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Abstract. Establishing monotonical properties of nonoscillatory solutions we introduce
new oscillatory criteria for the second order noncanonical differential equation with
delay/advanced argument

(r(t)y′(t))′ + p(t)y(τ(t)) = 0.

Our oscillatory results essentially extend the earlier ones. The progress is illustrated
via Euler differential equation.
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1 Introduction

We consider the second order noncanonical differential equation

(r(t)y′(t))′ + p(t)y(τ(t)) = 0, (E)

where

(H1) p(t) ∈ C([t0, ∞)) is positive;

(H2) r(t) ∈ C([t0, ∞)) is positive;

(H3) τ(t) ∈ C1([t0, ∞)) and τ′(t) ≥ 0, limt→∞ τ(t) = ∞.

By a solution of (E) we mean a function y(t) with (r(t)y′(t)) in C1([t0, ∞)), which
satisfies Eq. (E) on [t0, ∞). We consider only those solutions y(t) of (E) which satisfy
sup{|y(t)| : t ≥ T} > 0 for all T ≥ t0. A solution of (E) is said to be oscillatory if it has
arbitrarily large zeros and otherwise, it is called nonoscillatory. Equation (E) is said to be
oscillatory if all its solutions are oscillatory.
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2 Oscillatory behavior of the second order noncanonical differential equations

We say that (E) is in noncanonical form if

π(t) =
∫ ∞

t

1
r(s)

ds < ∞.

In this paper we establish new differential inequalities that lead to new monotonicity proper-
ties of solutions which are applied to obtain new oscillatory criteria for delay and advanced
differential equations.

In the theory of differential equations, comparison theorems assert particular properties of
solutions of a differential equation provided that an auxiliary equation/inequality possesses a
certain property. See enclosed references [1–18]. In the paper we use the comparison technique
to establish the main results.

There is a significant difference in the structure of nonoscillatory (say positive) solutions
between canonical and non-canonical equations. It is well known that the first derivative of
any positive solution y of canonical equation is of one sign eventually, while for noncanonical
one both sign possibilities of the first derivative of any positive solution y have to be treated.
A common approach in the literature (see [2,7,8,15,16,18]) for investigation of such equations
consists in extending known results for canonical ones.

Very recently, Džurina and Jadlovská [4] established, contrary to most existing results,
one-condition oscillation criterion for (E) Particularly, they showed that (E) is oscillatory if

lim sup
t→∞

π(t)
∫ t

t0

p(s)ds > 1. (1.1)

Recently, Baculíková in [3] extended the technique of Koplatadze et al. [12] to noncanoni-
cal equations. The objective of this paper is to study further the oscillatory and asymptotic
properties of (E) in non-canonical form and provide new results, which would improve those
obtained for linear equations discussed above.

We assume that all functional inequalities hold eventually, i.e., they are satisfied for all t
large enough.

2 Preliminary results

It follows from a generalization of lemma of Kiguradze [10] that the set of positive solutions
of (E) has the following structure.

Lemma 2.1. Assume that y(t) is an eventually positive solution of (E). Then y(t) satisfies one of the
following conditions

(N1) : r(t)y′(t) > 0,
(
r(t)y′(t)

)′
< 0,

(N∗) : r(t)y′(t) < 0,
(
r(t)y′(t)

)′
< 0

for t ≥ t1 ≥ t0.

The following considerations are intended to show that the class (N∗) is the essential one.

Lemma 2.2. If ∫ ∞

t0

π(s)p(s)ds = ∞, (2.1)

then positive solution y(t) of (E) satisfies (N∗) and, moreover,
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(i) lim
t→∞

y(t) = 0;

(ii) y(t) + r(t)y′(t)π(t) ≥ 0;

(iii) y(t)
π(t) is increasing.

Proof. Assume on the contrary that y(t) is an eventually positive solution of (E) satisfying
condition (N1) for t ≥ t1 ≥ t0. Integrating (E) from t1 to ∞, we get

r(t1)y′(t1) ≥
∫ ∞

t1

p(s)y(τ(s))ds.

