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Abstract. We study the global bifurcation and exact multiplicity of positive solutions
for {

u′′(x) + λ fε(u) = 0, − 1 < x < 1,
u(−1) = u(1) = 0,

where λ > 0 is a bifurcation parameter, ε ∈ Θ is an evolution parameter, and Θ ≡
(σ1, σ2) is an open interval with 0 ≤ σ1 < σ2 ≤ ∞. Under some suitable hypotheses on
fε, we prove that there exists ε0 ∈ Θ such that, on the (λ, ‖u‖∞)-plane, the bifurcation
curve is S-shaped for σ1 < ε < ε0 and is monotone increasing for ε0 ≤ ε < σ2. We give
an application to prove global bifurcation of bifurcation curves for the one-dimensional
perturbed Gelfand problem.
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1 Introduction

We study the global bifurcation and exact multiplicity of positive solutions for the multipa-
rameter positone problem {

u′′(x) + λ fε(u) = 0, − 1 < x < 1,

u(−1) = u(1) = 0,
(1.1)

where λ > 0 is a bifurcation parameter, ε ∈ Θ is an evolution parameter, Θ ≡ (σ1, σ2) is an
open interval with 0 ≤ σ1 < σ2 ≤ ∞, and nonlinearity fε ∈ C3[0, ∞). We first define some
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functions needed below:

Fε(u) =
∫ u

0
fε(t)dt, where ε ∈ Θ and u > 0, (1.2)

I1(ε, α, u) = Fε(α)− Fε(u), where ε ∈ Θ and α > u > 0, (1.3)

I2(ε, α, u) = α fε(α)− u fε(u), where ε ∈ Θ and α > u > 0, (1.4)

I3(ε, α, u) = α2 f ′ε(α)− u2 f ′ε(u), where ε ∈ Θ and α > u > 0,

I4(ε, α, u) = α3 f ′′ε (α)− u3 f ′′ε (u), where ε ∈ Θ and α > u > 0.

We assume that fε satisfies hypotheses (F1)–(F6) as follows:

(F1) For any fixed ε ∈ Θ, there exists a positive number γε such that fε(0) > 0 (positone),
fε(u) > 0 on (0, ∞), f ′′ε (u) > 0 on [0, γε), f ′′ε (u) < 0 on (γε, ∞) and f ′′ε (γε) = 0. Moreover,
limu→∞( fε(u)/u) = 0.

(F2) For any fixed u > 0, fε(u) is a continuously differentiable, strictly decreasing function
of ε ∈ Θ.

(F3) There exist two positive numbers ε̃, ε̄ ∈ (σ1, σ2) such that ε̃ < ε̄ and the following condi-
tions (i)–(iii) hold:

(i) fε(γε)− γε f ′ε(γε) ≥ 0 for ε̄ ≤ ε < σ2.

(ii) For σ1 < ε < ε̄, the function Gε(u) ≡
∫ u

0 t3 f ′′ε (t)dt has a positive zero κε in (0, ∞).

(iii) For σ1 < ε ≤ ε̃, there exists a number ρε ∈ (0, κε] such that

Hε(u) ≡
∫ u

0
t fε(t)− t2 f ′ε(t)dt

{
= 0 if u = ρε,

< 0 if ρε < u ≤ κε.

(F4) For σ1 < ε < ε̄,

γε < ηε ≡
{

ρε if σ1 < ε ≤ ε̃,

κε if ε̃ < ε < ε̄,

and

K(ε, u, v) ≡ − 8(I1)
2(I2)− 16(I1)

2(I3)− 4(I1)
2(I4)

+ 24(I1)(I2)
2 + 18(I1)(I2)(I3)− 15(I2)

3

> 0 for u ∈ [γε, ηε] and 0 < v < u.

(F5) For σ1 < ε < ε̄, there exists a number ωε ∈ (ηε, ∞] such that

3
(

∂

∂ε
I1

)
(I2)− 2

(
∂

∂ε
I1

)
(I1)− 2

(
∂

∂ε
I2

)
(I1) > 0 for 0 < v < u < ωε.

Furthermore, ωε is a decreasing function on [ε̃, ε̄).

(F6) For ε̃ ≤ ε < ε̄,
2I1(ε, ωε, u)− I2(ε, ωε, u) > 0 for 0 < u < ωε.
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Figure 1.1: Global bifurcation of bifurcation curves Sε of (1.1) with varying ε ∈
Θ = (σ1, σ2) .

For any ε ∈ Θ, on the (λ, ‖u‖∞)-plane, we study the shape and structure of bifurcation
curves Sε of positive solutions of (1.1), defined by

Sε ≡ {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1.1)} .

We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve Sε is S-shaped if Sε is a continuous
curve and there exist two positive numbers λ∗ < λ∗ such that Sε has exactly two turning points
at some points (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞), and

(i) λ∗ < λ∗ and ‖uλ∗‖∞ < ‖uλ∗‖∞,

(ii) at (λ∗, ‖uλ∗‖∞) the bifurcation curve Sε turns to the left,

(iii) at (λ∗, ‖uλ∗‖∞) the bifurcation curve Sε turns to the right.

See Fig. 1.1 (i).

In this paper, we mainly study the global bifurcation of bifurcation curves Sε with varying
ε ∈ Θ = (σ1, σ2). In Theorem 2.1 for (1.1) stated below, assuming that fε ∈ C3[0, ∞) satisfies
hypotheses (F1)–(F6), we prove that there exists ε0 ∈ Θ such that, on the (λ, ‖u‖∞)-plane,
the bifurcation curve Sε is S-shaped when σ1 < ε < ε0 and is monotone increasing when
ε0 ≤ ε < σ2, see Fig. 1.1. In Theorem 2.3 stated behind, we give an application of Theorem 2.1
for (1.1) to the famous one-dimensional perturbed Gelfand problem:{

u′′(x) + λ fε(u) = 0, − 1 < x < 1, u(−1) = u(1) = 0,

fε(u) = exp
( u

1+εu

)
,

(1.5)

where λ > 0 is the Frank–Kamenetskii parameter or ignition parameter, ε > 0 is the reciprocal
activation energy parameter, u(x) is the dimensionless temperature, and the reaction term
fε(u) in (1.5) is the temperature dependence obeying the simple Arrhenius reaction-rate law
in irreversible chemical reaction kinetics, see, e.g., Gelfand [5] and Boddington et al. [2]. This is
the one-dimensional case of a problem arising in the study of (steady state) solid fuel ignition
models in thermal combustion theory, cf. [1, 4, 6].

For (1.5), it has been a long-standing conjecture on the global bifurcation of bifurcation
curves Sε with varying ε > 0, see e.g. [8, Conjecture 1]. Also see [3, 6, 8, 12, 13, 16, 19]. Very re-
cently, by developing some new time-map techniques and applying Sturm’s theorem, Huang
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and Wang [8] gave a rigorous proof of this conjecture for (1.5). Their main result is stated in
the next theorem.

Theorem 1.1 ([8, Theorem 4]). Consider (1.5) with varying ε > 0. Then the bifurcation curve Sε

starts at the origin and tends to infinity as λ→ ∞, and there exists a positive critical bifurcation value
ε0 (≈ 1/4.069 ≈ 0.245) < 0.25 such that the following assertions (i)–(iii) hold:

(i) (See Fig. 1.1 (i).) For 0 < ε < ε0, the bifurcation curve Sε is S-shaped on the (λ, ‖u‖∞)-plane.
More precisely, there exist two positive numbers λ∗ < λ∗ such that (1.5) has exactly three
positive solutions for λ∗ < λ < λ∗, exactly two positive solutions for λ = λ∗ and λ = λ∗, and
exactly one positive solution for 0 < λ < λ∗ and λ > λ∗. Furthermore, all positive solutions uλ

are nondegenerate except that uλ∗ and uλ∗ are degenerate.

(ii) (See Fig. 1.1 (ii).) For ε = ε0, the bifurcation curve Sε0 is monotone increasing on the (λ, ‖u‖∞)-
plane. More precisely, (1.5) has exactly one positive solution for all λ > 0. Furthermore, all
positive solutions uλ are nondegenerate except that uλ0 is a cusp type degenerate solution for
some λ = λ0 > 0.

(iii) (See Fig. 1.1 (iii).) If ε > ε0, the bifurcation curve Sε is monotone increasing on the (λ, ‖u‖∞)-
plane. More precisely, (1.5) has exactly one positive solution for all λ > 0. Furthermore, all
positive solutions uλ are nondegenerate.

Note that the definitions of degenerate and nondegenerate positive solutions and cusp
type degenerate solution are defined later in Section 3.

Under somewhat different hypotheses to (F1)–(F6), the authors [9, Theorem 2.1] studied
the global bifurcation and exact multiplicity of positive solutions for (1.1) and obtained the
same results in Theorem 2.1. The hypotheses in [9, Theorem 2.1] can apply to a class of
polynomial nonlinearities

fε(u) = −εup + bu2 + cu + d, p ≥ 3, ε, b, d > 0, c ≥ 0,

see [9, Theorem 2.1 and hypotheses (H1)–(H5)] for details. But the hypotheses in [9, Theorem
2.1] do not apply to (1.5) with fε(u) = exp

( u
1+εu

)
. Cf. [9, Theorem 2.1 and hypotheses (H1)–

(H5)] with Theorem 2.1 under (F1)–(F6).
The paper is organized as follows. Section 2 contains statements of the main results (The-

orems 2.1–2.4). Section 3 contains several lemmas needed to prove the main results. Section 4
contains the proofs of the main results.

