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Abstract. Consider the following higher order difference equation

x(n + 1) = f (n, x(n)) + g(n, x(n− k)) + b(n), n = 0, 1, . . .

where f (n, x), g(n, x) : {0, 1, . . . } × [0, ∞) → [0, ∞) are continuous functions in x and
periodic functions with period ω in n, {b(n)} is a real sequence, and k is a nonnegative
integer. We show that under proper conditions, every nonnegative solution of the equa-
tion is quasi-periodic with period ω. Applications to some other difference equations
derived from mathematical biology are also given.
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1 Introduction

Consider the following nonlinear difference equation of order k + 1 with forcing term b(n)

x(n + 1) = f (n, x(n)) + g(n, x(n− k)) + b(n), n = 0, 1, . . . (1.1)

where f (n, x), g(n, x) : {0, 1, . . . } × [0, ∞)→ [0, ∞) are continuous functions in x and periodic
functions with period ω in n, {b(n)} is a real sequence, and k is a nonnegative integer. Our
aim in the paper is to study the quasi-periodicity of solutions of Eq. (1.1) in the sense that

Definition 1.1. We say that a solution {x(n)} of Eq. (1.1) is quasi-periodic with period ω

if there exist sequences {p(n)} and {q(n)} such that {p(n)} is periodic with period ω and
{q(n)} converges to zero as n→ ∞ and x(n) = p(n) + q(n), n = 0, 1, . . .

By using, among others, some methods and ideas related to the linear first-order difference
equation, in the next section we show that under proper conditions every solution of Eq. (1.1)
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is quasi-periodic with period ω. More specifically, we show that under proper conditions,
every solution {x(n)} of Eq. (1.1) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is a periodic solution with period ω of the following associated difference equa-
tion of Eq. (1.1) without forcing term

y(n + 1) = f (n, y(n)) + g(n, y(n− k)), n = 0, 1, . . . (1.2)

Existence and global attractivity of periodic solutions of Eq. (1.2) and some other forms have
been studied by numerous authors, see for example [1,3,13,15–17,19,20,22,23,31] and the ref-
erences cited therein. While there has been much progress made in the study of the existence
and global attractivity of periodic solutions of Eq. (1.2), the quasi-periodicity of solutions of
Eq. (1.1) is relatively scarce. In order to study this phenomenon, we note the following recent
result from [15] for the existence of a periodic solution ỹ(t) of Eq. (1.2) (some new results
related to those in [15] have been recently presented in [26]).

Theorem A. Assume that there is a nonnegative periodic sequence {a(n)} with period ω such
that

â =
ω−1

∏
j=0

a(j) < 1 and f (n, y) ≤ a(n)y for n = 0, 1, . . . , ω− 1 and y ≥ 0

and that f (n, y)− a(n)y is nonincreasing in y. Suppose also that g(n, y) is nonincreasing in y
and that there is a positive constant B such that

n+ω−1

∑
i=n

(
n+ω−1

∏
j=i+1

a(j)

)
[ f (i, B)− a(i)B + g(i, B)] ≥ 0, n = 0, 1, . . . , ω− 1 (1.3)

and
1

1− â

n+ω−1

∑
i=n

(
n+ω−1

∏
j=i+1

a(j)

)
g(i, 0) ≤ B, n = 0, 1, . . . , ω− 1. (1.4)

Then Eq. (1.2) has a nonnegative periodic solution {ỹ(n)} with period ω.

We will make use of this theorem in the next section to guarantee a periodic solution of
Eq. (1.2), a prerequisite for the existence of quasi-periodic solutions of Eq. (1.1). In Section 3,
we show that our main results may be applied to some difference equations derived from
applications.

2 Main results

For the sake of convenience, we adopt the notation ∏n
i=m ρ(i) = 1 and ∑n

i=m ρ(i) = 0 whenever
{ρ(n)} is a real sequence and m > n in the following discussion.

The following lemma – which is needed in the proof of our main result – is folklore, and
all the ingredients for its proof can be found in some papers dealing with the linear first-
order difference equation (see, for example, [18] and [23] and the related references therein).
Nevertheless, we will give a proof for the sake of completeness.
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Lemma 2.1. Assume that {a(n)} is a nonnegative periodic sequence with period ω and {b(n)} is a
real sequence. If

ω−1

∏
i=0

a(i) < 1 and b(n)→ 0 as n→ ∞, (2.1)

then
n

∑
i=0

(
n

∏
j=i+1

a(j)

)
b(i)→ 0 as n→ ∞. (2.2)

Proof. First we show that there is a positive constant A such that

n

∑
i=0

(
n

∏
j=i+1

a(j)

)
≤ A, n = 0, 1, . . . (2.3)

Observe that for any n ≥ 0, there are nonnegative integers m and l such that

n = mω + l, 0 ≤ l ≤ ω− 1.