Since y(t) is positive and increasing, there exists positive constant k that y(t) ≥ k and y(τ(t)) ≥
k eventually. Therefore, we obtain

r(t1)y′(t1) ≥ k
∫ ∞

t1

p(s)ds ≥ k
∫ ∞

t1

π(s)p(s)ds

which contradicts to (2.1) and we conclude that y(t) satisfies (N∗). Consequently, there exists
a finite limt→∞ y(t) = `. We claim that ` = 0. If not, then y(t) ≥ ` > 0. An integration of (E)
from t1 to t yields

−r(t)y′(t) ≥ `
∫ t

t1

p(s)ds.

Integrating once more from t1 to ∞, one gets

y(t1) ≥ `
∫ ∞

t1

1
r(u)

∫ u

t1

p(s)dsdu = `
∫ ∞

t1

π(s)p(s)ds = ∞.

A contradiction and we conclude that ` = 0.
To verify part (ii) we proceed as follows. The monotonicity of r(t)y′(t) implies that

y(t) ≥
∫ ∞

t

−r(s)y′(s)
r(s)

ds ≥ −r(t)y′(t)
∫ ∞

t

1
r(s)

ds = −r(t)y′(t)π(t),

which implies that part (iii) holds true. The proof is complete now.

In the previous results we do not distinguish whether (E) is delay or advanced differen-
tial equation. But it what follows we separately establish oscillatory criteria for delay and
advanced differential equations.

3 Delay equation

Throughout this section we assume that (E) is delay equation, that is

τ(t) ≤ t. (3.1)

We are about to establish new monotonic properties for solutions of (E) from the class (N∗).

Lemma 3.1. Let (2.1) and (3.1) hold. Assume that there exists a β0 > 0 such that

p(t)π2(t)r(t) ≥ β0 (3.2)

eventually. If y(t) is a positive solution of (E), then
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(i) y(t)
πβ0 (t)

is decreasing;

(ii) lim
t→∞

y(t)
πβ0 (t)

= 0;

(iii) y(t)
π1−β0 (t)

is increasing.

Proof. Assume that y(t) is an eventually positive solution of (E). Then (2.1) ensures that y(t)
and y(τ(t)) satisfies condition (N∗) for t ≥ t1 ≥ t0. An integration of (E) from t1 to t yields

−r(t)y′(t) = −r(t1)y′(t1) +
∫ t

t1

p(s)y(τ(s))ds ≥ −r(t1)y′(t1) + y(t)
∫ t

t1

p(s)ds,

which in view of (3.2) leads to

−r(t)y′(t) ≥ −r(t1)y′(t1) + β0y(t)
∫ t

t1

1
π2(s)r(s)

ds

= −r(t1)y′(t1)− β0
y(t)

π(t1)
+ β0

y(t)
π(t)

≥ β0
y(t)
π(t)

,
(3.3)

where we have used that y(t)→ 0 as t→ ∞. Consequently,(
y(t)

πβ0(t)

)′
=

πβ0−1(t) [r(t)y′(t)π(t) + β0y(t)]
r(t)π2β0(t)

≤ 0.

So y(t)
πβ0 (t)

is decreasing, and there exists limt→∞
y(t)

πβ0 (t)
= ` ≥ 0. We claim that ` = 0. If not, then

y(t)
πβ0 (t)

≥ l > 0 eventually. On the other hand, we introduce the auxiliary function

z(t) = (r(t)y′(t)π(t) + y(t))π−β0(t).

Lemma 2.2 (ii) implies that z(t) > 0 and

z′(t) = (r(t)y′(t))′π1−β0(t) + β0y′(t)π−β0(t) + β0
π−β0−1(t)y(t)

r(t)

= − p(t)y(τ(t))π1−β0(t) + β0y′(t)π−β0(t) + β0
π−β0−1(t)y(t)

r(t)

≤ − β0
y(τ(t))π−β0−1(t)

r(t)
+ β0y′(t)π−β0(t) + β0

π−β0−1(t)y(t)
r(t)

≤ β0y′(t)π−β0(t).