2 Main results

The main results in this paper are the next Theorems 2.1–2.4, in particular, Theorems 2.1 and
2.3. In Theorem 2.1, we prove the global bifurcation of bifurcation curves Sε and hence we are
able to determine exact multiplicity of positive solutions by ε ∈ Θ and λ > 0, see Fig. 1.1. In
Theorem 2.3, we apply Theorem 2.1 to prove the global bifurcation of bifurcation curves Sε for
the one-dimension perturbed Gelfand problem (1.5).

Theorem 2.1 (See Fig. 1.1). Consider (1.1) with varying ε ∈ Θ = (σ1, σ2) where 0 ≤ σ1 < σ2 ≤ ∞.
Assume that f ∈ C3[0, ∞) satisfies (F1)–(F6). Then the bifurcation curve Sε starts at the origin and
tends to infinity as λ → ∞, and there exists a positive critical bifurcation value ε0 ∈ (ε̃, ε̄) such that
the following assertions (i)–(iii) hold:
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(i) (See Fig. 1.1 (i).) For σ1 < ε < ε0, the bifurcation curve Sε is S-shaped on the (λ, ‖u‖∞)-
plane. More precisely, there exist two positive numbers λ∗ < λ∗ such that (1.1) has exactly three
positive solutions for λ∗ < λ < λ∗, exactly two positive solutions for λ = λ∗ and λ = λ∗, and
exactly one positive solution for 0 < λ < λ∗ and λ > λ∗. Furthermore, all positive solutions uλ

are nondegenerate except that uλ∗ and uλ∗ are degenerate.

(ii) (See Fig. 1.1 (ii).) For ε = ε0, the bifurcation curve Sε0 is monotone increasing on the (λ, ‖u‖∞)-
plane. More precisely, (1.1) has exactly one positive solution uλ for all λ > 0. Furthermore,
all positive solutions uλ are nondegenerate except that uλ0 is a degenerate solution for some
λ = λ0 > 0. In addition, uλ0 is a cusp type degenerate solution if, for any fixed u > 0, f ′ε(u) is
continuously differentiable at ε = ε0.

(iii) (See Fig. 1.1 (iii).) For ε0 < ε < σ2, the bifurcation curve Sε is monotone increasing on the
(λ, ‖u‖∞)-plane. More precisely, (1.1) has exactly one positive solution uλ for all λ > 0. Fur-
thermore, all positive solutions uλ are nondegenerate.

Figure 2.1: The bifurcation surface Γ with the fold curve CΓ = C1 ∪ C2, and the
projection of CΓ onto Fq. BΓ = B1 ∪ B2 ∪ {(ε0, λ0)} is the bifurcation set.

We next study, in the (ε, λ, ‖u‖∞)-space, the shape and structure of the bifurcation surface Γ
of (1.1), defined by

Γ ≡ {(ε, λ, ‖uε,λ‖∞) : ε, λ > 0 and uε,λ is a positive solution of (1.1)}
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which has the appearance of a folded surface with the fold curve

CΓ ≡ {(ε, λ, ‖uε,λ‖∞ : ε ∈ Θ, λ > 0 and uε,λ is a degenerate positive solution of (1.1)} .

See Fig. 2.1. Let Fq denote the first quadrant of the (ε, λ)-parameter plane. We also study, on
Fq, the bifurcation set of (1.1)

BΓ ≡ {(ε, λ) : ε ∈ Θ, λ > 0 and uε,λ is a degenerate positive solution of (1.1)} .

By Theorem 2.1, we know that the bifurcation set BΓ = B1 ∪ B2 ∪ {(ε0, λ0)}, where

B1 ≡ {(ε, λ∗(ε)) : σ1 < ε < ε0} and B2 ≡ {(ε, λ∗(ε)) : σ1 < ε < ε0} .

We define the set

M ≡ {(ε, λ) : σ1 < ε < ε0 and λ∗(ε) < λ < λ∗(ε)} .

We analyze the structure of the bifurcation set BΓ of (1.1) in the next theorem.

Figure 2.2: The graph of the bifurcation set BΓ = B1 ∪ B2 ∪ {(ε0, λ0)}. (ε0, λ0) is
a cusp point of BΓ.

Theorem 2.2 (See Fig. 2.2). Consider (1.1) with ε ∈ Θ = (σ1, σ2) where 0 ≤ σ1 < σ2 ≤ ∞.
Assume that fε ∈ C3[0, ∞) satisfies (F1)–(F6), ωε is a increasing function on (σ1, ε̃], and there exists
a function βε ∈ [ρε, κε] on (σ1, ε̃) such that βε is decreasing on (σ1, ε′) and (ε′, ε̃) for some ε′ ∈ (σ1, ε̃)

respectively. Then (1.1) has exactly two positive solutions for (ε, λ) ∈ BΓ \ {(ε0, λ0)}, exactly three
positive solutions for (ε, λ) ∈ M, and exactly one positive solution for (ε, λ) /∈ (BΓ \ {(ε0, λ0)})∪M.
Moreover, λ∗(ε) and λ∗(ε) are both continuous, strictly increasing functions on (σ1, ε0) and satisfy

0 ≤ lim
ε→σ+

1

λ∗(ε) ≤ lim
ε→σ+

1

λ∗(ε) < λ0 = lim
ε→ε−0

λ∗(ε) = lim
ε→ε−0

λ∗(ε).

In addition, limε→σ+
1

λ∗(ε) < limε→σ+
1

λ∗(ε) if limε→σ+
1

ρε < limε→σ+
1

ωε.

Theorem 2.3. Consider (1.5) with varying ε ∈ (0, ∞). Then the bifurcation curve Sε starts at the
origin and tends to infinity as λ→ ∞, and there exists a positive critical bifurcation value ε0 (≈ 0.245)
satisfying 0.243 ≈ ε̃ < ε0 < ε̄ ≡ 0.25, where ε̃ = 1/ã and ã ≈ 4.107 is defined in [7, (1.4)] such that
all the results in Theorem 1.1 (i)–(iii) hold.
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Theorem 2.4 (See Fig. 2.2). Consider (1.5) with ε > 0. Then (1.5) has exactly two positive solutions
for (ε, λ) ∈ BΓ \ {(ε0, λ0)}, exactly three positive solutions for (ε, λ) ∈ M, and exactly one positive
solution for (ε, λ) /∈ (BΓ \ {(ε0, λ0)}) ∪M. Moreover, λ∗(ε) and λ∗(ε) are both continuous, strictly
increasing functions on (σ1, ε0) and satisfy

0 = lim
ε→0+

λ∗(ε) < λ∞ = lim
ε→0+

λ∗(ε) < λ0 = lim
ε→ε−0

λ∗(ε) = lim
ε→ε−0

λ∗(ε) (≈ 2.286),

where

λ∞ ≡ max
α∈(0,∞)

1
2eα

[
ln
(

2eα + 2
√

eα (eα − 1)− 1
)]2

≈ 0.878.

3 Lemmas

To prove Theorem 2.1, we need the next Lemmas 3.1–3.11. We simply modify the time-
map techniques used in [8, 9, 11, 18] without applying Sturm’s theorem for Theorem 1.1 ([8,
Theorem 4]). The time map formula we apply to study (1.1) takes the form as follows:

√
λ =

1√
2

∫ α

0
[Fε(α)− Fε(u)]

−1/2 du ≡ Tε(α) for α > 0 if ε ∈ Θ = (σ1, σ2) , (3.1)

where Fε(u) is defined by (1.2), see Laetsch [14]. Observe that positive solutions uε,λ for (1.1)
correspond to

‖uε,λ‖∞ = α and Tε(α) =
√

λ. (3.2)

Thus, studying of the exact number of positive solutions of (1.1) for fixed ε ∈ Θ is equivalent
to studying the shape of the time map Tε(α) on (0, ∞), cf. [8,9,11,18]. In this section we always
assume that fε ∈ C3[0, ∞) satisfies (F1)–(F6). Notice that, since fε ∈ C3[0, ∞), it can be proved
that Tε(α) is a thrice differentiable function of α > 0 for ε ∈ Θ. The proof is easy but tedious
and consequently we omit it.

In addition, we recall that a positive solution uλ of (1.1) is degenerate if T′ε(‖uλ‖∞) = 0 and
is nondegenerate if T′ε(‖uλ‖∞) 6= 0. Also, a degenerate positive solution uλ of (1.1) is of cusp type
if T′′ε (‖uλ‖∞) = 0 and T′′′ε (‖uλ‖∞) 6= 0, see [16, p. 497] and [17, p. 214].

