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Abstract. We consider a nonlinear boundary value problem driven by the (p, 2)-
Laplacian, with a (p− 1)-superlinear reaction and a parametric concave boundary term
(a “concave-convex” problem). Using variational tools (critical point theory) together
with truncation and comparison techniques, we prove a bifurcation type theorem de-
scribing the changes in the set of positive solutions as the parameter λ > 0 varies. We
also show that for every admissible parameter λ > 0, the problem has a minimal posi-
tive solution uλ and determine the monotonicity and continuity properties of the map
λ 7→ uλ.
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1 Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study the
following nonlinear parametric (p, 2)-equation

−∆pu(z)− ∆u(z) + ξ(z)u(z)p−1 = f (z, u(z)) in Ω
∂u

∂np2
= λuτ−1 on ∂Ω

u > 0, λ > 0, 1 < τ < 2 < p < N.

, (Pλ)

In this problem, ∆p denotes the p-Laplace differential operator defined by

∆pu = div
(
|Du|p−2Du

)
for all u ∈W1,p(Ω), 1 < p < N.

The potential function ξ ∈ L∞(Ω), ξ(z) ≥ 0 for a.a. z ∈ Ω, ξ 6≡ 0. The reaction term f (z, x)
is a Carathéodory function (that is, for all x ∈ R, z 7→ f (z, x) is measurable and for a.a.
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z ∈ Ω, x 7→ f (z, x) is continuous). We assume that f (z, ·) is (p − 1)-superlinear satisfying
the Ambrosetti–Rabinowitz condition (the AR-condition for short). In the boundary condition,

∂u
∂np2

denotes the conormal derivative of u corresponding to the (p, 2)-Laplace differential op-
erator. This directional derivative of u, is interpreted via the nonlinear Green’s identity (see
Papageorgiou–Rădulescu–Repovš [21], pp. 34, 35). If u ∈ C1(Ω), then

∂u
∂np2

=
[
|Du|p−2 + 1

] ∂u
∂n

with n(·) being the outward unit normal on ∂Ω. Also λ > 0 is a parameter and τ ∈ (1, 2).
So, in problem (Pλ) we have the competing effects of two nonlinearities of different nature.
One is the reaction term which is superlinear (“convex” nonlinearity) and the other is the
parametric boundary term, which is sublinear (“concave” nonlinearity). Therefore, problem
(Pλ) is a variant of the classical “concave-convex” problem, with the concave term coming
from the boundary condition.

The study of “concave-convex” problems was initiated with the seminal paper of
Ambrosetti–Brezis–Cerami [2] (semilinear Dirichlet equations). Their work was extended to
nonlinear Dirichlet problems driven by the p-Laplacian by García Azorero–Manfredi–Peral
Alonso [7] and Guo-Zhang [9]. In these works the reaction has the special form

x 7→ λxτ−1 + xr−1 for all x ≥ 0,

with λ > 0 (the parameter) and 1 < τ < p < r < p∗,

p∗ =

{ Np
N−p if p < N,

+∞ if N ≤ p.

Recently more general reactions and different boundary conditions were considered by
Papageorgiou–Rădulescu–Repovš [18] (semilinear Robin problems), by Leonardi–Papageorgiou
[12], Marano–Marino–Papageorgiou [14] (nonlinear Dirichlet problems) and by Papageorgiou–
Scapellato [23] (nonlinear Robin problems). In these works the competition phenomena occur
in the reaction of the equation, where we have the presence of concave and convex nonlineari-
ties. Problems with parametric concave boundary term were considered by Hu–Papageorgiou
[11] (semilinear equations), Papageorgiou–Rădulescu [16], Papageorgiou–Rădulescu–Repovš
[20], Sabina de Lis–Segura de Leon [25] (nonlinear problems driven by the p-Laplacian). Fi-
nally we mention the recent work of Papageorgiou–Scapellato [22] where in the reaction we
have the combined effects of linear and superlinear terms.

Our work here extends those of Hu–Papageorgiou [11] and of Sabina de Lis–Segura de
Leon [25].

Using variational tools based on the critical point theory, together with truncation and
comparison techniques, we prove a bifurcation-type result describing in a precise way the set
of positive solutions of problem (Pλ) as the parameter λ > 0 varies. Also we show that for
every admissible λ > 0, problem (Pλ) has a smallest positive solution.

We mention that boundary value problems driven by a combination of differential op-
erators of different nature (such as (p, 2)-equations), arise in many mathematical models of
physical processes. Among the first such examples we mention the Cahn–Hilliard equation
(see [4]) describing the process of separation of binary alloys. More recently, we mention the
works of Benci–D’Avenia–Fortunato–Pisani [3] (quantum physics) and Cherfils–Il’yasov [5]
(reaction-diffusion systems).
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2 Mathematical background – hypotheses

In the study of problem (Pλ), we will use the Sobolev space W1,p(Ω), the Banach space C1(Ω)

and the boundary Lebesgue spaces Ls(∂Ω) (1 ≤ s < ∞).
By ‖ · ‖ we denote the norm of the Sobolev space W1,p(Ω), defined by

‖u‖ =
[
‖u‖p

p + ‖Du‖p
p
] 1

p for all u ∈W1,p(Ω).

The Banach space C1(Ω) is an ordered Banach space with positive (order) cone

C+ =
{

u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω
}

.

This cone has a nonempty interior given by

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ Ω
}

.

We will also use another open cone in C1(Ω) given by

D+ =

{
u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω,

∂u
∂n

∣∣∣
∂Ω∩u−1(0)

< 0
}

.

On ∂Ω we consider the (N− 1)-dimensional Hausdorff (surface) measure σ(·). Using σ(·),
we can define in the usual way the boundary Lebesgue spaces Ls(∂Ω) (1 ≤ s ≤ ∞). We know
that there exists a unique continuous linear map γ0 : W1,p(Ω) → Lp(∂Ω), known as the trace
map, such that

γ0(u) = u
∣∣∣
∂Ω

for all u ∈W1,p(Ω) ∩ C(Ω).

So, the trace map extends the notion of boundary values to all Sobolev functions. This map
is compact into Ls(∂Ω) for all 1 ≤ s < (N−1)p

N−p when p < N and into Ls(Ω) for all 1 ≤ s < ∞
when N ≤ p. Moreover, we have

im γ0 = W
1
p′ ,p(∂Ω)

(
1
p
+

1
p′

= 1
)

,

ker γ0 = W1,p
0 (Ω).