Employing (3.3) and the fact that y(t) ≥ `πβ0(t), we get that

z′(t) ≤ −β2
0`

π(t)r(t)
< 0.

Integrating the last inequality from t1 to t, we obtain

z(t1) ≥ β2
0` ln

π(t1)

π(t)
→ ∞ as t→ ∞.

which is a contradiction and we conclude that limt→∞
y(t)

πβ0 (t)
= 0.
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Finally, we shall show that y(t)
π1−β0 (t)

is increasing. Equation (E), we can rewrite in equivalent
form

(r(t)y′(t)π(t) + y(t))′ + π(t)p(t)y(τ(t)) = 0. (3.4)

It follows from Lemma 2.2 (iii) that y(t)
π(t) is increasing. An integration of (3.4) from t to ∞ yields

r(t)y′(t)π(t) + y(t) ≥
∫ ∞

t
π(s)p(s)y(τ(s))ds ≥

∫ ∞

t
π(s)p(s)y(s)ds

≥ y(t)
π(t)

∫ ∞

t
π2(s)p(s)ds ≥ β0y(t).

(3.5)

The last inequality implies that(
y(t)

π1−β0(t)

)′
=

π−β0(t) [r(t)y′(t)π(t) + y(t)(1− β0)]

r(t)π2−2β0(t)
≥ 0.

The proof is complete.

Lemma 3.1 provides
y(t)

πβ0(t)
↓ and

y(t)
π1−β0(t)

↑,

which immediately guarantees the following oscillatory criterion.

Theorem 3.2. Let (2.1), (3.1), and (3.2) hold. If

β0 >
1
2

,

then (E) is oscillatory.

If β0 ≤ 1/2, then the we are able to improve the results presented in Lemma 3.1. Since
π(t) is decreasing, there exists a constant α ≥ 1 such that

π(τ(t))
π(t)

≥ α. (3.6)

We introduce the constant β1 > β0 as follows

β1 =
αβ0 β0

1− β0
. (3.7)

Lemma 3.3. Let (2.1), (3.1), and (3.2) hold. If y(t) is a positive solution of (E), then

(i) y(t)
πβ1 (t)

is decreasing;

(ii) lim
t→∞

y(t)
πβ1 (t)

= 0;

(iii) y(t)
π1−β1 (t)

is increasing.
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Proof. Assume that y(t) is an eventually positive solution of (E) satisfying condition (N∗) for
t ≥ t1 ≥ t0. Integrating (E) from t1 to t and using the fact that y(t)

πβ0 (t)
is decreasing, we get

−r(t)y′(t) ≥ −r(t1)y′(t1) +
∫ t

t1

p(s)y(s)πβ0(τ(s))
πβ0(s)

ds

≥ −r(t1)y′(t1) +
y(t)

πβ0(t)

∫ t

t1

p(s)πβ0(τ(s))ds,
(3.8)

which in view of (3.6) implies

−r(t)y′(t) ≥ −r(t1)y′(t1) +
αβ0 β0y(t)

πβ0(t)

∫ t

t1

πβ0−2(s)
r(s)

ds.

Evaluating the integral, we see that

−r(t)y′(t) ≥ −r(t1)y′(t1)− β1πβ0−1(t1)
y(t)

πβ0(t)
+ β1

y(t)
π(t)

.

Since y(t)
πβ0(t)

→ 0 as t→ ∞, we obtain

− r(t)y′(t) ≥ β1
y(t)
π(t)

, (3.9)

from which exactly as in the proof of Lemma 3.1 follows that y(t)
πβ1 (t)

is decreasing.
Proceeding exactly as in the proof of Lemma 3.1 we can verify the rest of the assertions.

If β1 < 1, we can repeat the above procedure and introduce β2 > β1 as follows

β2 = β0
αβ1

1− β1
.