By (3.2), Theorem 2.1 follows if limα→0+ Tε(α) = 0 and limα→∞ Tε(α) = ∞, and there exists
ε0 ∈ (ε̃, ε̄) ⊂ Θ = (σ1, σ2) such that the following assertions (M1)–(M3) hold (See Fig. 3.1):

(M1) For σ1 < ε < ε0, Tε(α) has exactly two critical points, a local maximum at some αM and
a local minimum at some αm (> αM), on (0, ∞).

(M2) For ε = ε0, T′ε0
(α) > 0 for α ∈ (0, ∞) \ {α0}, and T′ε0

(α0) = 0. In addition, T′′ε0
(α0) = 0

and T′′′ε0
(α0) 6= 0 if, for any fixed u > 0, f ′ε(u) is continuously differentiable at ε = ε0.

(M3) For ε0 < ε < σ2, T′ε(α) > 0 for α ∈ (0, ∞).

The main difficulty to obtain the above assertions (M1)–(M3) is to prove the exact number
of critical points of the time map Tε(α) on (0, ∞) for all ε ∈ Θ = (σ1, σ2). Notice that by
[15, Proposition 1.1.2], we see that if fε ∈ C3[0, ∞), then Tε(α) ∈ C3(0, ∞). By (3.1), we
compute that

T′ε(α) =
1

2
√

2α

∫ α

0

θ(α)− θ(u)

[Fε(α)− Fε(u)]
3/2 du for α > 0, (3.3)

where θ(u) ≡ 2Fε(u)− u fε(u).
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Figure 3.1: Graphs of Tε(α) on (0, ∞) with varying ε ∈ Θ = (σ1, σ2) .

Lemma 3.1. Consider (1.1). For any fixed ε ∈ Θ = (σ1, σ2) with 0 ≤ σ1 < σ2 ≤ ∞, the following
assertions (i)–(ii) hold:

(i) limα→0+ Tε(α) = 0 and limα→∞ Tε(α) = ∞.

(ii) For ε ∈ Θ, either Tε(α) is strictly increasing on (0, γε], or Tε(α) is strictly increasing and then
strictly decreasing on (0, γε].

Proof. By (F1), we obtain that fε(0) > 0 on [0, ∞) and limu→∞( fε(u)/u) = 0. Thus assertion
(i) follows by [14, Theorems 2.6 and 2.9]. By (F1) again, f ′′ε (u) > 0 on [0, γε) and f ′′ε (γε) = 0,
then assertion (ii) follows by [14, Theorem 3.2].

The proof of Lemma 3.1 is complete.

Lemma 3.2. Consider (1.1) with ε ∈ Θ = (σ1, σ2) where 0 ≤ σ1 < σ2 ≤ ∞. For any fixed α > 0,
Tε(α) is a continuous, strictly increasing function of ε ∈ Θ.

Proof. By (F2), for any fixed u > 0, fε(u) is a continuous function of ε ∈ Θ. Thus Tε(α) is
a continuous function of ε ∈ Θ by [14, Theorem 2.4]. By (F2) again, for any fixed u > 0,
fε1(u) > fε2(u) if σ1 < ε1 < ε2 < σ2. By (3.1), we directly obtain that Tε1(α) < Tε2(α) if
σ1 < ε1 < ε2 < σ2.

The proof of Lemma 3.2 is complete.

Lemma 3.3. Consider (1.1) with σ1 < ε < ε̄. Then κε > γε and κε is a continuous function of ε on
(σ1, ε̄). Furthermore,

Gε(u)


> 0 if 0 < u < κε,

= 0 if u = κε,

< 0 if u > κε.

(3.4)

Proof. By (F1), we compute and observe that

Gε(0) = 0 and G′ε(u)
(
=

∂Gε(u)
∂u

)
= u3 f ′′ε (u)


> 0 if 0 < u < γε,

= 0 if u = γε,

< 0 if u > γε.

(3.5)

So for σ1 < ε < ε̄, by (F3) (ii), we observe that Gε(u) has a unique positive zero κε (> γε) on
(0, ∞) such that (3.4) holds. Since G′ε(κε) < 0 by (3.5) and by the Implicit Function Theorem,
κε is a continuous function of ε on (σ1, ε̄).

The proof of Lemma 3.3 is complete.
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Lemma 3.4. Consider (1.1) with ε ∈ Θ = (σ1, σ2) where 0 ≤ σ1 < σ2 ≤ ∞. Then one of the following
assertions (i)–(ii) holds:

(i) θ′(u) > 0 for u > 0 and u 6= γε.

(ii) There exist two positive numbers p1(ε) < p2(ε), dependent on ε, such that p1(ε) < γε < p2(ε)

and

θ′(u) = fε(u)− u f ′ε(u)


> 0 for u ∈ (0, p1(ε)) ∪ (p2(ε), ∞) ,

= 0 for u ∈ {p1(ε), p2(ε)} ,

< 0 for u ∈ (p1(ε), p2(ε)) .

(3.6)

Furthermore, if α ∈ (p1(ε), p2(ε)] satisfying θ(α) ≥ 0, then there exists ᾱ ∈ [0, p1(ε)) such
that θ(ᾱ) = θ(α). See Fig. 3.2.

Figure 3.2: Graphs of θ(u) on [0, ∞). (i) θ(u) ≥ 0 for all u > 0. (ii) θ(u) < 0 for
some u > 0.

Proof. By (F1), we observe that

θ′′(u) = −u2 f ′′ε (u)


< 0 if 0 < u < γε,
= 0 if u = γε,
> 0 if u > γε.

(3.7)

Assume that θ′(γε) ≥ 0. It is easy to see that assertion (i) holds by (3.7). Assume that
θ′(γε) < 0. Clearly, θ′(0) = fε(0) > 0 by (F1). We assert that

lim
u→∞

θ′(u) > 0. (3.8)

So by (3.7) and (3.8), there exist two positive numbers p1(ε) < p2(ε) such that p1(ε) < γε <

p2(ε) and (3.6) holds. If α ∈ (p1(ε), p2(ε)] satisfying θ(α) ≥ 0, then there exists ᾱ ∈ [0, p1(ε))

such that θ(ᾱ) = θ(α). See Fig. 3.2 (i)–(ii). Next, we prove assertion (3.8). Let v ∈ [γε, ∞) be
given. Since θ′(u) is strictly increasing for u > γε by (3.7), we observe that, for u ≥ v,

fε(v)
v
− fε(u)

u
=
∫ u

v

d
dt

(
− fε(t)

t

)
dt =

∫ u

v

θ′(t)
t2 dt < θ′(u)

∫ u

v

1
t2 dt =

u− v
uv

θ′(u).

So by (F1) and (F2), we see that

lim
u→∞

θ′(u) ≥ lim
u→∞

[(
fε(v)

v
− fε(u)

u

)(
uv

u− v

)]
= fε(v) > 0.
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Thus (3.8) holds. Then assertion (ii) holds.
The proof of Lemma 3.4 is complete.

Lemma 3.5. Consider (1.1) with σ1 < ε ≤ ε̃. Then ρε is a continuous function of ε on (σ1, ε̃].

Proof. Since Hε(0) = 0 and H′ε(u) = uθ′(u) for u > 0, and by (F3) (iii) and Lemma 3.4, we
observe that p1(ε) and p2(ε) exist for σ1 < ε ≤ ε̃. It follows that

θ′(p1(ε)) = θ′(p2(ε)) = 0 for σ1 < ε ≤ ε̃. (3.9)

By integration by parts, (F3) (iii) and (3.4), we obtain that

0 = 2Hε(ρε) = ρ2
ε θ′(ρε) + Gε(ρε) ≥ ρ2

ε θ′(ρε). (3.10)

So by Lemma 3.4, we see that p1(ε) < ρε ≤ p2(ε) for σ1 < ε ≤ ε̃, and

H′ε(u) = uθ′(u)


> 0 for u ∈ (0, p1(ε)) ∪ (p2(ε), ∞) ,

= 0 for u ∈ {p1(ε), p2(ε)} ,

< 0 for u ∈ (p1(ε), p2(ε)) .

(3.11)

So by (3.11), we observe that ρε is the unique zero of Hε(u) on (0, p2(ε)]. By Lemma 3.4, we
see that p1(ε) < γε < p2(ε) for σ1 < ε ≤ ε̃. By (3.7), we further see that θ′′(p1(ε)) > 0 and
θ′′(p2(ε)) > 0 for σ1 < ε ≤ ε̃. So by the Implicit Function Theorem and (3.9), we obtain that
p1(ε) and p2(ε) are continuous functions of ε on (σ1, ε̃]. Let ε̌ ∈ (σ1, ε̃] be given. We choose
a sequence {εn}n∈N ⊂ (σ1, ε̃]/{ε̌} such that limn→∞ εn = ε̌. Since p1(εn) < ρεn < p2(εn) for
n ∈N by (3.11), we see that

0 < p1(ε̌) ≤ lim inf
n→∞

ρεn ≤ lim sup
n→∞

ρεn ≤ p2(ε̌). (3.12)

In addition, there exist two subsequences {ε1,n}n∈N and {ε2,n}n∈N of {εn}n∈N such that

lim
n→∞

ρε1,n = lim inf
n→∞

ρεn and lim
n→∞

ρε2,n = lim sup
n→∞

ρεn .