In what follows for the sake of notational simplicity we drop the use of the trace map. All
restrictions of Sobolev functions on ∂Ω are understood in the sense of traces.

If u, v ∈W1,p(Ω) with u(z) ≤ v(z) for a.a. z ∈ Ω, then we define

[u, v] = {h ∈W1,p(Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω},
[u) = {h ∈W1,p(Ω) : u(z) ≤ h(z) for a.a. z ∈ Ω}.

Given g1, g2 ∈ L∞(Ω), we write g1 ≺ g2 if for every K ⊆ Ω compact we can find cK > 0
such that

cK ≤ g2(z)− g1(z) for a.a. z ∈ K.

Note that if g1, g2 ∈ C(Ω) and g1(z) < g2(z) for all z ∈ Ω, then g1 ≺ g2.
We say that a set S ⊆ W1,p(Ω) is downward directed, if given u1, u2 ∈ S, we can find u ∈ S

such that u ≤ u1, u ≤ u2.
Let 〈·, ·〉 denote the duality brackets for the pair (W1,p(Ω), W1,p(Ω)∗) and let Ap :

W1,p(Ω)→W1,p(Ω)∗ be the nonlinear operator defined by

〈Ap(u), h〉 =
∫

Ω
|Du|p−2(Du, Dh)RN dz for all u, h ∈W1,p(Ω).
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Proposition 2.1. The operator Ap(·) is bounded (maps bounded sets to bounded sets), continuous,
monotone (hence maximal monotone too) and of type (S)+, that is,

un
w−→ u in W1,p(Ω) and lim sup

n→∞
〈Ap(un), un − u〉 ≤ 0 ⇒ un → u in W1,p(Ω).

If p = 2, then A2 = A ∈ L (H1(Ω), H1(Ω)∗).

For x ∈ R, we set x± = max{±x, 0}. Then, given u ∈W1,p(Ω), we define

u±(z) = u(z)± for all z ∈ Ω.

We know that
u± ∈W1,p(Ω), u = u+ − u−, |u| = u+ + u−.

Finally, if X is a Banach space and ϕ ∈ C1(X, R), then by Kϕ we denote the critical set of
ϕ(·), that is,

Kϕ = {u ∈W1,p(Ω) : ϕ′(u) = 0}.
Now we introduce our hypotheses on the data of problem (Pλ).

H(ξ): ξ ∈ L∞(Ω), ξ(z) ≥ 0 for a.a. z ∈ Ω, ξ 6≡ 0.

H( f ): f : Ω×R→ R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω and

(i) 0 ≤ f (z, x) ≤ ηxr−1 for a.a. z ∈ Ω, all x ≥ 0, with 0 < η, p < r < p∗;

(ii) if F(z, x) =
∫ x

0 f (z, s)ds, then there exist ϑ0 ∈ (p, r) and M > 0 such that

0 < ϑ0F(z, x) ≤ f (z, x)x for a.a. z ∈ Ω, all x ≥ M,

0 < ess inf
Ω

F(·, M).

Remark 2.2. Since we are looking for positive solutions and the above hypotheses concern the
positive semiaxis R+ = [0,+∞), without any loss of generality we may assume that

f (z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0. (2.1)

Hypothesis H( f )(i) implies that

lim
x→0+

f (z, x)
xτ−1 = 0 uniformly for a.a. z ∈ Ω. (2.2)

Hypothesis H( f )(ii) is the well known AR-condition (unilateral version due to (2.1)). The
AR-condition implies that

c0xϑ0 ≤ F(z, x) for a.a. z ∈ Ω, all x ≥ M, some c0 > 0

⇒ c0xϑ0−1 ≤ f (z, x) for a.a. z ∈ Ω, all x ≥ M

⇒ f (z, ·) is (p− 1)-superlinear (since ϑ0 > p).

It is an interesting open problem whether we can replace the AR-condition by a less re-
strictive one as in Papageorgiou–Rădulescu [17].

The following functions satisfy hypotheses H( f ). For the sake of simplicity we drop the
z-dependence:

f1(x) =

{
(x+)r−1 + ln(1 + (x+)q−1) if x ≤ 1

xs−1 if 1 < x
with p < r ≤ q < ∞, p < s < p∗,

f2(x) = (x+)r−1 with p < r < p∗.
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In the sequel, by γp : W1,p(Ω)→ R we denote the C1-functional defined by

γp(u) = ‖Du‖p
p +

∫
Ω

ξ(z)|u|p dz for all u ∈W1,p(Ω).

On account of hypothesis H(ξ) and Lemma 4.11 of Mugnai–Papageorgiou [15], we have

c1‖u‖p ≤ γp(u) for all u ∈W1,p(Ω), some c1 > 0. (2.3)

3 Positive solutions

We introduce the following sets

L = {λ > 0 : problem (Pλ) admits a positive solution} ,

Sλ = set of positive solutions of (Pλ).

Proposition 3.1. If hypotheses H(ξ), H( f ) hold, then L 6= ∅ and Sλ ⊆ int C+ for all λ > 0.

Proof. For every λ > 0, let ϕλ : W1,p(Ω)→ R be the C1-functional defined by

ϕλ(u) =
1
p

γp(u) +
1
2
‖Du‖2

2 −
∫

Ω
F(z, u+)dz− λ

τ

∫
∂Ω

(u+)τ dσ for all u ∈W1,p(Ω).

On account of (2.2) and hypothesis H( f )(i), we see that given ε > 0, we can find
c2 = c2(ε) > 0 such that

F(z, x) ≤ εxτ + c2|x|r for a.a. z ∈ Ω, all x ∈ R.

Then we have

ϕλ(u) ≥
c1

p
‖u‖p − c3 [ε‖u‖τ + ‖u‖r + λ‖u‖τ] for some c3 > 0, all u ∈W1,p(Ω). (3.1)

Here we used (2.3) and the fact that via the trace map the Sobolev space W1,p(Ω) is
embedded continuously (in fact compactly) into Lτ(∂Ω).