In generally, as follows as β j < 1 for j = 1, 2, . . . , n− 1 we can define

βn = β0
αβn−1

1− βn−1
, (3.10)

provided that βn < 1. And what is more, proceeding exactly as in proof of Lemma 4, we can
verify that

y(t)
πβn(t)

↓ and
y(t)

π1−βn(t)
↑ .

Consequently, the following result is obvious.

Theorem 3.4. Let (2.1), (3.1), (3.2) and (3.10) hold. If there exists n ∈ N such that

βn >
1
2

, (3.11)

then (E) is oscillatory.

Now we are prepared to present the main result of this section.
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Theorem 3.5. Let (2.1), (3.1), (3.2) and (3.10) hold. If there exists n ∈ N such that

lim inf
t→∞

∫ t

τ(t)
p(s)π(s)ds >

1− βn

e
, (3.12)

then (E) is oscillatory.

Proof. Assume on the contrary that (E) possesses an eventually positive solution y(t). Condi-
tion (2.1) guarantees that y(t) satisfies condition (N∗). We construct sequence {βn} by (3.10).
We consider the auxiliary function

w(t) = r(t)y′(t)π(t) + y(t).

It follows from Lemma 2.2 (ii) that w(t) > 0 and, moreover,

w′(t) = (r(t)y′(t))′π(t) = −p(t)π(t)y(τ(t)). (3.13)

On the other hand, since y(t)
πβn (t) is decreasing, then r(t)y′(t)π(t) + βny(t) ≤ 0 and so

w(t) ≤ (1− βn)y(t).

Setting the last inequality into (3.13) we see that w(t) is a positive solution of

w′(t) +
p(t)π(t)
1− βn

w(τ(t)) ≤ 0. (3.14)

This is a contradiction since by Theorem 2.1.1 in [14], condition (3.12) guarantees that (3.14)
has no positive solution. The proof is complete.

We illustrate the importance of the obtained results via illustrative examples.

Example 3.6. Consider the second order delay differential equation(
t2y′(t)

)′
+ a y(0.2 t) = 0, (Ex1)

with a > 0. For considered equation τ(t) = 0.2 t, π(t) = 1/t, β0 = a, and α = 5. So condition
(3.12) reduces to

a ln 5 =
1− βn

e
(3.15)

with βn iterative defined by (3.10).
A simple computation reveals that for a = 0.155 desired sequence

β1 = 0.2354048140,

β2 = 0.2961017968,

β3 = 0.3546403245,

and (3.15) holds for n = 3, that is for a = 0.155 (Ex1) is oscillatory. We mention that condition
(3.11) fails in this case.

What is more, we can establish oscillation of (Ex1) even for smaller value of a, but some
mathematical software is needed because e.g. for a = 0.13009 condition (3.15) is satisfied for
β171 = 0.4316960062.

We note that criterion (1.1) reduces to a > 1 for considered equation.
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Example 3.7. Consider the second order delay differential equation(
t3y′(t)

)′
+

at3 + t
t2 y(λ t) = 0, a > 0, λ ∈ (0, 1) t ≥ 1. (Ex2)

Now π(t) = 1/(2t2) and consequently β0 = a/4 and α = (1/λ)2.
If we set a = 0.66 and λ = 0.5, we can verify that β4 = 0.4333899 and condition (3.12)

holds for n = 4, which implies oscillation of (Ex2). We mention that condition (3.11) fails for
n = 4.

On the other hand, for a = 0.9 and λ = 0.8, we have β5 = 0.53666 and condition (3.11)
holds for n = 5, which guarantees oscillation of (Ex2), but condition (3.12) fails for n = 5.

4 Advanced equation

The above mentioned method can be modified to serve also for advanced differential equa-
tions, namely when

τ(t) ≥ t. (4.1)

We slightly modify the key constant β0 to γ0 as follows.