So by continuity of Hε(u) for u and ε, we observe that

Hε̌(lim inf
n→∞

ρεn) = lim
n→∞

Hε1,n(ρε1,n) = 0, (3.13)

Hε̌(lim sup
n→∞

ρεn) = lim
n→∞

Hε2,n(ρε2,n) = 0. (3.14)

So by (3.12)–(3.14), we further observe that lim supn→∞ ρεn and lim infn→∞ ρεn are two zeros of
Hε̌(u) on (0, p2(ε)]. Moreover,

lim sup
n→∞

ρεn = lim inf
n→∞

ρεn = lim
n→∞

ρεn = ρε̌.

Thus the function ρε is a continuous at ε = ε̌.
The proof of Lemma 3.5 is complete.

Lemma 3.6. Consider (1.1) with ε ∈ Θ = (σ1, σ2) where 0 ≤ σ1 < σ2 ≤ ∞. Then the following
assertions (i)–(iii) hold:
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(i) For ε̄ ≤ ε < σ2, T′ε(α) > 0 for α > 0.

(ii) For σ1 < ε < ε̄,

T′′ε (α) +
2
α

T′ε(α) > 0 for α ≥ κε. (3.15)

Moreover, Tε(α) has at most one critical point, a local minimum, on [κε, ∞).

(iii) For σ1 < ε ≤ ε̃, T′ε(α) < 0 for ρε ≤ α ≤ κε.

Proof. (I) We prove assertion (i). By (F3) (i) and (3.7), we observe that, for ε̄ ≤ ε < σ2,

θ′(u) > θ′(γε) = fε(γε)− γε f ′ε(γε) ≥ 0 for u > 0 and u 6= γε.

It follows that θ(α)− θ(u) > 0 for α > u > 0. So by (3.3), we see that T′ε(α) > 0 for α > 0ε. So
assertion (i) holds.

Figure 3.3: Graphs of φ(u) on [0, ∞). (i) φ(u) > 0 for some u > 0. (ii) φ(u) ≤ 0
for all u ≥ 0.

(II) We prove assertion (ii). We compute and observe that

T′′ε (α) +
2
α

T′ε(α) =
1√
2α2

∫ α

0

3
2 [θ(α)− θ(u)]2 + [Fε(α)− Fε(u)][φ(α)− φ(u)]

[F(α)− F(u)]5/2 du

≥ 1√
2α2

∫ α

0

φ(α)− φ(u)

[Fε(α)− Fε(u)]
3/2 du, (3.16)

where φ(u) ≡ uθ′(u)− θ(u), see [10, (3.12)]. We obtain that

φ(0) = 0 and φ′(u) = uθ′′(u) = −u2 f ′′ε (u)


< 0 for 0 ≤ u < γε,

= 0 for u = γε,

> 0 for u > γε.

(3.17)

Let α ∈ [κε, ∞) be given. By Lemma 3.3, we see that α ≥ κε > γε for σ1 < ε < ε̄. If φ(α) ≥ 0,
by (3.17), we see that φ(α)− φ(u) > 0 for 0 < u < α, and hence (3.15) holds by (3.16). While
if φ(α) < 0, there exists ξα ∈ (0, γε) such that φ(ξα) = φ(α). See Fig. 3.3. So by [10, (3.15)],
(F3) (ii) and (3.4),

T′′ε (α) +
2
α

T′ε(α) >
−1

√
2α2 [Fε(α)− Fε(ξα)]

3/2 Gε(α) ≥ 0,
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and hence (3.15) holds. Assume that Tε(α) has a critical point α1 ∈ [κε, ∞). By (3.15), T′′ε (α1) >

0. So Tε(α) has at most one critical point, a local minimum, on [κε, ∞). Therefore, assertion (ii)
holds.

(III) We prove assertion (iii). By (F3) (iii), we see that ρε ≤ κε for σ1 < ε ≤ ε̃. We fix
ε ∈ (σ1, ε̃] and α ∈ [ρε, κε]. Assume that θ(α) ≤ 0. By assertion (ii) of Lemma 3.4, we see that
θ(α)− θ(u) < 0 for 0 < u < α, see Fig. 3.2 (ii). It follows that T′ε(α) < 0 by (3.3). Assume that
θ(α) > 0. By integration by parts and (F3) (ii)–(iii), we observe that

0 ≥ 2Hε(κε) = κ2
ε θ′(κε) + Gε(κε) = κ2

ε θ′(κε).

So by (3.10), we have that p1(ε) < ρε ≤ α ≤ κε ≤ p2(ε). Assume that θ(α) > 0. By assertion
(ii) of Lemma 3.4, there exists ᾱ ∈ (0, p1(ε)) such that θ(ᾱ) = θ(α). It follows that

θ(α)− θ(u)


> 0 for u ∈ (0, ᾱ) ,

= 0 for u = ᾱ,

< 0 for u ∈ (ᾱ, α) .

So by (3.3) and (F3) (iii), we obtain that

T′ε(α) =
1

2
√

2α

∫ α

0

θ(α)− θ(u)

[Fε(α)− Fε(u)]
3/2 du

=
1

2
√

2α

{∫ ᾱ

0

θ(α)− θ(u)

[Fε(α)− Fε(u)]
3/2 du +

∫ α

ᾱ

θ(α)− θ(u)

[Fε(α)− Fε(u)]
3/2 du

}

<
1

2
√

2α [Fε(α)− Fε(ᾱ)]
3/2

{∫ ᾱ

0
[θ(α)− θ(u)] du +

∫ α

ᾱ
[θ(α)− θ(u)] du

}
=

1

2
√

2α [Fε(α)− Fε(ᾱ)]
3/2

[
αθ(α)−

∫ α

0
θ(u)du

]
=

1

2
√

2α [Fε(α)− Fε(ᾱ)]
3/2

∫ α

0
uθ′(u)du =

1

2
√

2α [Fε(α)− Fε(ᾱ)]
3/2 Hε(α) ≤ 0.

So assertion (iii) holds.
The proof of Lemma 3.6 is complete.

Lemma 3.7. Consider (1.1) with ε ∈ Θ = (σ1, σ2) where 0 ≤ σ1 < σ2 ≤ ∞. For any fixed α > 0,
T′ε(α) is a continuously differentiable function of ε ∈ Iα. Furthermore, ∂

∂ε T′ε(α) > 0 for 0 < α < ωε

and σ1 < ε < ε̄.

Proof. First, for any fixed α > 0, it can be proved that T′ε(α) is a continuously differentiable
function of ε ∈ Iα. The proof is easy but tedious and consequently we omit it. Secondly, by
(1.3), (1.4), (3.3) and (F5), we compute and obtain that, for 0 < α < ωε,

∂

∂ε
T′ε(α) =

1
4
√

2α

∫ α

0

3
(

∂
∂ε I1
)
(I2)− 2

(
∂
∂ε I1
)
(I1)− 2

(
∂
∂ε I2
)
(I1)

[Fε(α)− Fε(u)]
5/2 du > 0.

The proof of Lemma 3.7 is complete.

Lemma 3.8. Consider (1.1) with ε̃ < ε < ε̄. Assume that γε < ηε. Then [αT′′ε (α)]
′ > 0 for γε ≤ α ≤

ηε and one of the following assertions (i)–(iii) holds:
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(i) T′ε(α) is a strictly increasing function of α on [γε, ηε].

(ii) T′ε(α) is a strictly decreasing function of α on [γε, ηε].

(iii) T′ε(α) is a strictly decreasing and then strictly increasing function of α on [γε, ηε].

Proof. By (F4), we compute and observe that[
αT′′ε (α)

]′
=

1
8
√

2α2

∫ α

0

K(ε, α, u)

[Fε(α)− Fε(u)]
7/2 du > 0 for γε ≤ α ≤ ηε.

It follows that αT′′ε (α) is a strictly increasing function of α ∈ [γε, ηε]. So we observe that there
are three cases:

Case 1. T′′ε (α) > 0 for α ∈ [γε, ηε].

Case 2. T′′ε (α) < 0 for α ∈ [γε, ηε).

Case 3. T′′ε (α) < 0 for α ∈ [γε, α̌), T′′ε (α) > 0 for α ∈ (α̌, ηε], and T′′ε (α̌) = 0 for some
α̌ ∈ (γε, ηε).

So by Cases 1–3, assertions (i)–(iii) hold.
The proof of Lemma 3.8 is complete.

Lemma 3.9. Consider (1.1) with σ1 < ε < ε̄. Either one of the following assertions (i)–(ii) holds:

(i) Tε(α) is a strictly increasing function on (0, ∞).

(ii) Tε(α) has exactly one local maximum and exactly one local minimum on (0, ∞).

Proof. We fix ε ∈ (σ1, ε̄). Assume that assertion (i) does not hold. By Lemma 3.1 (i), Tε(α) has
a local maximum and a local minimum on (0, ∞). Assume that Tε(α) has two local maximum
at some positive numbers αM1 < αM2 . Then there exists αm ∈ (αM1 , αM2) such that Tε(αm) is
the local minimum value. We consider four cases:

Case 1. ε̃ < ε < ε̄ and γε < ηε.

Case 2. ε̃ < ε < ε̄ and γε ≥ ηε.