Then

n

∑
i=0

(
n

∏
j=i+1

a(j)

)
=

mω+l

∑
i=0

(
mω+l

∏
j=i+1

a(j)

)

=
ω−1

∑
i=0

(
mω+l

∏
j=i+1

a(j)

)
+

2ω−1

∑
i=ω

(
mω+l

∏
j=i+1

a(j)

)
+ · · ·+

mω−1

∑
i=(m−1)ω

(
mω+l

∏
j=i+1

a(j)

)

+
mω+l

∑
i=mω

(
mω+l

∏
j=i+1

a(j)

)

=
mω+l

∏
j=ω

a(j)
ω−1

∑
i=0

(
ω−1

∏
j=i+1

a(j)

)
+

mω+l

∏
j=2ω

a(j)
2ω−1

∑
i=ω

(
ω−1

∏
j=i+1

a(j)

)

+ · · ·+
mω+l

∏
j=mω

a(j)
mω−1

∑
i=(m−1)ω

(
mω−1

∏
j=i+1

a(j)

)
+

l

∑
i=0

(
l

∏
j=i+1

a(j)

)

=
mω−1

∏
j=ω

a(j)
mω+l

∏
j=mω

a(j)
ω−1

∑
i=0

(
ω−1

∏
j=i+1

a(j)

)
+

mω−1

∏
j=2ω

a(j)
mω+l

∏
j=mω

a(j)
2ω−1

∑
i=ω

(
ω−1

∏
j=i+1

a(j)

)

+ · · ·+
mω−1

∏
j=mω

a(j)
mω+l

∏
j=mω

a(j)
mω−1

∑
i=(m−1)ω

(
mω−1

∏
j=i+1

a(j)

)
+

l

∑
i=0

(
l

∏
j=i+1

a(j)

)

=

(
ω−1

∏
i=0

a(j)

)m−1 l

∏
i=0

a(j)
ω−1

∑
i=0

(
ω−1

∏
j=i+1

a(j)

)

+

(
ω−1

∏
i=0

a(j)

)m−2 l

∏
i=0

a(j)
ω−1

∑
i=0

(
ω−1

∏
j=i+1

a(j)

)

+ · · ·+
l

∏
i=0

a(j)
ω−1

∑
i=0

(
ω−1

∏
j=i+1

a(j)

)
+

l

∑
i=0

(
l

∏
j=i+1

a(j)

)
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=

(ω−1

∏
i=0

a(i)

)m−1

+

(
ω−1

∏
i=0

a(j)

)m−2

+ · · ·+ 1

 l

∏
i=0

a(j)
ω−1

∑
i=0

(
ω−1

∏
j=i+1

a(j)

)

+
l

∑
i=0

(
l

∏
j=i+1

a(j)

)

=
1−

(
∏ω−1

j=0 a(j)
)m

1−∏ω−1
j=0 a(j)

l

∏
j=0

a(j)
ω−1

∑
i=0

(
ω−1

∏
j=i+1

a(j)

)
+

l

∑
i=0

(
l

∏
j=i+1

a(j)

)
.

Thus

n

∑
i=0

(
n

∏
j=i+1

a(j)

)
≤

l
∏
j=0

a(j)

1−
ω−1
∏
j=0

a(j)

ω−1

∑
i=0

(
ω−1

∏
j=i+1

a(j)

)
+

l

∑
i=0

(
l

∏
j=i+1

a(j)

)
, l = 0, 1, . . . , ω− 1. (2.4)

Let

A1 = max
0≤l≤ω−1

l

∏
j=0

a(j), A2 = max
0≤l≤ω−1

l

∑
i=0

(
l

∏
j=i+1

a(j)

)

and

A =
A1

1−∏ω−1
j=0 a(j)

ω−1

∑
i=0

(
ω−1

∏
j=i+1

a(j)

)
+ A2.

Then from (2.4) we see that (2.3) holds. Next, we show that (2.2) holds. Since b(n) → 0 as
n→ ∞, there is a positive constant C(≥ A) such that

|b(n)| ≤ C, n ≥ 0

and for each ε > 0, there is a positive integer N1 such that

|b(n)| < ε

2C
, n > N1.

Hence, by noting (2.3), we see that

n

∑
i=N1+1

(
n

∏
j=i+1

a(j)

)
|b(i)| ≤

n

∑
i=N1+1

(
n

∏
j=i+1

a(j)

)
ε

2C
≤ A

ε

2C
≤ ε/2, n > N1.