For ρ > 0, we let ε = 1
2

c1
p

ρp−τ

c3
. Then we have[

c1

p
ρp−τ − εc3

]
ρτ =

1
2

c1

p
ρp. (3.2)

Using (3.2) in (3.1) we obtain

ϕλ(u) ≥
1
2

c1

p
ρp − c3[ρ

r + λρτ] for all u ∈W1,p(Ω) with ‖u‖ = ρ.

Since p < r, we can choose ρ ∈ (0, 1) small such that

1
2

c1

p
ρp − c3ρr ≥ η > 0.

Then we choose λ0 > 0 small so that

η − λ0c3ρτ ≥ 1
2

η > 0

⇒ η − λc3ρτ ≥ 1
2

η > 0 for all λ ∈ (0, λ0]

⇒ ϕλ(u) ≥
1
2

η > 0 for all u ∈W1,p(Ω) with ‖u‖ = ρ, all 0 < λ ≤ λ0. (3.3)
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We introduce the open ball

Bρ = {u ∈W1,p(Ω) : ‖u‖ < ρ}.

By the Alaoglu and Eberlein-Šmulian theorems, we have that Bρ is sequentially weakly
compact. Also, using the Sobolev embedding theorem and the compactness of the trace map,
we see that ϕλ(·) is sequentially weakly lower semicontinuous. Invoking the Weierstrass–
Tonelli theorem, we can find u0 ∈W1,p(Ω) such that

ϕλ(u0) = min
[
ϕλ(u) : u ∈ Bρ

]
. (3.4)

Since τ < 2 < p, we see that

ϕλ(u0) < 0 = ϕλ(0) <
1
2

η

⇒ u0 ∈ Bρ \ {0} (see (3.3)). (3.5)

Then from (3.4) and (3.5) it follows that

ϕ′λ(u0) = 0,

⇒ 〈Ap(u0), h〉+ 〈A(u0), h〉+
∫

Ω
ξ(z)|u0|p−2u0h dz

=
∫

Ω
f (x, u+

0 )h dz + λ
∫

∂Ω
(u+

0 )
τ−1h dσ for all h ∈W1,p(Ω). (3.6)

In (3.6) we choose h = −u−0 ∈W1,p(Ω). Then

γp(u−0 ) + ‖Du−0 ‖
2
2 = 0

⇒ c1‖u−0 ‖
p ≤ 0 (see (2.3))

⇒ u0 ≥ 0, u0 6= 0.

From (3.6) we see that u0 ∈W1,p(Ω) is a positive solution of (Pλ) and we have
−∆pu0(z)− ∆u0(z) + ξ(z)u0(z)p−1 = f (z, u0(z)) for a.a. z ∈ Ω,
∂u0

∂np2
= λuτ−1

0 on ∂Ω.
(3.7)

Proposition 2.10 of Papageorgiou–Rădulescu [17] implies that u0 ∈ L∞(Ω) and then from
Theorem 2 of Lieberman [13], we have that u0 ∈ C+ \ {0}. From (3.7) we see that

∆pu0(z) + ∆u0(z) ≤ ‖ξ‖∞u0(z)p−1 for a.a. x ∈ Ω

⇒ u0 ∈ int C+ (see Pucci–Serrin [24], pp. 111, 120).

So, we have proved that

(0, λ0] ⊆ L , that is, L 6= ∅,

Sλ ⊆ int C+ for all λ > 0.

Next we show that L is an interval.

Proposition 3.2. If hypotheses H(ξ), H( f ) hold, λ ∈ L and µ ∈ (0, λ), then µ ∈ L .
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Proof. Since λ ∈ L , we can find uλ ∈ Sλ ⊆ int C+ (see Proposition 3.1). We introduce the
following truncations of the data of problem (Pµ):

f̂ (z, x) =

{
f (z, x+) if x ≤ uλ(z)

f (z, uλ(z)) if uλ(z) < x
for all (z, x) ∈ Ω×R, (3.8)

eµ(z, x) =

{
µ(x+)τ−1 if x ≤ uλ(z)

µuλ(z)τ−1 if uλ(z) < x
for all (z, x) ∈ ∂Ω×R. (3.9)

Both are Carathéodory functions. We set

F̂(z, x) =
∫ x

0
f̂ (z, s)ds, Eµ(z, x) =

∫ x

0
eµ(z, s)ds

and consider the C1-functional ψµ : W1,p(Ω)→ R defined by

ψµ(u) =
1
p

γp(u) +
1
2
‖Du‖2

2 −
∫

Ω
F̂(z, u)dz−

∫
∂Ω

Eµ(z, u)dσ for all u ∈W1,p(Ω).

From (2.3), (3.8) and (3.9), we see that ψµ(·) is coercive. Also it is sequentially weakly lower
semicontinuous. Therefore we can find uµ ∈W1,p(Ω) such that

ψµ(uµ) = inf
[
ψµ(u) : u ∈W1,p(Ω)

]
. (3.10)

Let u ∈ int C+ and choose t ∈ (0, 1) small (at least so that tu ≤ uλ, recall that uλ ∈ int C+).
Then since τ < 2 < p, we will have

ψµ(tu) < 0

⇒ ψµ(uµ) < 0 = ψµ(0) (see (3.10))

⇒ uµ 6= 0.

From (3.10) we have

ψ′µ(uµ) = 0

⇒ 〈Ap(uµ), h〉+ 〈A(uµ), h〉+
∫

Ω
ξ(z)|uµ|p−2uµh dz

=
∫

Ω
f̂ (z, uµ)h dz +

∫
∂Ω

e(z, uµ)h dσ for all h ∈W1,p(Ω). (3.11)

In (3.11) first we choose h = −u−µ ∈W1,p(Ω). We obtain

γp(u−µ ) + ‖Du−µ ‖2
2 = 0

⇒ c1‖u−µ ‖p ≤ 0 (see (2.3))

⇒ uµ ≥ 0, uµ 6= 0.