Case 3. σ1 < ε ≤ ε̃ and γε < ηε.

Case 4. σ1 < ε ≤ ε̃ and γε ≥ ηε.

If Case 1 holds, by Lemmas 3.1 (ii) and 3.6 (ii), we observe that γε ≤ αm < αM2 < κε = ηε. It
is a contradiction by Lemma 3.8. If Case 2 holds, by Lemma 3.6 (ii), we observe that 0 < αM1 <

αM2 < κε = ηε ≤ γε. It is a contradiction by Lemma 3.1 (ii). If Case 3 holds, by Lemmas 3.1 (ii)
and 3.6 (ii)–(iii), we observe that γε ≤ αm < αM2 < ρε = ηε. It is a contradiction by Lemma 3.8.
If Case 4 holds, by Lemma 3.6 (ii)–(iii), we observe that 0 < αM1 < αM2 < ρε = ηε ≤ γε. It is a
contradiction by Lemma 3.1 (ii). So Tε(α) has exactly one local maximum.

Assume that Tε(α) has two local minimum at some positive numbers αm1 < αm2 . By
Lemma 3.1 (i), then there exist αM1 ∈ (0, αm1) and αM2 ∈ (αm1 , αm2) such that Tε(αM1) and
Tε(αM2) are the local maximum values. By previous discussion, we obtain a contradiction. So
Tε(α) has exactly one local minimum.

By above, Tε(α) has exactly one local maximum and exactly one local minimum on (0, ∞).
The proof of Lemma 3.9 is complete.
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Lemma 3.10. Consider (1.1) with σ1 < ε < ε̄. Either one of the following two assertions holds:

(i) Tε(α) is a strictly increasing function on (0, ∞) and Tε(α) has at most one critical point on
(0, ∞).

(ii) Tε(α) has exactly two critical points, a local maximum at some αM and a local minimum at some
αm > αM on (0, ∞).

Proof. We fix ε∗ ∈ (σ1, ε̄). By Lemma 3.9, either one of the following two cases holds:

Case 1. Tε∗(α) is a strictly increasing function on (0, ∞).

Case 2. Tε∗(α) has exactly one local maximum at some αM(ε∗) and exactly one local minimum
at some αm(ε∗) on (0, ∞).

(I) We prove assertion (i) under Case 1. Case 1 implies that T′ε∗(α) ≥ 0 for α > 0. Assume
that Tε∗(α) has two critical points α1(ε∗) < α2(ε∗) on (0, ∞). We obtain that

T′ε∗(α1(ε∗)) = T′ε∗(α2(ε∗)) = T′′ε∗(α1(ε∗)) = T′′ε∗(α2(ε∗)) = 0.

So by (F5) and Lemma 3.6 (ii)–(iii), we observe that 0 < α1(ε∗) < α2(ε∗) < ηε∗ < ωε∗ . We
assert that there exists δ > 0 such that

0 < α1(ε∗) < α2(ε∗) < ωε for ε∗ − δ ≤ ε ≤ ε∗. (3.18)

Let ε̂ ∈ (ε∗ − δ, ε∗) be given. By Lemma 3.7 and (3.18), we observe that

T′ε̂(α1(ε∗)) < T′ε∗(α1(ε∗)) = 0 and T′ε̂(α2(ε∗)) < T′ε∗(α2(ε∗)) = 0. (3.19)

By Lemmas 3.1 (ii), 3.6 (ii)–(iii), and 3.8, we observe that, for σ1 < ε < ε̄, there are no open inter-
vals I ⊂ R+ such that T′ε(α) = 0 on I. It implies that T′ε∗(α̂) > 0 for some α̂ ∈ (α1(ε∗), α2(ε∗)).
So by continuity of T′ε(α) of ε and (3.19), we choose ε̂ sufficiently close to ε∗ such that T′ε̂(α)
has four roots α1,1, α1,2, α2,1, and α2,2 such that

α1,1 < α1(ε∗) < α1,2 < α2,1 < α2(ε∗) < α2,2.

Furthermore, Tε̂(α1,1), Tε̂(α2,1) are local maximum values, and Tε̂(α1,2), Tε̂(α2,2) are local mini-
mum values. It is a contradiction by Lemma 3.9. Therefore, assertion (i) holds.

Next, we prove assertion (3.18). Let dε∗ ≡ [ηε∗ + α2(ε∗)] /2. Clearly, α2(ε∗) < dε∗ < ηε∗ . If
σ1 < ε∗ ≤ ε̃, since ηε∗ = ρε∗ and by Lemma 3.5, we observe that there exists δ1 > 0 such that

0 < α1(ε∗) < α2(ε∗) < dε∗ < ρε = ηε < ωε for ε ∈ [ε∗ − δ1, ε∗], (3.20)

and hence assertion (3.18) holds. If ε̃ < ε∗ < ε̄, since ηε∗ = κε∗ and by Lemma 3.3, we observe
that there exists δ2 > 0 such that

0 < α1(ε∗) < α2(ε∗) < dε∗ < κε = ηε < ωε for ε ∈ [ε∗ − δ2, ε∗], (3.21)

and hence assertion (3.18) holds. Thus assertion (3.18) holds by (3.20) and (3.21).
(II) We prove assertion (ii) under Case 2. Case 2 implies that Tε∗(α) has a critical point

α3(ε∗) on (0, ∞), distinct from αM(ε∗) and αm(ε∗). It follows that T′ε∗(α3(ε∗)) = T′′ε∗(α3(ε∗))= 0.
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So by (F5) and Lemma 3.6 (ii)–(iii), 0 < α3(ε∗) < ηε∗ < ωε∗ . We assert that there exists δ > 0
such that

0 < α3(ε∗) < ωε for ε∗ − δ ≤ ε ≤ ε∗ + δ. (3.22)

By Lemmas 3.1 (ii), 3.6 (ii)–(iii), and 3.8, we observe that, for σ1 < ε < ε̄, there are no open
intervals I such that T′ε(α) = 0 on I. By Lemma 3.7 and (3.22), we observe that if T′ε∗(α) has a
local minimum value at α = α3(ε∗), then

T′ε(α3(ε∗)) < T′ε∗(α3(ε∗)) = 0 for ε∗ − δ < ε < ε∗;

if T′ε∗(α) has a local maximum value at α = α3(ε∗), then

T′ε(α3(ε∗)) > T′ε∗(α3(ε∗)) = 0 for ε∗ < ε < ε∗ + δ.

So by continuity of T′ε(α) of ε, there exists ε̌ ∈ (σ1, ε̄) sufficiently close to ε∗ such that Tε̌(α)

has four local extreme α31, α32, α33 and α34 such that α31 and α32 are in the neighborhood of
αM(ε∗) and αm(ε∗) respectively, and α33 ∈ (0, α3(ε∗)) and α34 ∈ (α3(ε∗), ∞), distinct from α31

and α32, see Fig. 3.4. It is a contradiction by Lemma 3.9. Thus, assertion (ii) holds.

Figure 3.4: Local graphs of T′ε̌(α) and T′ε∗(α). (i) T′ε∗(α3(ε∗)) is a local minimum
value. (ii) T′ε∗(α3(ε∗)) is a local maximum value.

Next, we prove assertion (3.22). If ε∗ 6= ε̃, by continuities of ρε and κε, we observe that
assertion (3.22) holds. If ε∗ = ε̃, we let

η̃ε ≡
{

ρε if σ1 < ε ≤ ε̃,

κε − (κε̃ − ρε̃) if ε̃ < ε < ε̄.

Clearly, η̃ε is a continuous function of ε and η̃ε < ωε on (σ1, ε̄) by Lemmas 3.3 and 3.5. Since
α3(ε∗) < ρε∗ = η̃ε∗ < ωε∗ , assertion (3.22) holds.

The proof of Lemma 3.10 is complete.

Let

Ω =

{
ε ∈ Θ : Tε(α) has exactly two critical points,
a local maximum and a local minimum, on (0, ∞ε)

}
.

We then prove, in the next lemma, that the set Ω is open and connected.

Lemma 3.11. Consider (1.1) with ε ∈ Θ = (σ1, σ2) where 0 ≤ σ1 < σ2 ≤ ∞. The set Ω is nonempty,
open and connected. Moreover, Ω = (σ1, ε0) for some ε0 ∈ (ε̃, ε̄) .



16 S. Y. Huang, K. C. Hung and S. H. Wang

Proof. By Lemmas 3.6 (i) and 3.10, we have that

Ω =

{
ε ∈ (σ1, ε̄) : Tε(α) has exactly two critical points,
a local maximum and a local minimum, on (0, ∞)

}
=
{

ε ∈ (σ1, ε̄) : T′ε(α) < 0 for some α ∈ (0, ∞)
}

. (3.23)

(I) We show that Ω is open. Let ε ∈ Ω. Then T′ε(α4) < 0 for some α4 ∈ (0, ∞). By Lemma
3.7, we observe that T′ζ(α4) < 0 for ζ belonging to some open neighborhood of ε. So Ω is open.