Since for each t = 1, 2, . . . , N1 + 1, ∏n
j=t a(j)→ 0 as n→ ∞, there is a positive integer N2(> N1)

such that
n

∏
j=t

a(j) <
ε

2(N1 + 1)C
, n > N2, t = 1, 2, . . . , N1 + 1.

Hence,

N1

∑
i=0

(
n

∏
j=i+1

a(j)

)
|b(i)| ≤

N1

∑
i=0

(
n

∏
j=i+1

a(j)

)
C ≤ (N1 + 1)

ε

2(N1 + 1)C
C = ε/2, n > N2.
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Then it follows that∣∣∣∣∣ n

∑
i=0

(
n

∏
j=i+1

a(j)

)
b(i)

∣∣∣∣∣ =
∣∣∣∣∣ N1

∑
i=0

(
n

∏
j=i+1

a(j)

)
b(i) +

n

∑
i=N1+1

(
n

∏
j=i+1

a(j)

)
b(i)

∣∣∣∣∣
≤

N1

∑
i=0

(
n

∏
j=i+1

a(j)

)
|b(i)|+

n

∑
i=N1+1

(
n

∏
j=i+1

a(j)

)
|b(i)|

≤ ε

2
+

ε

2
= ε, n > N2

which yields (2.2). The proof is complete.

Now, consider the linear difference equation

u(n + 1) = a(n)u(n) + b(n), n = 0, 1, . . . , (2.5)

where {a(n)} and {b(n)} satisfy the hypotheses in Lemma 2.1. Assume that {u(n)} is a
solution of Eq. (2.5). It is known that the general solution to the equation is

u(n + 1) =

(
n

∏
j=0

a(j)

)
u(0) +

n

∑
i=0

(
n

∏
j=i+1

a(j)

)
b(i), n = 0, 1, . . . ,

which is frequently used in the literature (see, e.g., recent papers [21, 23–25], as well as many
related references therein, where some applications to ordinary and partial difference equa-
tions, as well as many historical facts on the equation and related solvable ones can be found).
Clearly, by noting the periodicity of {a(n)} and (2.1), we see that(

n

∏
j=0

a(j)

)
u(0)→ 0 as n→ ∞.

Hence, the following conclusion comes from Lemma 2.1 immediately.

Corollary 2.2. Assume that {a(n)} and {b(n)} satisfy the hypotheses in Lemma 2.1. Then every
solution {u(n)} of Eq. (2.5) converges to zero as n→ ∞.

The following corollary is about the difference inequality

v(n + 1) ≤ a(n)v(n) + b(n), n = 0, 1, . . . (2.6)

Assume that {v(n)} is a nonnegative solution of (2.6). Clearly, {v(n)} satisfies

0 ≤ v(n) ≤ u(n), n = 0, 1, · · ·

where {u(n)} is the solution of Eq. (2.5) with u(0) = v(0). Hence, the following conclusion is
a direct consequence of Corollary 2.2.

Corollary 2.3. Assume that {a(n)} and {b(n)} satisfy the hypotheses in Lemma 2.1. Then every
nonnegative solution {v(n)} of (2.6) converges to zero as n→ ∞.

The following lemma is straightforward but will be referenced multiple times in the main
result.
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Lemma 2.4. Suppose f (n, x), g(n, x) are real functions and that {a(n)} is a real sequence, and assume
f (n, x)− a(n)x and g(n, x) are nonincreasing. Then for any y ≥ 0,

f (n, x + y)− f (n, x) ≤ a(n)y

and
f (n, x + y)− f (n, x) + g(n, x + y)− g(n, x) ≤ a(n)y.

Proof. Let y ≥ 0. As f (n, x)− a(n)x is nonincreasing we have

f (n, x + y)− a(n)(x + y) ≤ f (n, x)− a(n)x.

Thus, f(n, x+y)− f(n, x)≤ a(n)y. As g(n, x) is nonincreasing, we see that g(n, x+y)−g(n, x)≤ 0.
Combining the above inequalities completes the proof.

The following theorem is our main result.

Theorem 2.5. Consider Eq. (1.1) and assume that f (n, x) is nondecreasing in x. Suppose that {a(n)}
is a nonnegative periodic sequence with period ω, and {b(n)} is a real sequence such that {a(n)} and
{b(n)} satisfy (2.1), f (n, x) ≤ a(n)x and f (n, x)− a(n)x is nonincreasing in x. Suppose also that
g(n, x) is nonincreasing in x and there is a positive constant B such that (1.3) and (1.4) are satisfied.
Suppose there is a nonnegative sequence {L(n)} with period ω such that

|g(n, x)− g(n, y)| ≤ L(n)|x− y|, n = 0, 1, . . . , ω− 1 (2.7)

and that either

a(n) ≤ 1 and
n+k

∑
i=n

(
n+k

∏
j=i+1

a(j)

)
L(i) < 1, n = 0, 1, . . . , ω− 1 (2.8)

or
n+k+ω−1

∑
i=n

(
n+k+ω−1

∏
j=i+1

a(j)

)
L(i) < 1, n = 0, 1, . . . , ω− 1. (2.9)

Then every solution {x(n)} of Eq. (1.1) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0 (2.10)

where {ỹ(n)} is the unique periodic solution of Eq. (1.2) with period ω.