Next in (3.11) we choose h = (uµ − uλ)
+ ∈W1,p(Ω). We have

〈Ap(uµ), (uµ − uλ)
+〉+ 〈A(uµ), (uµ − uλ)

+〉+
∫

Ω
ξ(z)up−1

µ (uµ − uλ)
+ dz =

=
∫

Ω
f (x, uλ)(uµ − uλ)

+ dz +
∫

∂Ω
µuτ−1

λ (uµ − uλ)
+ dσ (see (3.8), (3.9))

≤
∫

Ω
f (z, uλ)(uµ − uλ)

+ dz +
∫

∂Ω
λuτ−1

λ (uµ − uλ)
+ dz (since µ < λ)

= 〈Ap(uλ), (uµ − uλ)
+〉+ 〈A(uλ), (uµ − uλ)

+〉+
∫

Ω
ξ(z)up−1

λ (uµ − uλ)
+ dz

(since uλ ∈ Sλ)
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⇒ uµ ≤ uλ (see Proposition 2.1).

So we have proved that
uµ ∈ [0, uλ] \ {0}. (3.12)

From (3.11), (3.12), (3.8), (3.9) it follows that

uµ ∈ Sµ ⊆ int C+,

⇒ µ ∈ L .

An interesting byproduct of the above proof is the following corollary.

Corollary 3.3. If hypotheses H(ξ), H( f ) hold, λ ∈ L , uλ ∈ Sλ ⊆ int C+ and µ ∈ (0, λ), then
µ ∈ L and there exists uµ ∈ Sµ ⊆ int C+ such that uµ ≤ uλ.

We can improve this corollary, by imposing an additional mild condition on f (z, ·). So, the
new hypotheses on the reaction f (z, x) are the following:

H( f )′: f : Ω × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω,
hypotheses H( f )′(i), (ii) are the same as the corresponding hypotheses H( f )(i), (ii) and

(i) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω the function

x 7→ f (z, x) + ξ̂ρxp−1

is nondecreasing on [0, ρ].

Remark 3.4. The extra condition is a one-sided local Lipschitz condition (recall that p > 2). If
f (z, ·) is differentiable for a.a. z ∈ Ω and for every ρ > 0, there exists cρ > 0 such that

f ′x(z, x) ≥ −cρxp−2 for a.a. z ∈ Ω, all x ∈ [0, ρ],

then hypothesis H( f )′(i) is satisfied.

Proposition 3.5. If hypotheses H(ξ), H( f )′ hold, λ ∈ L , uλ ∈ Sλ ⊆ int C+ and µ ∈ (0, λ), then
µ ∈ L and we can find uµ ∈ Sµ ⊆ int C+ such that

uλ − uµ ∈ D+.

Proof. From Corollary 3.3 we already know that µ ∈ L and we can find uµ ∈ Sµ ⊆ int C+

such that
uµ ≤ uλ. (3.13)

Let a : RN → RN defined by

a(y) = |y|p−2y + y for all y ∈ RN .

Evidently a ∈ C1(RN , RN) (recall that p > 2) and

∇a(y) = |y|p−2
[

I + (p− 2)
y⊗ y
|y|2

]
+ I

⇒ (∇a(y)ϑ, ϑ)RN ≥ |ϑ|2 for all y, ϑ ∈ RN . (3.14)
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Observe that
div a(Du) = ∆pu + ∆u for all u ∈W1,p(Ω). (3.15)

From (3.13), (3.14), (3.15) and the tangency principle of Pucci-Serrin [24], p. 35, we have

uµ(z) < uλ(z) for all z ∈ Ω. (3.16)

Let ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H( f )′(i). Let ξ̃ρ > ξ̂ρ. We
have

− ∆puµ − ∆uµ +
[
ξ(z) + ξ̃ρ

]
up−1

µ

= f (z, uµ) + ξ̂ρup−1
µ +

[
ξ̃ρ − ξ̂ρ

]
up−1

µ

≤ f (z, uλ) + ξ̂ρup−1
λ +

[
ξ̃ρ − ξ̂ρ

]
up−1

λ (see (3.13) and hypothesis H( f )′(i))

= −∆puλ − ∆uλ +
[
ξ(z) + ξ̃ρ

]
up−1

λ for a.a. z ∈ Ω. (3.17)

On account of (3.16), we see that[
ξ̃ρ − ξ̂ρ

]
up−1

µ ≺
[
ξ̃ρ − ξ̂ρ

]
up−1

λ .

Then from (3.17) and Proposition 3.2 of Gasiński–Papageorgiou [8] we have

uλ − uµ ∈ D+.

From Papageorgiou–Rădulescu–Repovš [19] (see the proof of Proposition 7), we know that
Sλ is downward directed. We will use this fact to show that for every λ ∈ L problem (Pλ)
has a smallest positive solution uλ ∈ Sλ, that is, uλ ≤ u for all u ∈ Sλ.

Proposition 3.6. If hypotheses H(ξ), H( f ) hold and λ ∈ L , then problem (Pλ) admits a smallest
positive solution

uλ ∈ int C+.

Proof. Since Sλ is downward directed, using Lemma 3.10, p. 178, of Hu–Papageorgiou [10],
we can find {un}n≥1 ⊆ Sλ decreasing such that

inf
n≥1

un = inf Sλ.

We have

〈Ap(un), h〉+ 〈A(un), h〉+
∫

Ω
ξ(z)up−1

n h dz =
∫

Ω
f (z, un)h dz + λ

∫
∂Ω

uτ−1
n h dσ (3.18)

for all h ∈W1,p(Ω), all n ∈N.

In (3.18) we choose h = un ∈ W1,p(Ω). Since 0 ≤ un ≤ u1 for all n ∈ N, using (2.3) and
hypothesis H( f )(i), we see that

{un}n≥1 ⊆W1,p(Ω) is bounded.

From Lieberman [13] (Theorem 2), we see that there exist α ∈ (0, 1) and c4 > 0 such that

un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) ≤ c4 for all n ∈N.
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Recall that C1,α(Ω) ↪→ C1(Ω) compactly. This fact and the monotonicity of the sequence
{un}n≥1 imply that there exists uλ ∈ C1(Ω) such that

un → uλ in C1(Ω) as n→ ∞. (3.19)

We need to show that uλ 6= 0. To this end we consider the following auxiliary boundary
value problem 

−∆pu(z)− ∆u(z) + ξ(z)u(z)p−1 = 0 in Ω
∂u

∂np2
= λuτ−1 on ∂Ω

u > 0, λ > 0, τ < 2 < p

. (Qλ)

Claim 1. For every λ > 0 problem (Qλ) admits a unique solution ũλ ∈ int C+.