(II) We then show that Ω is nonempty and connected. First, we see that (σ1, ε̃] ⊂ Ω by
Lemma 3.6 (iii). It implies that Ω is nonempty. Suppose to the contrary that the set Ω is not
connected, then there exist two numbers ε1 /∈ Ω and ε2 ∈ Ω such that ε̃ < ε1 < ε2 < ε̄. So by
(3.23), T′ε1

(α) ≥ 0 on (0, ∞). So by (F5) and Lemma 3.7, then

T′ε2
(α) > T′ε1

(α) ≥ 0 for 0 < α < ωε2 ≤ ωε1 . (3.24)

Since ε2 ∈ Ω, we see that Tε2(α) has a local maximum at αM(ε2). So by Lemma 3.6 (ii), we
further see that T′ε2

(αM(ε2)) = 0 and αM(ε2) < κε2 < ωε2 . It is a contradiction by (3.24). So Ω
is connect.

(III) Since Ω is open, connect and (σ1, ε̃] ⊂ Ω and by Lemma 3.6 (i), there exists ε0 ∈ (ε̃, ε̄)
such that Ω = (σ1, ε0).

The proof of Lemma 3.11 is complete.

By Lemma 3.11, we see that, for ε ∈ Ω = (σ1, ε0), Tε(α) has exactly two critical points, a
local maximum at some αM(ε) and a local minimum at some αm(ε) > αM(ε) on Ω. So we have
the following lemma.

Lemma 3.12. Consider (1.1) with ε ∈ Ω. Then the following assertions (i)–(ii) hold.

(i) αm(ε) is a continuous function on (σ1, ε0). Furthermore,

lim
ε→ε−0

αM(ε) = lim
ε→ε−0

αm(ε) ≡ α0 and T′ε0
(α0) = 0. (3.25)

(ii) Assume that ωε is a increasing function on (σ1, ε̃], and there exists a function βε ∈ [ρε, κε] on
(σ1, ε̃) such that βε is decreasing on (σ1, ε′) and (ε′, ε̃) for some ε′ ∈ (σ1, ε̃) respectively. Then
αM(ε) is a continuous function on (σ1, ε0).

Proof. We divide this proof into next five steps.

Step 1. We prove that αM(ε) is a increasing function on [ε̃, ε0), αm(ε) is a decreasing function
on [ε̃, ε0), and (3.25) holds. We first assert that

θ(α)− θ(u) > 0 for α ≥ ωε and ε̃ ≤ ε < ε̄. (3.26)

Assume that assertion (i) of Lemma 3.4 holds. It follows that (3.26) holds. Assume that
assertion (ii) of Lemma 3.4 holds. Clearly, θ(α) − θ(u) > 0 for 0 < u < α ≤ p1(ε) and
ε̃ ≤ ε < ε̄. So by (3.3), we see that T′ε(α) > 0 for 0 < α ≤ p1(ε) and ε̃ ≤ ε < ε̄. So by (F3), (F5)
and Lemma 3.6 (iii),

ωε > ηε =

{
ρε > p1(ε) for ε = ε̃,

κε > γε > p1(ε) for ε̃ < ε < ε̄.
(3.27)
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In addition, by (F6), we see that, for ε̃ ≤ ε < ε̄ and 0 < u < ωε,

θ(ωε)− θ(u) = 2I1(ε, ωε, u)− I2(ε, ωε, u) > 0.

So by assertion (ii) of Lemma 3.4 and (3.27), we further see that (3.26) holds. By (3.3) and
(3.26), T′ε(α) > 0 for α ≥ ωε and ε̃ ≤ ε < ε̄. It follows that

αM(ε) < αm(ε) < ωε for ε̃ ≤ ε < ε0. (3.28)

Let ε1 < ε2 be given in [ε̃, ε0). By (F5) and (3.28), we see that

αM(ε2) < αm(ε2) < ωε2 ≤ ωε1 .

So by Lemma 3.7, we observe that

0 = T′ε2
(αM(ε2)) > T′ε1

(αM(ε2)) and 0 = T′ε2
(αm(ε2)) > T′ε1

(αm(ε2)).

Then we obtain that
αM(ε1) < αM(ε2) < αm(ε2) < αm(ε1).

So αM(ε) is a increasing function on [ε̃, ε0) and αm(ε) is a decreasing function on [ε̃, ε0). More-
over, for ε̃ ≤ ε < ε0,

αM(ε) < α+ ≡ lim
ε→ε−0

αM(ε) ≤ α− ≡ lim
ε→ε−0

αm(ε) < αm(ε).

So T′ε(α+) < 0 and T′ε(α−) < 0 for ε̃ < ε < ε0. Then by Lemma 3.7, we further see that

0 ≤ T′ε0
(α+) = lim

ε→ε−0

T′ε(α
+) ≤ 0 and 0 ≤ T′ε0

(α−) = lim
ε→ε−0

T′ε(α
−) ≤ 0.

So T′ε0
(α+) = T′ε0

(α−) = 0. By Lemmas 3.10 and 3.11, we have that α0 ≡ α+ = α− and
T′ε0

(α0) = 0. It implies that (3.25) holds.

Step 2. We prove that

αm(ε) : [ε̃, ε0) −→ (α0, αm(ε̃)] is surjective, (3.29)

where α0 is defined in Step 1. Let α1 ∈ (α0, αm(ε̃)). By Step 1, we see that

αM(ε1) < αM(ε2) < αm(ε2) < α1 < αm(ε1) for some ε1 < ε2 in (ε̃, ε0) .

It follows that T′ε1
(α1) < 0 < T′ε2

(α1). So by Lemma 3.7, there exists ε3 ∈ (ε1, ε2) ⊂ (ε̃, ε0) such
that T′ε3

(α1) = 0. By Lemma 3.11 and Step 1, we have αm(ε3) = α1. It implies that (3.29) holds.

Step 3. We prove assertion (i). By Lemma 3.6 (iii), we see that αm(ε) > κε for σ1 < ε ≤ ε̃. Since
T′ε(αm(ε)) = 0 for σ1 < ε ≤ ε̃ and by (3.15), we observe that

T′′ε (αm(ε)) = T′′ε (αm(ε)) +
2
α

T′ε(αm(ε)) > 0 for σ1 < ε ≤ ε̃.

So by the Implicit Function Theorem and Lemma 3.11, we observe that

αm(ε) is a continuous function on (σ1, ε̃]. (3.30)
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In addition, by Step 1 and (3.29), we observe that

αm(ε) is a continuous function on [ε̃, ε0). (3.31)

By (3.30) and (3.31), we obtain that αm(ε) is a continuous function on (σ1, ε0) . So assertion (i)
holds by Step 1.

Step 4. If ωε is a increasing function on (σ1, ε̃], we assert that

αM(ε) is a strictly increasing function on (σ1, ε0) . (3.32)

By (F4) and Lemma 3.6 (iii), we see that αM(ε) < ρε = ηε < ωε for σ1 < ε ≤ ε̃. Let ε1 < ε2 be
given in (σ1, ε̃]. Then we have that αM(ε1) < ωε1 ≤ ωε2 . So by Lemma 3.7, we have that

T′ε2
(αM(ε1)) > T′ε1

(αM(ε1)) = 0,

which implies that αM(ε1) < αM(ε2) or αM(ε1) > αm(ε2). Assume that αM(ε1) > αm(ε2). Since
αm(ε2) > αM(ε2), we observe that

αM(ε2) < αM(ε1) < ωε1 ≤ ωε2 .

So by Lemma 3.7, we find that

T′ε1
(αM(ε2)) < T′ε2

(αM(ε2)) = 0 < T′ε1
(αM(ε2)),

which is a contradiction. Thus αM(ε1) < αM(ε2). It implies that αM(ε) is a strictly increasing
function on (σ1, ε̃]. By Step 1, we see that (3.32) holds.

Step 5. We prove that assertion (ii). We assert that

αM(ε) : (σ1, ε0) −→
(

lim
ε→σ+

1

αM(ε), α0

)
is surjective. (3.33)

So by (3.32), assertion (ii) holds. Next, we prove (3.33). Let α2 ∈
(

limε→σ+
1

αM(ε), α0
)

be given.
We consider next three cases.

Case 1. α2 = αM(ε̃). Under Case 1, (3.33) holds immediately.

Case 2. αM(ε̃) < α2 < α0. Under Case 2, by Step 1 and (3.32), there exist ε− < ε+ in (ε̃, ε0)
such that

αM(ε−) < α2 < αM(ε+) < αm(ε+) < αm(ε−).

It follows that T′ε−(α2) < 0 < T′ε+(α2). So by Lemma 3.7, there exists ε1 ∈ (ε−, ε+) ⊂
(ε̃, ε0) such that T′ε1

(α2) = 0. Moreover, αM(ε1) = α2 by Lemma 3.11 and Step 1. So
(3.33) holds.

Case 3. limε→σ+
1

αM(ε) < α2 < αM(ε̃). Under Case 3, we further consider next three subcases:

Case 3-1. α2 = αM(ε′). Under Case 3-1, clearly, (3.33) holds.
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Case 3-2. α2 < αM(ε′). Under Case 3-2, by (3.32), there exists ε− ∈ (σ1, ε′) such that

αM(ε−) < α2 < αM(ε′) < αm(ε
′). (3.34)

Let ε be given in [ε−, ε′). Since αM(ε′) < ρε′ by Lemmas 3.6 (iii) and 3.5, there
exists δ > 0 such that αM(ε′) < ρε′−δ and ε < ε′ − δ. So we further observe that

αM(ε′) < ρε′−δ ≤ βε′−δ ≤ βε ≤ κε < αm(ε).