Proof. In view of Theorem A, we know that Eq. (1.2) has a unique periodic solution {ỹ(n)}.
Let z(n) = x(n)− ỹ(n). Then {z(n)} satisfies

z(n + 1) + ỹ(n + 1) = f (n, z(n) + ỹ(n)) + g(n, z(n− k) + ỹ(n− k)) + b(n), n = 0, 1, . . .

Since {ỹ(n)} is a solution of Eq. (1.2), ỹ(n + 1) = f (n, ỹ(n)) + g(n, ỹ(n− k)). Hence, it follows
that

z(n + 1) = f (n, z(n) + ỹ(n))− f (n, ỹ(n))

+ g(n, z(n− k) + ỹ(n− k))− g(n, ỹ(n− k)) + b(n), n = 0, 1, . . . (2.11)

Clearly, to complete the proof of the theorem and show that (2.10) holds, it suffices to show
that every solution {z(n)} of Eq. (2.11) tends to zero as n → ∞. First assume that {z(n)} is
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a nonoscillatory solution of Eq. (2.11). Then {z(n)} is either eventually positive or eventually
negative. We assume that {z(n)} is eventually positive. The proof for the case that {z(n)} is
eventually negative is similar and will be omitted. Hence, there is a positive integer n0 such
that z(n) > 0 for n ≥ n0. Then by noting f (n, x)− a(n)x and g(n, x) are nonincreasing in x, it
follows from Lemma 2.4 and (2.11) that

z(n + 1) ≤ a(n)z(n) + b(n), n ≥ n0 + k

and so by Corollary 2.3, z(n)→ 0 as n→ ∞.
Next, assume that {z(n)} is an oscillatory solution of Eq. (2.11). Then there is an increasing

sequence {nt} of positive integers such that y(n1) ≤ 0 and for τ = 1, 2, . . . ,{
y(n) > 0 when n2τ−1 < n ≤ n2τ and

y(n) ≤ 0 when n2τ < n ≤ n2τ+1.
(2.12)

Case 1. Assume that (2.8) holds. Then there is a positive number µ such that

µ < 1 and
n+k

∑
i=n

(
n+k

∏
j=i+1

a(j)

)
L(i) ≤ µ, n = 0, 1, . . .

We show that

z(n) ≤ µ max
n1−k≤l≤n1

{|z(l)|}+
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|, n1 < n ≤ n2. (2.13)

In fact, from (2.12) we see that z(n1) ≤ 0 and z(n) > 0, n1 < n ≤ n2. As f (n, x)− a(n)x is
nonincreasing in x, from Lemma 2.4 we see that f (n, z(n) + ỹ(n))− f (n, ỹ(n)) ≤ a(n)z(n) and
(2.11) becomes

z(n + 1) ≤ a(n)z(n) + g(n, z(n− k) + ỹ(n− k))− g(n, ỹ(n− k)) + b(n).

Then by using (2.7), it follows that when n1 < n ≤ n2,

z(n)=

(
n−1

∏
j=n1

a(j)

)
z(n1)+

n−1

∑
i=n1

(
n−1

∏
j=i+1

a(j)

)
[g(i, z(i− k)+ ỹ(i− k))−g(i, ỹ(i− k))+b(i)]

≤
n−1

∑
i=n1

(
n−1

∏
j=i+1

a(j)

)
|g(i, z(i− k)+ ỹ(i− k))−g(i, ỹ(i− k))|+

n−1

∑
i=n1

(
n−1

∏
j=i+1

a(j)

)
|b(i)|

≤
n−1

∑
i=n1

(
n−1

∏
j=i+1

a(j)

)
L(i)|z(i− k)|+

n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|

(2.14)

Now, consider two cases n2 ≤ n1 + k + 1 and n2 > n1 + k + 1, respectively. When n2 ≤
n1 + k + 1, for any n1 < n ≤ n2, n− k− 1 ≤ n1 and so (2.14) yields

z(n) ≤
n−1

∑
i=n1

(
n−1

∏
j=i+1

a(j)