First we show the existence of a positive solution for problem (Qλ). For this purpose we
introduce the C1-functional βλ : W1,p(Ω)→ R defined by

βλ(u) =
1
p

γp(u) +
1
2
‖Du‖2

2 −
λ

τ

∫
∂Ω

(u+)τ dσ for all u ∈W1,p(Ω).

From (2.3) and since τ < 2 < p, we see that

βλ(·) is coercive.

Also the Sobolev embedding theorem and the compactness of the trace map, imply that

βλ(·) is sequentially weakly lower semicontinuous.

So, we can find ũλ ∈W1,p(Ω) such that

βλ(ũλ) = min
[

βλ(u) : u ∈W1,p(Ω)
]

. (3.20)

Since τ < 2 < p, we infer that

βλ(ũλ) < 0 = βλ(0)

⇒ ũλ 6= 0.

From (3.20) we have

β′λ(ũλ) = 0

⇒ 〈Ap(ũλ), h〉+ 〈A(ũλ), h〉+
∫

Ω
ξ(z)|ũλ|p−2ũλh dz = λ

∫
∂Ω

(ũ+
λ )

τ−1h dσ

for all h ∈W1,p(Ω).

Choosing h = −ũ−λ ∈W1,p(Ω) and using (2.3), we infer that

ũλ ≥ 0, ũλ 6= 0.

Moreover, as before (see the proof of Proposition 3.1), using the nonlinear regularity theory
of Lieberman [13] (Theorem 2) and the nonlinear maximum principle of Pucci–Serrin [24]
(p. 120), we conclude that

ũλ ∈ int C+. (3.21)
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Now we show the uniqueness of this positive solution of problem (Qλ). To this end, we
consider the integral functional jλ : L1(Ω)→ R = R∪ {+∞} defined by

jλ(u) =

{
1
p‖Du

1
2 ‖p

p +
1
2‖Du

1
2 ‖2

2 +
1
p

∫
Ω ξ(z)u

p
2 dz, if u ≥ 0, u

1
2 ∈W1,p(Ω)

+∞, otherwise.

From Diaz–Saá [6] (Lemma 1), we know that jλ(·) is convex.
Let dom jλ = {u ∈ L1(Ω) : jλ(u) < ∞} (the effective domain of jλ(·)). Let ṽλ be another

positive solution of (Qλ). Reasoning as we did for ũλ, we show that

ṽλ ∈ int C+. (3.22)

Then from (3.21), (3.22) and Proposition 4.1.22, p. 274, of Papageorgiou–Rădulescu–Repovš
[21], we have ũλ

ṽλ
, ṽλ

ũλ
∈ L∞(Ω). Let h = ũ2

λ − ṽ2
λ. For t ∈ [0, 1] we have

ũ2
λ − th ∈ dom jλ and ṽ2

λ + th ∈ dom jλ.

Then jλ(·) is Gâteaux differentiable at ũ2
λ and at ṽ2

λ in the direction h. Moreover, using the
nonlinear Green’s identity, we have

j′λ(ũ
2
λ)(h) =

λ

2

∫
∂Ω

ũτ−2
λ (ũ2

λ − ṽ2
λ)dσ,

j′λ(ṽ
2
λ)(h) =

λ

2

∫
∂Ω

ṽτ−2
λ (ũ2

λ − ṽ2
λ)dσ.

Since jλ(·) is convex, we have that j′λ(·) is monotone. Since τ < 2 we have

0 ≤ λ

2

∫
∂Ω

[
1

ũ2−τ
λ

− 1
ṽ2−τ

λ

]
(ũ2

λ − ṽ2
λ)dσ ≤ 0

⇒ ũλ = ṽλ.

Therefore the positive solution ũλ ∈ int C+ is unique. This proves Claim 1.
This solution provides a lower bound for the elements of Sλ.

Claim 2. ũλ ≤ u for all u ∈ Sλ.

Let u ∈ Sλ ⊆ int C+. We introduce the following Carathéodory function

bλ(z, x) =

{
λ(x+)τ−1 if x ≤ u(z)

λu(z)τ−1 if u(z) < x
for all (x, z) ∈ ∂Ω×R. (3.23)

We set Bλ(z, x) =
∫ x

0 bλ(z, s)ds and consider the C1-functional ϑλ : W1,p(Ω) → R defined
by

ϑλ(u) =
1
p

γp(u) +
1
2
‖Du‖2

2 −
∫

∂Ω
Bλ(z, u)dσ for all u ∈W1,p(Ω).

From (3.23) and (2.3) it is clear that ϑλ(·) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find ûλ ∈W1,p(Ω) such that

ϑλ(ûλ) = inf
[
ϑλ(u) : u ∈W1,p(Ω)

]
. (3.24)
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As before (see Claim 1), since τ < 2 < p, we see that

ϑλ(ûλ) < 0 = ϑλ(0)

⇒ ûλ 6= 0.

From (3.24) we have

ϑ′λ(ûλ) = 0

⇒ 〈Ap(ûλ), h〉+ 〈A(ûλ), h〉+
∫

Ω
ξ(z)|ûλ|p−2ûλh dz =

∫
∂Ω

bλ(z, ûλ)h dσ (3.25)

for all h ∈W1,p(Ω).

As before (see the proof of Proposition 3.2), if in (3.25) we choose first h = −ũ−λ ∈W1,p(Ω)

and then h = (ûλ − u)+ ∈W1,p(Ω) and using (3.23), we show that

ûλ ∈ [0, u] \ {0}. (3.26)

From (3.26), (3.23), (3.25) and Claim 1, it follows that

ûλ = ũλ

⇒ ũλ ≤ u for all u ∈ Sλ (see (3.26)).

This proves Claim 2.
From (3.19) and Claim 2, we have

ũλ ≤ uλ

⇒ uλ 6= 0 and so uλ ∈ Sλ ⊆ int C+, uλ = inf Sλ.

Proposition 3.7. If hypotheses H(ξ), H( f ) hold and 0 < µ < λ ∈ L , then

(a) uµ ≤ uλ;

(b) ũµ ≤ ũλ.

Proof.