So by (3.34), we see that αM(ε−) < α2 < αM(ε′) < αm(ε) for ε− ≤ ε ≤ ε′.
Then we have that T′ε−(α2) < 0 < T′ε′(α2). It follows that T′ε′′(α2) = 0 for some
ε1 ∈ (ε−, ε′). Furthermore, αM(ε1) = α2. So (3.33) holds.

Case 3-3. α2 > αM(ε′). Under Case 3-1, similarly, there exists ε+ ∈ (ε′, ε̃) such that

αM(ε′) < α2 < αM(ε+) < αm(ε) for ε′ ≤ ε ≤ ε+.

So by Lemma 3.7, there exists ε2 ∈ (ε′, ε+) such that αM(ε2) = α2. It follows that
(3.33) holds.

Thus by Cases 1–3, assertion (ii) holds.
The proof of Lemma 3.12 is complete.

4 Proofs of main results

Proof of Theorem 2.1. To prove Theorem 2.1, by (3.2) and Lemma 3.1 (i), it suffices to prove
assertions (M1)–(M3) in Section 3; see Fig. 3.1. Recall that:

(M1) For σ1 < ε < ε0, Tε(α) has exactly two critical points, a local maximum at some αM and
a local minimum at some αm (> αM), on (0, ∞).

(M2) For ε = ε0, T′ε0
(α) > 0 for α ∈ (0, ∞) \ {α0}, and T′ε0

(α0) = 0. In addition, T′′ε0
(α0) = 0

and T′′′ε0
(α0) 6= 0 if, for any fixed u > 0, f ′ε(u) is continuously differentiable at ε = ε0.

(M3) For ε0 < ε < σ2, T′ε(α) > 0 for α ∈ (0, ∞).

First, assertion (M1) immediately follows by Lemmas 3.11 and 3.1 (i).
Secondly, we prove assertion (M3). Obviously, assertion (M3) holds for ε̄ ≤ ε < σ2 by

Lemma 3.6 (i). Assume that there exists ε ∈ (ε0, ε̄) such that Tε(α) has a critical point α∗ on
(0, ∞). Since T′ε(α) ≥ 0 for α > 0 by Lemma 3.11, we observe that T′ε(α∗) = T′′ε (α∗) = 0. Since
ε̃ < ε0 < ε̄ and by Lemma 3.6 (ii) and (F5), we have that

0 < α∗ < κε = ηε < ωε ≤ ωε0 .

In addition, by Lemma 3.7, we observe that 0 = T′ε(α∗) > T′ε0
(α∗) ≥ 0, which is a contradiction.

So T′ε(α) > 0 for α ∈ (0, ∞) and ε0 < ε < ε̄. Thus assertion (M3) holds.
Finally, we prove assertion (M2). We have that limα→0+ Tε(α) = 0 and limα→∞ Tε(α) = ∞

by Lemma 3.1 (i). By Lemmas 3.10–3.12, we see that

T′ε0
(α0) = 0 and T′ε0

(α) > 0 for α ∈ (0, ∞) \ {α0} . (4.1)
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Next, we assume that f ′ε(u) is continuously differentiable at ε = ε0 for any fixed u > 0. By
(4.1), we obtain that T′′ε0

(α0) = 0. We then prove that T′′′ε0
(α0) 6= 0; we divide this proof into

two steps.

Step 1. We prove that γε is a continuous function at ε = ε0. By (F1), there exist two sequences
{ε1,n}n∈N and {ε2,n}n∈N such that limn→∞ ε1,n = limn→∞ ε2,n = ε0,

lim inf
ε→ε0

γε = lim
n→∞

γε1,n and lim sup
ε→ε0

γε = lim
n→∞

γε2,n .

Thus we observe that

f ′′ε0
(lim inf

ε→ε0
γε) = f ′′ε0

( lim
n→∞

γε1,n) = lim
n→∞

f ′′ε1,n
(γε1,n) = 0,

f ′′ε0
(lim sup

ε→ε0

γε) = f ′′ε0
( lim

n→∞
γε2,n) = lim

n→∞
f ′′ε2,n

(γε2,n) = 0.

So f ′′ε0
(lim infε→ε0 γε) = f ′′ε0

(lim supε→ε0
γε) = 0. By (F1), we see that

γε0 = lim inf
ε→ε0

γε = lim sup
ε→ε0

γε = lim
ε→ε0

γε,

which implies that γε is a continuous function at ε = ε0.

Step 2. We prove that T′′′ε0
(α0) 6= 0. Since T′ε0

(α0) = T′′ε0
(α0) = 0 and by Lemma 3.6 (ii), we

observe that α0 < κε0 = ηε0 . Assume that α0 < γε0 . By continuity of γε at ε = ε0 and Step 1 in
the proof of Lemma 3.12, we observe that

αM(ε) < α0 < αm(ε) < γε for ε ∈ (ε̃, ε0) sufficiently close to ε0,

which is a contradiction by Lemma 3.1 (ii). Then we have that γε0 ≤ α0 ≤ κε0 . So by Lemma
3.8, we see that

α0T′′′ε0
(α0) = T′′ε0

(α0) + α0T′′′ε0
(α0) =

[
αT′′ε0

(α)
]′∣∣∣

α=α0
> 0.

Thus T′′′ε0
(α0) > 0.

So by above, assertion (M2) holds.
The proof of Theorem 2.1 is complete.

Proof of Theorem 2.2. For σ1 < ε < ε0, by Theorem 2.1 (i), we obtain that (1.1) has exactly one
positive solution for 0 < λ < λ∗(ε) or λ > λ∗(ε), exactly two positive solutions for λ = λ∗(ε)

or λ = λ∗(ε), exactly three solutions for λ∗(ε) < λ < λ∗(ε). While for ε0 ≤ ε < σ2, by Theorem
2.1 (ii)–(iii), we obtain that (1.1) has exactly one positive solution for λ > 0. So by (3.1), we see
that λ∗(ε) ≡ T2

ε (αM(ε)) and λ∗(ε) ≡ T2
ε (αm(ε)). By Lemma 3.12, we further see that λ∗(ε) and

λ∗(ε) are continuous functions on (σ1, ε0], and

lim
ε→ε−0

λ∗(ε) = lim
ε→ε−0

λ∗(ε) = [Tε0(α0)]
2 = λ0.

Let ε1 < ε2 be two given numbers in (σ1, ε0). By (F2), (3.32) and Lemma 3.11, we observe that
αM(ε1) < αM(ε2) and√

λ∗(ε1) = Tε1(αM(ε1)) < Tε2(αM(ε1)) < Tε2(αM(ε2)) =
√

λ∗(ε2).
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So λ∗(ε) is a strictly increasing function on (σ1, ε0]. Suppose to the contrary that λ∗(ε1) ≥
λ∗(ε2). Then by (F2) and (3.1),

Tε1(αm(ε1)) =
√

λ∗(ε1) ≥
√

λ∗(ε2) = Tε2(αm(ε2)) > Tε1(αm(ε2)).

It follows that
αM(ε2) < αm(ε2) < αM(ε1) < αm(ε1),

which is a contradiction by (3.32). Thus, λ∗(ε2) > λ∗(ε1). So λ∗(ε) is a strictly decreasing
function on (σ1, ε0]. Moreover,

0 ≤ lim
ε→σ+

1

λ∗(ε) = lim
ε→σ+

1

[Tε(αm(ε))]
2 ≤ lim

ε→σ+
1

[Tε(αM(ε))]2 = lim
ε→σ+

1

λ∗(ε) < λ0.

Finally, let us assume that limε→σ+
1

ρε < limε→σ+
1

ωε. We suppose to the contrary that
limε→σ+

1
λ∗(ε) = limε→σ+

1
λ∗(ε). Let ε3 ∈ (σ1, ε′) be fixed. By Lemma 3.6 (iii) and (3.32), we

have that, for σ1 < ε < ε3,

α+ ≡ lim
ε→σ+

1

αM(ε) < αM(ε) < αM(ε3) < ρε3 ≤ βε3 ≤ βε ≤ κε < αm(ε). (4.2)

In addition, we have that
α+ ≤ lim

ε→σ+
1

ρε < lim
ε→σ+

1

ωε. (4.3)

Let α ∈ I ≡
(
α+, min

{
limε→σ+

1
ωε, βε3

})
. So by (3.32), (4.2) and (4.3), there exists ε4 ∈ (σ1, ε3)

such that
αM(ε) < α < βε3 < αm(ε) for σ1 < ε < ε4. (4.4)

So we see that, for σ1 < ε < ε4,

λ∗(ε) = [Tε(αm(ε))]
2 < [Tε(α)]

2 < [Tε(αM(ε))]2 = λ∗(ε).

