinate system in 
a way that its North Pole coincides with the position of the source. Since the source is symmetric under 
rotations around the vertical axis in this case, the solution will be independent of the coordinate φ. A general 
potential on the surface of a sphere can be expressed as a linear combination of spherical harmonics. Due to 
rotational symmetry the solution can be expressed in the form:

where    is the Legendre polynomial of degree n. The Laplacian acts on the Legendre polynomials as

where R is the radius of the sphere. Note, that by exchanging the variable ϑ to    we arrive at Legendre's 
equation, which is the defining equation of the Legendre polynomials. The source term can also be expressed 
using Legendre polynomials (see e.g.  Bronshtein and Semendyayev, 1997 , on the completeness of Legendre 
polynomials):

where I is the total current, which we get when integrating for the surface of the sphere. Inserting Eqs.  (8) and 
(10)  into Eq.  (7)  and using Eq.  (9)  we arrive at

Since the Legendre polynomials are linearly independent the solution can only be achieved trivially, i.e. when 
all coefficients are 0. Hence, solving for    and inserting it back into Eq.  (8)  we get:

(8)

(9)

(10)

(11)



where we introduced the notation   , which is the current moment of the lightning source. This way M 
becomes the source quantity, which is more suitable for generalized uses. As stated in  Prácser et al. (2019)  by 
using Eqs.  (3) and (4)  this formula gives the same expression for the EM field components as in e.g.  Galejs 
(1972) ;  Mushtak and Williams (2002) ;  Nickolaenko and Hayakawa (2002) ;  Wait (1996) .

The generalized formula for arbitrary (  ) source and (  ) observation locations can easily be acquired by 

replacing    with   , where γ is the angle between the source and observation positions, and    can be 
expressed in the following form:

Using Eqs. (3) and (4)  and the relation   , one can derive expressions for the components of magnetic 
induction:

Using these expressions and Eq.  (4)  we can obtain the general equations for   ,   ,   :

where d  d   [Instruction: To DC: Delete the last math 

only]are the first order associated Legendre polynomials. These equations were first published recently by  

(12)
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Prácser et al. (2019) and can be regarded as the generalization of the formalism introduced in the PhD thesis of 
Nelson (1967).

In a more realistic scenario the  resistance of the ionosphere and the  conductance of the air are not equal 
to zero as it has been assumed in Eqs. (5) and (6). However simply assigning them nonzero values the elegant 
analytical formalism of Eqs. (15)–(17) would not hold anymore. Therefore, following the method of Kirillov 
and Kopeykin (2002), we take the losses into account by introducing two complex equivalents for the altitudes 
of the transmission line  and , defined by the following relations (see Madden and Thompson, 1965; 
Greifinger and Greifinger, 1978; Mushtak and Williams, 2002):

where

It follows that the capacitive admittance and the inductive impedance is also modified:

and hence, the following relation holds:

Thus, in Eq.  (12)  and all other equations that follow from this one, h is replaced by   , and Eq.  (21)  has to be 

inserted in the denominator. In case of    and    these heights simply become h. About the 

determination of    and    see e.g.  Kulak and Mlynarczyk (2013)  or  Mushtak and Williams (2002) .

For the evaluation of the (associated) Legendre polynomials in practical applications (Eqs.  (15)–(17) ), it is 
convenient to use the following recursive formula:

(18)

(19)

(20)

(21)

(22)



where , and . Using this relation, we only need the first few Legendre polynomials, namely 

, , , and .

In order to consider multiple sources the summed effect of each source has to be calculated. Since the 
superimposed lightning strokes are incoherent in nature their power spectral densities have to be used for the 
summation (e.g. Nickolaenko et al., 1996). It follows, that the unit of the source term is C2km2/s 
corresponding to electric and magnetic spectra in mV2/m2/Hz and in pT2/Hz, respectively.

3. Package description

The schupy package contains a modeling function at its current release, named forward_tdte, which simulates 
SRs generated by an arbitrary distribution of lightning sources specified by the user and returns the theoretical 
electric and magnetic fields at the user-specified location.

The schupy package can simulate point sources as well as extended ones. It is possible to specify the size of 
the extended source, which the code will represent as randomly distributed point sources within the given 
radius from the center of the source that, which haves a total intensity specified by the user (as an example see 
Fig. 2). The method of the height calculation can be set either to “mushtak” corresponding to the model of 
Mushtak and Williams (2002) or to “kulak” corresponding to the model of Kulak and Mlynarczyk (2013).

Geographic locations of the sources and of the observing station can be visualized by schupy, making use of 
the cartopy package for visualization of the Earth. 1 

The schupy package is available via the pip package manager system (https://pypi.org/project/schupy/) and the 
project's Github page: https://github.com/dalyagergely/schupy, where a more detailed technical description is 
presented as well..