)
L(i) max

n1−k≤l≤n1

{|z(l)|}+
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|

≤
n−1

∑
i=n−k−1

(
n−1

∏
j=i+1

a(j)

)
L(i) max

n1−k≤l≤n1

{|z(l)|}+
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|

≤ µ max
n1−k≤l≤n1

{|z(l)|}+
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|.
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Hence, (2.13) holds in this case. Next, consider the case that n2 > n1 + k + 1. When n1 < n ≤
n1 + k + 1, as we have shown above, (2.13) holds. In particular,

z(n1 + k + 1) ≤ µ max
n1−k≤l≤n1

{|z(l)|}+
n1+k

∑
i=0

(
n1+k

∏
j=i+1

a(j)

)
|b(i)|. (2.15)

When n1 + k + 1 < n ≤ n2, by noting z(n − k − 1) > 0, (2.15) holds and Lemma 2.4, (2.11)
yields

z(n) ≤ a(n− 1)z(n− 1) + b(n− 1)

=

(
n−1

∏
j=n1+k+1

a(j)

)
z(n1 + k + 1) +

n−1

∑
i=n1+k+1

(
n−1

∏
j=i+1

a(j)

)
b(i)

≤
(

n−1

∏
j=n1+k+1

a(j)

)(
µ max

n1−k≤l≤n1

{|z(l)|}+
n1+k

∑
i=0

(
n1+k

∏
j=i+1

a(j)

)
|b(i)|

)

+
n−1

∑
i=n1+k+1

(
n−1

∏
j=i+1

a(j)

)
b(i)

≤ µ max
n1−k≤l≤n1

{|z(l)|}+
n1+k

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|+

n−1

∑
i=n1+k+1

(
n−1

∏
j=i+1

a(j)

)
b(i)

= µ max
n1−k≤l≤n1

{|z(l)|}+
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|

and so z(n) satisfies (2.13). Hence for any case, (2.13) holds. Then by a similar argument, we
may show that

z(n) ≥ −
[

µ max
n2−k≤l≤n2

{|z(l)|}+
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|

]
, n2 < n ≤ n3,

and in general,

|z(n)| ≤ µB(t) +
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|, nt < n ≤ nt+1. (2.16)

where
B(t) = max

nt−k≤l≤nt
{|z(l)|}, t = 1, 2, . . .

Since b(n)→ 0 as n→ ∞, |b(n)| → 0 as n→ ∞. Then it follows from Lemma 2.1,

n

∑
i=0

(
n

∏
j=i+1

a(i)

)
|b(i)| → 0 as n→ ∞. (2.17)

Hence, from (2.16) we see that if B(t) → 0 as t → ∞, then z(n) → 0 as n → ∞. In the
following, we assume that B(t) 6→ 0 as t→ ∞. Then there is a subsequence {B(ts)} of {B(t)}
such that

B(ts) ≥ η, s = 1, 2, . . .

where η is a positive constant.
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By noting (2.17) again, we may choose a positive number δ such that

µ + δ < 1

and a subsequence {ntsr
} of {nts} such that for each r = 1, 2, . . . ,

ntsr+1
− ntsr

≥ 1 + 2k

and
n

∑
i=0

(
n

∏
j=i+1

a(i)

)
|b(i)| < ηδr, n ≥ ntsr

− 1. (2.18)

We claim that
B(t) ≤ B(tsr) for t ≥ tsr , r = 1, 2, . . . (2.19)

In fact, if ntsr+1 − k > ntsr
, we see that when ntsr+1 − k ≤ n ≤ ntsr+1, it follows from (2.16) and

(2.18) that
|z(n)| ≤ µB(tsr) + ηδr ≤ (µ + δr)B(tsr) ≤ B(tsr). (2.20)

If ntsr+1 − k ≤ ntsr
we see that (2.20) holds when ntsr

< n ≤ ntsr+1; while when ntsr+1 − k ≤
n ≤ ntsr

, by noting ntsr
− k < ntsr+1 − k, we see that

|z(n)| ≤ max
ntsr−k≤l≤ntsr

{|z(l)|} = B(tsr).

Hence, from the above discussion we see that for any case when ntsr+1 − k ≤ n ≤ ntsr+1,

|z(n)| ≤ B(tsr)

and so
B(tsr + 1) = max

ntsr +1−k≤l≤ntsr +1

{|z(l)|} ≤ B(tsr).