(a) Let uλ ∈ int C+ be the minimal positive solution of problem (Pλ) (see Proposition 3.6).
On account of Corollary 3.3, we can find uµ ∈ Sµ ∈ int C+ such that

uµ ≤ uλ

⇒ uµ ≤ uλ recall that uµ ≤ u for all u ∈ Sµ.

(b) Let ẽµ(z, x) be the Carathéodory function defined by

ẽµ(z, x) =

{
µ(x+)τ−1 if x ≤ ũλ(z)

µũλ(z)τ−1 if ũλ(z) < x
for all (z, x) ∈ ∂Ω×R. (3.27)

We set Ẽµ(z, x) =
∫ x

0 ẽµ(z, s)ds and consider the C1-functional ϕ̃µ : W1,p(Ω)→ R defined
by

ϕ̃µ(u) =
1
p

γp(u) +
1
2
‖Du‖2

2 −
∫

∂Ω
Ẽµ(z, u)dz for all u ∈W1,p(Ω).



Positive solutions for (p, 2)-equations 13

Evidently ϕ̃µ(·) is coercive (see (3.27) and (2.3)) and sequentially weakly lower semicon-
tinuous. So, we can find ûµ ∈W1,p(Ω) such that

ϕ̃µ(ûµ) = inf
[

ϕ̃µ(u) : u ∈W1,p(Ω)
]
< 0 = ϕ̃µ(0) (since τ < 2 < p)

⇒ ûµ 6= 0.

We have
〈ϕ̃′µ(ûµ), h〉 = 0 for all h ∈W1,p(Ω).

Choosing h = −û−µ ∈W1,p(Ω) and h = (ûµ − ũλ)
+ ∈W1,p(Ω), we obtain

ûµ ∈ [0, ũλ], ûµ 6= 0

⇒ ûµ = ũµ ∈ int C+ (see (3.27) and Claim 1 in the proof of Proposition 3.6)

⇒ ũµ ≤ ũλ.

Let 0 < µ < λ and η0 = η
µ . Then η ≤ λη0. Motivated by hypothesis H( f )(i), we consider

the following auxiliary boundary value problem
−∆pu(z)− ∆u(z) + ξ(z)u(z)p−1 = λη0u(z)r−1 in Ω,

∂u
∂np2

= λuτ−1 on ∂Ω,

u > 0, λ > 0, τ < 2 < p < r.

(Rλ)

Reasoning as in the proofs of Propositions 3.1 and 3.6, we obtain the following result.

Proposition 3.8. If hypothesis H(ξ) holds and λ ∈ L , then problem (Rλ) admits a smallest positive
solution u∗λ ∈ int C+ and there exists uλ ∈ Sλ ⊆ int C+ such that

ũλ ≤ uλ ≤ u∗λ.

Let λ∗ = sup L .

Proposition 3.9. If hypotheses H(ξ), H( f ) hold, then λ∗ < ∞.

Proof. Let µ ∈ (0, λ) and set 0 < m̃µ = min
Ω

ũµ (recall that ũµ ∈ int C+). From Propositions 3.8

and 3.7(b), we have
0 < m̃µ ≤ ũλ ≤ u∗λ.

We have 
−∆pu∗λ − ∆u∗λ + ξ(z)(u∗λ)

p−1 = λη0(u∗λ)
r−1 in Ω,

∂u∗λ
∂np2

= λ(u∗λ)
τ−1 on ∂Ω,

λ > 0, τ < 2 < p < r.

(3.28)

Let a(z) = η0(u∗λ(z))
r−2 and d(z) = u∗λ(z)

τ−2. Then a ∈ L∞(Ω) and d ∈ C(Ω). We rewrite
(3.28) using a(·) and d(·). So, we have

−∆pu∗λ − ∆u∗λ + ξ(z)(u∗λ)
p−1 = λa(z)u∗λ in Ω,

∂u∗λ
∂np2

= λd(z)u∗λ on ∂Ω,

λ > 0.

(3.29)
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Let

Ŵp =

{
w ∈W1,p(Ω) : k(w) =

∫
Ω

a(z)w dz +
∫

∂Ω
d(z)w dσ = 0

}
.

We have W1,p(Ω) = R⊕ Ŵp (see Abreu-Madeira [1], Lemma 2.2). Then from (3.29) and
Theorem 1.1 of [1], we have

0 < λ ≤ ĉ inf

[ 1
p γp(w) + 1

2‖Dw‖2
2

k(w)
: w ∈ Ŵp, w 6= 0

]
< ∞ for some ĉ > 0.

This fact combined with Proposition 3.8 implies that we have λ∗ < ∞.

Proposition 3.10. If hypotheses H(ξ), H( f )′ hold and λ ∈ (0, λ∗), then problem (Pλ) admits at least
two positive solutions:

u0, û ∈ int C+, u0 ≤ û, u0 6= û.

Proof. Let ϑ ∈ (λ, λ∗). Using Proposition 3.5 we can find u0 ∈ Sλ ⊆ int C+ and uϑ ∈ Sϑ ⊆
int C+ such that

uϑ − u0 ∈ D+. (3.30)

We introduce the following truncations of the data of (Pλ)

µ̂(z, x) =

{
f (z, u0(z)) if x ≤ u0(z)

f (z, x) if u0(z) < x
for all (z, x) ∈ Ω×R, (3.31)

ŵλ(z, x) =

{
λu0(z)τ−1 if x ≤ u0(z)

λxτ−1 if u0(z) < x
for all (z, x) ∈ ∂Ω×R. (3.32)

These are Carathéodory functions. We set

M̂(z, x) =
∫ x

0
µ̂(z, s)ds and Ŵλ(z, x) =

∫ x

0
ŵλ(z, s)ds

and consider the C1-functional d̂λ : W1,p(Ω)→ R defined by

d̂λ(u) =
1
p

γp(u) +
1
2
‖Du‖2

2 −
∫

Ω
M̂(z, u)dz−

∫
∂Ω

Ŵλ(z, u)dσ for all u ∈W1,p(Ω).