Lemma 4.1. Let (2.1) and (4.1) hold. Assume that there exists a γ0 > 0 such that

p(t)π(t)π(τ(t))r(t) ≥ γ0, (4.2)

eventually. If y(t) is a positive solution of (E), then

(i) y(t)
πγ0 (t) is decreasing;

(ii) limt→∞
y(t)

πγ0 (t) = 0;

(iii) y(t)
π1−γ0 (t)

is increasing.

Proof. Assume that y(t) is an eventually positive solution of (E). Then (2.1) ensures that y(t)
satisfies condition (N∗) for t ≥ t1 ≥ t0. By Lemma 2.2 (iii)

y(τ(t)) ≥ π(τ(t))
π(t)

y(t).

An integration of (E) from t1 to t yields

−r(t)y′(t) = −r(t1)y′(t1) +
∫ t

t1

p(s)y(τ(s))ds ≥ −r(t1)y′(t1) + y(t)
∫ t

t1

p(s)
π(τ(s))

π(s)
ds,

which in view of (4.2) yields

−r(t)y′(t) ≥ −r(t1)y′(t1) + γ0y(t)
∫ t

t1

1
π2(s)r(s)

ds

= −r(t1)y′(t1)− γ0
y(t)

π(t1)
+ γ0

y(t)
π(t)

≥ γ0
y(t)
π(t)

,
(4.3)

where we have used that y(t)→ 0 as t→ ∞. Therefore,(
y(t)

πγ0(t)

)′
≤ 0.

To prove parts (ii) and (iii) we proceed exactly as in the proof of Lemma 3.1. The proof is
complete.
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Assuming that γ0 < 1 we can introduce the constant γ1 > γ0 as follows. Since π(t) is
decreasing, there exist a constant ω ≥ 1 such that

π(t)
π(τ(t))

≥ ω

and define
γ1 = γ0

ωγ0

1− γ0
.

In generally as far as γn−1 < 1 we can define

γn = γ0
ωγn−1

1− γn−1
(4.4)

and verify that
y(t)

πγn(t)
↓ and

y(t)
π1−γn(t)

↑ .

Similarly as in the “delay” section we can establish the following oscillatory criteria for
advanced differential equations.

Theorem 4.2. Let (2.1), (4.1), (4.2) and (4.4) hold. If there exists n ∈ N such that

γn >
1
2

,

then (E) is oscillatory.

Theorem 4.3. Let (2.1), (4.1), (4.2) and (4.4) hold. If there exists n ∈ N such that

lim inf
t→∞

∫ τ(t)

t
p(s)π(τ(s))ds >

1− γn

e
, (4.5)

then (E) is oscillatory.

Example 4.4. Consider the second order advanced differential equation

(
t2y′(t)

)′
+

at + ln t
t

y(5t) = 0, a > 0, t ≥ 1. (Ex3)

Now γ0 = a/5, ω = 5. It is easy to see that for a = 0.8, γ2 = 0.3156681513, thus (4.5) is
satisfied for n = 2 and Theorem 4.3 ensures oscillation of (Ex3).

5 Ordinary equation

The above mentioned results can be applied also for ordinary differential equation (τ(t) ≡ t)

(r(t)y′(t))′ + p(t)y(t) = 0. (E0)

Now the sequences βn and γn are identical and defined by

βn =
β0

1− βn−1
(5.1)

with β0 adjusted in (3.2). Both Theorems 3.4, 4.2 reduces to the following.
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Theorem 5.1. Let (2.1) and (5.1) hold. If there exists n ∈ N such that

βn >
1
2

,

then (E0) is oscillatory.

Example 5.2. Consider the second order advanced differential equation(
t5/2y′(t)

)′
+

at + arctan t√
t

y(t) = 0, a > 0, t ≥ 1. (Ex4)

On can see that β0 = 4a/9, π(t) = 2/(3t3/2) moreover, for a = 0.57, γ12 = 0.5022329499, thus
Theorem 5.1 guarantees oscillation of (Ex4) for considered case.

6 Summary

In this paper we provided complete oscillation analyses for ordinary, delay and advanced
differential equations.
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