Then by a similar argument and induction, we may show that for any l ≥ 1,

B(tsr + l) ≤ B(tsr)

that is, (2.19) holds. Then it follows from (2.16) and (2.19) that

|z(n)| ≤ µB(tsr) +
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|, n > nsr . (2.21)

Next, we show that

|z(n)| ≤ (µ + δ)rB(ts1), n > nts1
, r = 1, 2, . . . (2.22)

When r = 1, from (2.18) and (2.21) we see that

|z(n)| ≤ µB(ts1) + ηδ ≤ (µ + δ)B(ts1), n > nts1

which satisfies (2.22) with r = 1. Assume that when r = m, (2.22) holds, that is,

|z(n)| ≤ (µ + δ)mB(ts1), n > ntsm
. (2.23)
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Then from (2.21) and (2.23) we see that when n > ntsm+1
,

|z(n)| ≤ µB(tsm+1) +
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|

≤ µ(µ + δ)mB(ts1) + ηδm+1

≤ (µ(µ + δ)m + δm+1)B(ts1)

≤ (µ + δ)m+1B(ts1),

which satisfies (2.22) with r = m + 1. Hence, by induction, (2.22) holds. Clearly, (2.22) implies
that z(n)→ 0 as n→ ∞.

Case 2. Assume that (2.9) holds. Then there is a positive number ν such that

ν < 1 and
n+k+ω−1

∑
i=n

(
n+k+ω−1

∏
j=i+1

a(j)

)
L(i) ≤ ν, n = 0, 1, . . .

We claim that

z(n) ≤ ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|, n1 < n ≤ n2. (2.24)

First, from the proof of Case 1, we see that when n1 < n ≤ n2, (2.14) holds. Next, consider
two cases n2 ≤ n1 + k + ω and n2 > n1 + k + ω, respectively. When n2 ≤ n1 + k + ω, for any
n1 < n ≤ n2, n− k−ω ≤ n1 and so (2.14) yields

z(n) ≤
n−1

∑
i=n1

(
n−1

∏
j=i+1

a(j)

)
L(i) max

n1−k≤l≤n1+ω−1
{|z(l)|}+

n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|

≤
n−1

∑
i=n−k−ω

(
n−1

∏
j=i+1

a(j)

)
L(i) max

n1−k≤l≤n1+ω−1
{|z(l)|}+

n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|

≤ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|.

(2.25)

Hence, (2.24) holds in this case. Next, consider the case that n2 > n1 + k + ω. When n1 < n ≤
n1 + k + ω, as we have shown above, (2.24) holds. Hence, we only need to show that (2.24)
holds also when n1 + k + ω < n ≤ n2. In fact, by noting that when n1 + k + 1 < n ≤ n2,
z(n− k− 1) > 0, and the result of Lemma 2.4, (2.11) yields

z(n) ≤ a(n− 1)z(n− 1) + b(n− 1), n1 + k + 1 < n ≤ n2. (2.26)

Hence, it follows from (2.25) and (2.26) that

z(n1 + k + ω + 1) ≤
(

n1+k+ω

∏
j=n1+k+1

a(j)

)
z(n1 + k + 1) +

n1+k+ω

∑
i=n1+k+1

(
n1+k+ω

∏
j=i+1

a(j)

)
|b(i)|

≤
(

n1+k+ω

∏
j=n1+k+1

a(j)

)(
ν max

n1−k≤l≤n1+ω−1
{|z(l)|}+

n1+k

∑
i=0

(
n1+k

∏
j=i+1

a(j)

)
|b(i)|

)

+
n1+k+ω

∑
i=n1+k+1

(
n1+k+ω

∏
j=i+1

a(j)

)
|b(i)|
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≤ ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n1+k

∑
i=0

(
n1+k+ω

∏
j=i+1

a(j)

)
|b(i)|

+
n1+k+ω

∑
i=n1+k+1

(
n1+k+ω

∏
j=i+1

a(j)

)
|b(i)|

= ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n1+k+ω

∑
i=0

(
n1+k+ω

∏
j=i+1

a(j)

)
|b(i)|

and similarly,

z(n1 + k + ω + 2) ≤ ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n1+k+ω+1

∑
i=0

(
n1+k+ω+1

∏
j=i+1

a(j)

)
|b(i)|

...

z(n2) ≤ ν max
n1−k≤l≤n1+ω−1

{|z(l)|}+
n2−1

∑
i=0

(
n2−1

∏
j=i+1

a(j)

)
|b(i)|.

Hence for any case, (2.24) holds. Then by a similar argument, we may show that

z(n) ≥ −
[

ν max
n2−k≤l≤n2+ω−1

{|z(l)|}+
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|

]
, n2 < n ≤ n3,

and in general,

|z(n)| ≤ µC(t) +
n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
|b(i)|, nt < n ≤ nt+1.

where
C(t) = max

nt−k≤l≤nt+ω−1
{|z(l)|}, t = 1, 2, . . .