In addition, we introduce the following truncations of µ̂(z, ·) and of ŵλ(z, ·)

µ̂0(z, x) =

{
µ̂(z, x) if x ≤ uϑ(z)

µ̂(z, uϑ(z)) if uϑ(z) < x
for all (z, x) ∈ Ω×R, (3.33)

ŵ0
λ(z, x) =

{
ŵλ(z, x) if x ≤ uϑ(z)

ŵλ(z, uϑ(z)) if uϑ(z) < x
for all (z, x) ∈ ∂Ω×R. (3.34)

These are Carathéodory functions. We set

M̂0(z, x) =
∫ x

0
µ̂0(z, s)ds and Ŵ0

λ(z, x) =
∫ x

0
ŵ0

λ(z, s)ds

and consider the C1-functional d̂ 0
λ : W1,p(Ω)→ R defined by

d̂ 0
λ (u) =

1
p

γp(u) +
1
2
‖Du‖2

2 −
∫

Ω
M̂0(z, u)dz−

∫
∂Ω

Ŵ0
λ(z, u)dσ for all u ∈W1,p(Ω).
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From (3.31), (3.32), (3.33) and (3.34) it is clear that

d̂λ

∣∣∣
[0,uϑ ]

= d̂ 0
λ

∣∣∣
[0,uϑ ]

and d̂ ′λ
∣∣∣
[0,uϑ ]

=
(
d̂ 0

λ

)′∣∣∣
[0,uϑ ]

. (3.35)

Moreover, we have

Kd̂λ
⊆ [u0) ∩ int C+ (see (3.31), (3.32)) (3.36)

Kd̂ 0
λ
⊆ [u0, uϑ] ∩ int C+ (see (3.33), (3.34)). (3.37)

From (3.35) and (3.36) we see that without any loss of generality we may assume that

Kd̂λ
∩ [0, uϑ] = {u0}. (3.38)

Otherwise we already have a second positive smooth solution of (Pλ) bigger than u0 (see
(3.36)) and so we are done.

From (3.33), (3.34) and (2.3) it is clear that d̂ 0
λ (·) is coercive. Also it is sequentially weakly

lower semicontinuous. So, we can find ũ0 ∈W1,p(Ω) such that

d̂ 0
λ (ũ0) = min

[
d̂ 0

λ (u) : u ∈W1,p(Ω)
]

⇒ ũ0 ∈ [u0, uϑ] ∩ int C+ (see (3.37))

⇒ ũ0 ∈ Kd̂λ
(see (3.35))

⇒ ũ0 = u0 (see (3.38)).

From (3.30) and (3.35) it follows that

u0 is a local C1(Ω)-minimizer of dλ

⇒ u0 is a local W1,p(Ω)-minimizer of dλ

(see Papageorgiou–Rădulescu [17], Proposition 2.12).

We assume that Kd̂λ
is finite or otherwise on account of (3.36) we already have an infinity

of positive smooth solutions bigger than u0 and so we are done. Invoking Theorem 5.7.6,
p. 449, of Papageorgiou–Rădulescu–Repovš [21], we can find ρ ∈ (0, 1) small such that

d̂λ(u0) < inf [dλ(u) : ‖u− u0‖ = ρ] = m̂λ. (3.39)

Moreover, on account of hypothesis H( f )′(ii)=H( f )(ii), we have that

d̂λ(·) satisfies the Palais–Smale condition (3.40)

and if u ∈ int C+, then
d̂λ(tu)→ −∞ as t→ +∞. (3.41)

Then (3.39), (3.40) and (3.41) permit the use of the mountain pass theorem. So, we can find
û ∈W1,p(Ω) such that

û ∈ Kd̂λ
and m̂λ ≤ dλ(û)

⇒ u0 ≤ û ∈ int C+ (see (3.36)), u0 6= û (see (3.39)), û ∈ Sλ (see (3.31), (3.32)).

Proposition 3.11. If hypotheses H(ξ), H( f ) hold, then λ∗ ∈ L .
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Proof. Let λn ↑ λ∗ as n→ ∞. We can find un ∈ Sλn ⊆ int C+, n ∈N, such that

ϕλn(un) < 0 for all n ∈N (see the proof of Proposition 3.2), (3.42)

ϕ′λn
(un) = 0 for all n ∈N. (3.43)

From (3.42), (3.43) and hypothesis H( f )(ii) (the AR-condition) we deduce that

{un}n≥1 ⊆W1,p(Ω) is bounded.

So, we may assume that

un
w−→ uλ∗ in W1,p(Ω) and un → uλ∗ in Lr(Ω) and in Lp(∂Ω). (3.44)

From (3.43) we have

〈Ap(un), h〉+ 〈A(un), h〉+
∫

Ω
ξ(z)up−1

n h dz =
∫

Ω
f (z, un)h dz + λn

∫
∂Ω

uτ−1
n h dσ (3.45)

for all h ∈W1,p(Ω).

We choose h = un − uλ∗ ∈W1,p(Ω), pass to the limit as n→ ∞ and use (3.44). Then

lim
n→∞

[
〈Ap(un), un − uλ∗〉+ 〈A(un), un − uλ∗〉

]
= 0

⇒ lim sup
n→+∞

[
〈Ap(un), un − uλ∗〉+ 〈A(uλ∗), un − uλ∗〉

]
≤ 0 (since A(·) is monotone)

⇒ lim sup
n→∞

〈Ap(un), un − uλ∗〉 ≤ 0 (see (3.44))

⇒ un → uλ∗ in W1,p(Ω) (see Proposition 2.1). (3.46)

Passing to the limit as n→ ∞ in (3.45) and using (3.46), we obtain

〈Ap(uλ∗), h〉+ 〈A(uλ∗), h〉+
∫

Ω
ξ(z)up−1

λ∗ h dz =
∫

Ω
f (z, uλ∗)h dz + λ∗

∫
∂Ω

uτ−1
λ∗ h dσ (3.47)

for all h ∈W1,p(Ω),

ũλ1 ≤ uλ (see Claim 2 in the proof of Proposition 3.6 and Proposition 3.7(b)). (3.48)

From (3.47) and (3.48) we infer that

uλ∗ ∈ Sλ∗ , that is, λ∗ ∈ L .

Therefore we have
L = (0, λ∗].

Next we examine the properties of the minimal solution map λ 7→ uλ from L into C1(Ω).

Proposition 3.12. If hypotheses H(ξ), H( f )′ hold, then the minimal solution map λ 7→ uλ from L

into C1(Ω) is

(a) strictly increasing in the sense that

0 < µ < λ ≤ λ∗ ⇒ uλ − uµ ∈ D+;

(b) left continuous.
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Proof.