Fig. 2

Map of an extended source at    (radius = 1 Mm).

https://pypi.org/project/schupy/
https://github.com/dalyagergely/schupy


4. Short studies based on schupy.forward_tdte

In this section we present three short studies based on schupy.forward_tdte which might be interesting for SR 
related research. First, we test the convergence of theoretical spectra, then we compare the spectra generated 
by two antipodal sources, and finally the difference between the spectra of point and extended sources is 
investigated. The function calls that we used for the short studies are provided in the Appendix[Instruction: To 
DC: link to Appendix]. of the paper.

4.1. Convergence of theoretical spectra

As it can be seen in Eqs.  (15)–(17)  the electromagnetic field components of SRs arecan be calculated as an 
infinite sumsmation of (associated) Legendre-polynomials. Practically, only a finite number of summation can 
be done (up to n), thus the question arises: at what n can we accept the result? It is to be noted, that the answer 
depends on the source-observer distance.

In order to investigate this problem we carry out a test where the (lat,lon) positions of a point-like lightning 

source with    source intensity are:   ,   ,   ,  

 ,    and   , respectively and the theoretical 

spectra are determined for the    location in each case. The theoretical spectra are calculated for the 

Fig. 3

Convergence of the theoretical spectra for the    component for different source-observer distances. n  denotes the maximal order 
of Legendre-polynomials included in the summationto sum.



following values of n: [10, 50, 100, 500, 1000, 5000]. All the positions are on the Equator, therefore the  
component is always zero. The results are shown in Figs. 3 and 4.

It can be noted that    converges faster than   . Our conclusion is that in most cases    should be enough 

except when calculatingfor    withwhen the observer is close to the source (  ).

4.2. Theoretical spectra of antipodal sources

This test is devoted to compareing theoretical spectra of antipodal sources. Here, our motivation is to gain 
more insight about non-uniqueness, which manifests as parallel equivalent solutions for the SR inversion task 
(see e.g.  Prácser et al., 2019 ). In a lossless cavity antipodal sources would produce exactly the same spectra at 
arbitrary location on Earth. However the Earth-ionosphere cavity is lossy, which is taken into account by 
introducing    and    complex equivalents of the altitudes. The question is, in what extent does the theoretical 
spectra differ in this formalism.

We place two sources with the same intensities of    at antipodal positions    and    and 

determine the theoretical spectra for the following locations:   ,   ,   ,   ,    and  

 . As in the previous test, all the positions are on the Equator, therefore the    component is always zero.

Fig. 4

The same as  Fig. 3  but for the    component. Note, that the upper limit of the y axis is different for the two shortest source-
observer distances than for the other cases.



It can be seen that in the midpoint  the theoretical spectra are exactly the same (Figs. 4 and 5Figs. 5 and 
6)[Instruction: To DC: Figs. 5 and 6 floatanchor here], however apart from this specific point the two spectra 
are noticeably different (see Fig. 6).

4.3. Point versus extended source

In this test we compare the theoretical spectra of a point source with thatose of an extendeddistributed source 
(with a radius of 1 Mm). Both the centroid position of the extended source and the location of the point source 
are   , and we determine the theoretical spectra for the equatorial distances of   ,   ,   ,   ,    and  

 . The extended source consists of 100 randomly distributed sources within the given radius with a total 

intensity of   , the same value as set for the point source.  Fig. 7  shows the relative difference of the 
two cases, defined as

where S denotes the theoretical spectrum (either    or   ). As in the previous two studies,    is always zero.

Fig. 5

Theoretical spectra of the    component for the two antipodal sources at different observer positions. The orange and the blue 
lines mark the theoretical spectra of the sources at    and   , respectively.

(23)

Fig. 6
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It can be noted that the further the source is the larger the relative difference between the field generated by the 
two kinds of sources becomes. As it can be expected the most noticeable differences can be found at the nodal 
points of the resonance field.

Figure Replacement Requested

The same as  Fig. 5  but for the    component.

Fig. 7

The relative difference between the theoretical spectra of a point and an extendeddistributed (radius = 1 Mm) source.



5. Summary

• In this paper we introduced our newly established open-source python package schupy and its 
very-first function forward_tdte for SR modeling, which enables to calculatinge the theoretical 
SR spectra for arbitrary source-observer configurations.

• The package can be downloaded via pip and the source code is freely available on Github.

• We have carried out three short studies where we investigated the convergence of the 
theoretical spectra, the theoretical spectra of antipodal sources and the theoretical spectra of an 
extended distributed source.

• We encourage the community to join our initiation and participate in developing open-source 
analyzing capacities for SR research as part of the schupy package.
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Appendix

Additionally, we would like to provide some support for readers aiming to reconstruct the three short studies 
presented in this article. First, forward_tdte function and numpy should be imported with the following 
commands: from schupy import forward_tdte, import numpy as np.

• The convergence of theoretical spectra can be tested with the following piece of code:
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, where the source distance is 10[Instruction: To DC: 10 (deg sign)] and the summation is done 
up to 500 in this case.

• the theoretical spectra of antipodal sources with:

,where the observer position is (0,15) in this case.

• and the relative difference between the theoretical spectra of a point and an extended distributed 
source with:

, where the observer position is (0,15) in this case.
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