Then by an argument similar to that for Case 1, we may show the following.
If C(t) → 0 as t → ∞, then z(n) → 0 as n → ∞; If C(t) 6→ 0 as t → ∞, then there is a

subsequence {C(ts)} of {C(t)} such that

C(ts) ≥ η, s = 1, 2, . . .

where η is a positive constant. A positive number δ such that

ν + δ < 1

and a subsequence {ntsr
} of {nts} such that for each r = 1, 2, . . . ,

ntsr+1
− ntsr

≥ 1 + 2k

could be chosen such that

n

∑
i=0

(
n

∏
j=i+1

a(i)

)
|b(i)| < ηδr, n ≥ ntsr

− 1

and
|z(n)| ≤ (µ + δ)rC(ts1), n > nts1

, r = 1, 2, . . .

Clearly, the above inequalities imply that z(n)→ 0 as n→ ∞. The proof is complete.
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When g(n, x) = p(n)h(x), where {p(n)} is a nonnegative periodic sequence with period
ω and h is a nonnegative continuous function, Eq. (1.1) becomes

x(n + 1) = f (n, x(n)) + p(n)h(x(n− k)) + b(n), n = 0, 1, . . . (2.27)

and the following result is a direct consequence of Theorem 2.5.

Corollary 2.6. Consider Eq. (2.27) and assume that f (n, x) is nondecreasing in x. Assume also that
{a(n)} is a nonnegative periodic sequence with period ω and {b(n)} is a real sequence such that
{a(n)} and {b(n)} satisfy (2.1), f (n, x) ≤ a(n)x and that f (n, x) − a(n)x is nonincreasing in x.
Suppose that h is nonincreasing and L-Lipschitz and that there is a positive constant B such that

n+ω−1

∑
i=n

(
n+ω−1

∏
j=i+1

a(j)

)
[ f (i, B)− a(i)B + p(i)h(B)] ≥ 0, n = 0, 1, . . . , ω− 1 (2.28)

and
1

1−
ω−1
∏
j=0

a(j)

n+ω−1

∑
i=n

(
n+ω−1

∏
j=i+1

a(j)

)
p(i)h(0) ≤ B, n = 0, 1, . . . , ω− 1. (2.29)

Suppose also that either

a(n) ≤ 1 and L
n+k

∑
i=n

(
n+k

∏
j=i+1

a(j)

)
p(i) < 1, n = 0, 1, . . . , ω− 1

or

L
n+k+ω−1

∑
i=n

(
n+k+ω−1

∏
j=i+1

a(j)

)
p(i) < 1, n = 0, 1, . . . , ω− 1.

Then every solution {x(n)} of Eq. (2.27) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is the unique periodic solution with period ω of the equation

y(n + 1) = f (n, y(n)) + p(n)h(y(n− k)), n = 0, 1, . . .

When f (n, x) = a(n)x(n), Eq. (2.27) becomes

x(n + 1) = a(n)x(n) + p(n)h(x(n− k)) + b(n), n = 0, 1, . . . (2.30)

(2.28) is satisfied for any B > 0 and (2.29) holds for B large enough. Thus the following result
is a direct consequence of Corollary 2.6.

Corollary 2.7. Consider Eq. (2.30) and assume that {a(n)} is a nonnegative periodic sequence with
period ω and {b(n)} is a real sequence such that {a(n)} and {b(n)} satisfy (2.1). Suppose also that
h(x) is nonincreasing and L-Lipschitz, and that either

a(n) ≤ 1 and L
n+k

∑
i=n

(
n+k

∏
j=i+1

a(j)

)
p(i) < 1, n = 0, 1, . . . , ω− 1 (2.31)
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or

L
n+k+ω−1

∑
i=n

(
n+k+ω−1

∏
j=i+1

a(j)

)
p(i) < 1, n = 0, 1, . . . , ω− 1. (2.32)

Then every solutions {x(n)} of Eq. (2.30) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is the unique periodic solution with period ω of the equation

y(n + 1) = a(n)y(n) + p(n)h(y(n− k)), n = 0, 1, . . .

In particular, when h(x) ≡ 1, Eq. (2.27) reduces to the first order linear equation

x(n + 1) = a(n)x(n) + p(n) + b(n), n = 0, 1, . . . (2.33)

Since we may choose L = 0, (2.31) and (2.32) hold. Hence, from Corollary 2.7, we have the
following result immediately.