(a) Let 0 < µ < λ ≤ λ∗. According to Proposition 3.5, we can find uµ ∈ Sµ ⊆ int C+ such
that

uλ − uµ ∈ D+

⇒ uλ − uµ ∈ D+ (since uµ ≤ u for all u ∈ Sµ).

(b) Let λn ↑ λ ∈ L . We have un = uλn ≤ uλ∗ ∈ int C+ for all n ∈ N. So, from Theorem 2 of
Lieberman [13], we know that there exist α ∈ (0, 1) and c5 > 0 such that

un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) ≤ c5 for all n ∈N. (3.49)

Exploiting the fact that C1,α(Ω) ↪→ C1(Ω) compactly and the monotonicity of {un}n≥1

(see part (a)), from (3.49) we have

un → ûλ in C1(Ω). (3.50)

If ûλ 6= uλ, then we can find z0 ∈ Ω such that uλ(z0) < ûλ(z0). On account of (3.50) we
have

uλ(z0) < un(z0) for all n ≥ n0,

which contradicts part (a). So, we conclude that λ 7→ uλ is left continuous.

The following bifurcation-type theorem describes the dependence on the parameter λ > 0
of the set of positive solutions of (Pλ).

Theorem 3.13. If hypotheses H(ξ), H( f )′ hold, then there exists λ∗ > 0 such that

(a) for all λ ∈ (0, λ∗) problem (Pλ) admits at least two positive solutions

u0, û ∈ int C+, u0 ≤ û, u0 6= û;

(b) for λ = λ∗ problem (Pλ) has at least one positive solution uλ∗ ∈ int C+;

(c) for all λ > λ∗ there are no positive solutions;

(d) for all λ ∈ L = (0, λ∗] problem (Pλ) has a smallest positive solution

uλ ∈ int C+

and the map λ 7→ uλ from L into C1(Ω) is

• strictly increasing, that is, 0 < µ < λ ≤ λ∗ ⇒ uλ − uµ ∈ D+;

• left continuous.
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[8] L. Gasiński, N. S. Papageorgiou, Positive solutions for the Robin p-Laplacian prob-
lem with competing nonlinearities, Adv. Calc. Var. 12(2019), 31–56. https://doi.org/10.
1515/acv-2016-0039; MR3898185; Zbl 1411.35101

[9] Z. Guo, Z. Zhang, W1,p versus C1 local minimizers and multiplicity results for quasilin-
ear elliptic equations, J. Math. Anal. Appl. 286(2003), 32–50. https://doi.org/10.1016/
S0022-247X(03)00282-8; MR2009616; Zbl 1160.35382

[10] S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis. Volume I: Theory, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1997. MR1485775

[11] S. Hu, N. S. Papageorgiou, Elliptic equations with indefinite and unbounded poten-
tial and a nonlinear concave boundary condition, Commun. Contemp. Math. 19(2017),
No. 1, Article No. 1550090. https://doi.org/10.1142/S021919971550090X; MR3575910;
Zbl 1360.35073

[12] S. Leonardi, N. S. Papageorgiou, Positive solutions for nonlinear Robin problems with
indefinite potential and competing nonlinearities, Positivity (2019). https://doi.org/10.
1007/s11117-019-00681-5.

[13] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,
Nonlinear Anal. 12(1988), 1203-1219. https://doi.org/10.1016/0362-546X(88)90053-3;
MR969499; Zbl 0675.35042

https://doi.org/10.1017/S0013091519000403
https://doi.org/10.1017/S0013091519000403
https://doi.org/10.1006/jfan.1994.1078
https://doi.org/10.1006/jfan.1994.1078
https://www.ams.org/mathscinet-getitem?mr=1276168
https://zbmath.org/?q=an:0805.35028
https://doi.org/10.1007/s002050000101
https://doi.org/10.1007/s002050000101
https://www.ams.org/mathscinet-getitem?mr=1785469
https://zbmath.org/?q=an:0973.35161
https://doi.org/10.1063/1.1744102
https://doi.org/10.3934/cpaa.2005.4.9
https://doi.org/10.3934/cpaa.2005.4.9
https://www.ams.org/mathscinet-getitem?mr=2126276
https://zbmath.org/?q=an:1210.35090
https://www.ams.org/mathscinet-getitem?mr=916325
https://zbmath.org/?q=an:0656.35039
https://doi.org/10.1142/S0219199700000190
https://www.ams.org/mathscinet-getitem?mr=1776988
https://zbmath.org/?q=an:0965.35067
https://doi.org/10.1515/acv-2016-0039
https://doi.org/10.1515/acv-2016-0039
https://www.ams.org/mathscinet-getitem?mr=3898185
https://zbmath.org/?q=an:1411.35101
https://doi.org/10.1016/S0022-247X(03)00282-8
https://doi.org/10.1016/S0022-247X(03)00282-8
https://www.ams.org/mathscinet-getitem?mr=2009616
https://zbmath.org/?q=an:1160.35382
https://www.ams.org/mathscinet-getitem?mr=1485775
https://doi.org/10.1142/S021919971550090X
https://www.ams.org/mathscinet-getitem?mr=3575910
https://zbmath.org/?q=an:1360.35073
https://doi.org/10.1007/s11117-019-00681-5
https://doi.org/10.1007/s11117-019-00681-5
https://doi.org/10.1016/0362-546X(88)90053-3
https://www.ams.org/mathscinet-getitem?mr=969499
https://zbmath.org/?q=an:0675.35042


Positive solutions for (p, 2)-equations 19

[14] S. A. Marano, G. Marino, N. S. Papageorgiou, On a Dirichlet problem with (p, q)-
Laplacian and parametric concave-convex nonlinearity, J. Math. Anal. Appl. 475(2019),
1093–1107. https://doi.org/10.1016/j.jmaa.2019.03.006; MR3944365; Zbl 1422.35095

[15] D. Mugnai, N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite
weight, Ann. Sc. Norm. Super. Pisa Cl. Sci. 11(2012), 729–788. https://doi.org/10.2422/
2036-2145.201012_003; MR3060699; Zbl 1270.35215
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