It follows that
lim

ε→σ+
1

λ∗(ε) = lim
ε→σ+

1

λ∗(ε) = lim
ε→σ+

1

[Tε(α)]
2 .

Since α is arbitrary, we observe that limε→σ+
1
[Tε(α)]

2 is constant for α ∈ I, which implies that
limε→σ+

1
T′ε(α) = 0 for α ∈ I. Furthermore, by Lemma 3.7 and (4.4),

0 = lim
ε→σ+

1

T′ε(α) < T′ε(α) < 0 for α ∈ I and σ1 < ε < ε4,

which is a contradiction. Thus, limε→σ+
1

λ∗(ε) < limε→σ+
1

λ∗(ε) if limε→σ+
1

ρε < limε→σ+
1

ωε.
The proof of Theorem 2.2 is complete.

Proof of Theorem 2.3. First, for ε ≥ ε̄ = 0.25, it is easy to show that the bifurcation curve Sε

of (1.5) is monotone increasing on the (λ, ‖u‖∞)-plane and all positive solutions of (1.5) are
nondegenerate, see [3, p. 482] and Fig. 1.1 (iii). Hence Theorem 2.3 holds for ε ≥ 0.25.

Next, we prove Theorem 2.3 for 0 < ε ≤ ε̄ = 0.25 by applying Theorem 2.1. That is, we
prove that

fε(u) = exp
(

u
1 + εu

)
∈ C3[0, ∞)
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satisfies (F1)–(F6), and for any fixed u > 0, f ′ε(u) is a continuously differentiable function of
ε ∈ (ε̃, ε̄). In this case, for (1.5) with 0 < ε ≤ ε̄ = 0.25, we take that

ε ∈ Θ = (σ1, σ2) = (0, 0.3), 0 = σ1 < ε̃ =
1
ã
(≈ 0.243) < ε̄ = 0.25 < 0.3 = σ2,

where

ã ≡ inf

a > 4 :
∫ a(a−2)+a

√
a(a−4)

2

0
uga(u)− u2g′a(u)du < 0

 ≈ 4.107,

and ga(u) ≡ fε=1/a(u) = exp
( au

a+u

)
, cf. [7, (1.4)]. Clearly, for any fixed ε ∈ Θ = (0, 0.3),

fε(u) = exp
( u

1+εu

)
∈ C3[0, ∞), fε(0) = 1 > 0, fε(u) > 0 on (0, ∞), and f ′ε(u) is a continuously

differentiable, strictly decreasing function of ε ∈ Θ = (0, 0.3). We then compute and find that,
for ε ∈ Θ = (0, 0.3),

f ′′ε (u) = −
2ε2 (u− γε)

(1 + εu)4 exp
(

u
1 + εu

)
> 0 for 0 < u < γε,

= 0 for u = γε =
1−2ε
2ε2 > 0,

< 0 for u > γε,

lim
u→∞

fε(u)
u

= lim
u→∞

exp( u
1+εu )

u
= 0.

So fε(u) satisfies (F1) and (F2) with any fixed ε ∈ Θ = (0, 0.3).
We then prove that fε(u) satisfies (F3)–(F6) with 0 = σ1 < ε̃ (≈ 0.243) < ε̄ = 0.25 < 0.3 =

σ2. It is easy to see that, for fixed a = 1/ε, ga(u) = exp( au
a+u ) ∈ C3[0, ∞) and

g′′a (u) = f ′′1
a
(u)


> 0 for 0 < u < γ̂a,

= 0 for u = γ̂a ≡ a(a−2)
2 > 0,

< 0 for u > γ̂a.

Huang and Wang [7, 8] proved the following assertions (I)–(VII):

(I) ga(γ̂a)− γ̂ag′a(γ̂a) ≥ 0 for 2 < a ≤ 4. (So (F3) (i) holds with 0.25 = ε̄ ≤ ε < σ2 = 0.3.)

(II) For a > 4, the function
∫ u

0 t3g′′a (t)dt has a positive zero κ̂a in (0, ∞). (So (F3) (ii) holds
with 0 = σ1 < ε ≤ ε̄ = 0.25.)

(III) For a ≥ ã ≈ 4.107, there exists ρ̂a ∈ (0, κ̂a] such that

∫ u

0
tga(t)− t2g′a(t)dt

{
= 0 if u = ρ̂a,

< 0 if ρ̂a < u ≤ κ̂a.

(So (F3) (iii) holds with 0 = σ1 < ε ≤ ε̃ = 1/ã ≈ 0.243.)

(IV) There exists a∗ (≈ 4.166) ∈ (ã, ∞) such that

η̂a

{
> γ̂a for 4 < a < a∗,

≤ γ̂a for a ≥ a∗,
where η̂a ≡

{
ρ̂a if a ≥ ã,

κ̂a if 4 < a < ã.

(V) K
( 1

a , u, v
)
> 0 for u ∈ [γ̂a, η̂a], 0 < v < u and 4 < a < a∗ ≈ 4.166.
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(VI) For a > 4, we have that ω̂a > η̂a and

N(v, u) ≡ 3
[

∂

∂ε
I1

(
1
a

, u, v
)]

I2

(
1
a

, u, v
)
− 2

[
∂

∂ε
I1

(
1
a

, u, v
)]

I1

(
1
a

, u, v
)

−2
[

∂

∂ε
I2

(
1
a

, u, v
)]

I1

(
1
a

, u, v
)
> 0 for 0 < v < u < ω̂a,

where

ω̂a ≡
{

12 if 4 < a < 6,

3 if a ≥ 6.

(VII) θ̂(12)− θ̂(u) > 0 for 0 < u < 12 and 4 < a ≤ ã ≈ 4.107, where

θ̂(u) ≡ 2
∫ u

0
ga(t)dt− uga(u) for u ≥ 0.

Notice that assertions (I)–(III) follow by [8, p. 771 and Lemma 13], assertion (IV) follows
by [8, (4) and (28)–(31)], assertion (V) follows by [7, Lemma 2.6 and (2.32)] and [8, (28)–(31)],
assertion (VI) follows by [8, Lemma 21 and its proof], and assertion (VII) follows by [8, Lemma
12(i)].

By assertions (I)–(III), we observe that fε(u) satisfies (F3).
By assertions (IV) and (V), we observe that, if a > 4 and η̂a > γ̂a, then K( 1

a , u, v) > 0 for
u ∈ [γ̂a, η̂a], 0 < v < u. It follows that fε(u) satisfies (F4) with m = 0 for 0 = σ1 < ε < ε̄ = 0.25.

By assertion (VI), we see that ω̂a is a monotone decreasing function of a on (4, ã). Let

ωε ≡ ω̂ 1
ε
=

3 if 0 < ε ≤ 1
6 ,

12 if 1
6 < ε < 1

4 = 0.25 = ε̄.
(4.5)

So by assertion (VI) again, fε(u) satisfies (F5) for 0 = σ1 < ε ≤ ε̄ = 0.25.
Since ã (≈ 4.107) < 6 and by assertions (VI) and (VII), we see that, for 0 < u < ω̂a and

4 < a ≤ ã,

2I1

(
1
a

, ω̂a, u
)
− I2

(
1
a

, ω̂a, u
)
= 2I1

(
1
a

, 12, u
)
− I2

(
1
a

, 12, u
)
= θ̂(12)− θ̂(u) > 0,

which implies that fε(u) satisfies (F6) for 0.243 ≈ ε̃ ≤ ε < ε̄ = 0.25.
By above and Theorem 2.1, we obtain that Theorem 2.3 holds for 0 < ε ≤ ε̄ = 0.25.
The proof of Theorem 2.3 is complete.

Proof of Theorem 2.4. In the proof of Theorem 2.3, we have verified that fε(u) = exp
( u

1+εu

)
satisfies (F1)–(F6) for 0 < ε ≤ 0.25. By (4.5), ωε is monotone increasing for 0 = σ1 < ε ≤ ε̃. Let

β̂a ≡
{

κ̂a for ã < a ≤ a∗,

γ̂a =
a(a−2)

2 for a > a∗,

where a∗ (≈ 4.166) is defined by [8, (4)]. By [8, Lemma 13(i)], we see that β̂a is a strictly
increasing function on (ã, a∗) and (a∗, ∞), respectively. By [8, (30) and (31)], we find that
ρ̂a ≤ β̂a ≤ κ̂a for a > ã. Let βε = β̂1/ε and ε′ = 1/a∗. Then βε ∈ [ρε, κε] is a strictly decreasing
function on (0, ε′) and (ε′, ε̃) , respectively. Clearly, we compute that

lim
ε→0+

Hε(u) =
(
−u2 + 3u− 3

)
eu + 3 for u > 0.
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We observe that limε→0+ Hε(0) = 0, limε→0+ Hε(2) = −e2 + 3 (≈ −4.38) < 0, and limε→0+ Hε(u)
is strictly increasing on (0, 1) and then strictly decreasing on (1, ∞). Thus limε→0+ Hε(u) has a
unique positive zero which is less than 2. So by (4.5), we obtain that

lim
ε→0+

ρε < 2 < 3 = lim
ε→0+

ωε.

So by Theorem 2.2 and [8, (10)], we see that all results of Theorem 2.4 hold.
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