Corollary 2.8. Consider Eq. (2.33) and assume that {a(n)} is a nonnegative periodic sequence with
period ω and {b(n)} is a real sequence such that {a(n)} and {b(n)} satisfy (2.1). Then every solution
{x(n)} of Eq. (2.33) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is the unique periodic solution with period ω of the equation

y(n + 1) = a(n)y(n) + p(n), n = 0, 1, . . . (2.34)

Remark 2.9. When a(n) ≡ a and p(n) ≡ p are nonnegative constants, Eqs. (2.33) and (2.34)
become

x(n + 1) = ax(n) + p + b(n), n = 0, 1, . . . (2.35)

and
y(n + 1) = ay(n) + p, n = 0, 1, . . . (2.36)

respectively. The nonnegative periodic solution {ỹ(n)} of Eq. (2.36) becomes the nonnegative
equilibrium point ȳ = p

1−a . Then by Corollary 2.8, when a < 1, every nonnegative solution
{x(n)} of Eq. (2.35) converges to ȳ as n→ ∞. In fact, in this case, the solution of Eq. (2.35) is

x(n) = anx(0) + p
1− an

1− a
+

n−1

∑
i=0

(
n−1

∏
j=i+1

a(j)

)
b(i), n = 1, 2, . . .

By noting (2.1) and Lemma 2.1, we know that ∑n
i=0

(
∏n

j=i+1 a(j)
)

b(i)→ 0 as n→ ∞ and so

x(n)→ p
1− a

as n→ ∞.

Remark 2.10. Clearly, Corollary 2.8 implies that for the equation

x(n + 1) = a(n)x(n) + q(n), n = 0, 1, . . .

where {a(n)} is nonnegative and periodic with period ω, and {q(n)} is nonnegative and
quasi-periodic with period ω, if ∑ω−1

i=0 a(j) < 1, then every nonnegative solution of the equa-
tion is quasi-periodic with period ω.
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3 Applications

In this section, we apply our results obtained in Section 2 to some equations derived from
mathematical biology. In applications, there are often external factors – known or unknown
– that affect the mathematical model. Two such factors that have been studied in related
models are migration and subsets of populations which become isolated and unchanged by
density-dependent effects, see [11, 27] and references cited therein.

Consider the difference equations

x(n + 1) =
a(n)x2(n)

x(n) + δ(n)
+

ν(n)ρ(n)σ(n)
1 + eβ(n)x(n−k)−α(n)

+ b(n), n = 0, 1, . . . , (3.1)

x(n + 1) = a(n)x(n) + β(n)e−σ(n)x(n−k) + b(n), n = 0, 1, . . . (3.2)

and

x(n + 1) = a(n)x(n) +
β(n)

1 + xγ(n− k)
+ b(n), n = 0, 1, . . . (3.3)

where {a(n)}, {α(n)}, {β(n)}, {ν(n)}, {δ(n)}, {ρ(n)}, {σ(n)} are nonnegative periodic se-
quences with period ω, {b(n)} is a real sequence, γ is a positive constant and k is a nonnega-
tive integer. When a(n) ≡ a, α(n) ≡ α, β(n) ≡ β, ν(n) ≡ ν, δ(n) ≡ δ, ρ(n) ≡ ρ and σ(n) ≡ σ

are nonnegative constants and b(n) ≡ 0, Eqs. (3.1), (3.2) and (3.3) reduce to

x(n + 1) =
ax2(n)

x(n) + δ
+

νρσ

1 + eβx(n−k)−α
, n = 0, 1, . . . , (3.4)

x(n + 1) = ax(n) + βe−σx(n−k), n = 0, 1, . . . (3.5)

and
x(n + 1) = ax(n) +

β

1 + xγ(n− k)
, n = 0, 1, . . . (3.6)

respectively. Eq. (3.4) is derived from a model of the energy cost for new leaf growth in citrus
crops, see [30]. When b(n) 6≡ 0, {b(n)}may represent defoliation that does not occur naturally
or is not considered natural defoliation by the model parameters. A similar equation is given
for the litter mass in perennial grasses, and the results that follow will apply directly to this
model, see [28]. Eq. (3.5) is a discrete version of a model of the survival of red blood cells in
an animal [29], and Eq. (3.6) is a discrete analog of a model that has been used to study blood
cell production [10]. The global attractivity of positive solutions of Eqs. (3.5), (3.6) and some
extensions of them has been studied by numerous authors, see for example [4–7,9,12,14] and
references cited therein. When b(n) 6≡ 0, {b(n)} may represent the medical replacement of
blood cells or administration of antibodies, see [2, 8] and references cited therein.

Suppose {b(n)} is quasi-periodic, that is, there exist real sequences {q(n)} and {r(n)}
such that {q(n)} is periodic with period ω, {r(n)} is such that r(n) → 0 as n → ∞, and
b(n) = q(n) + r(n). Then Eqs. (3.1), (3.2) and (3.3) become

x(n + 1) =
a(n)x2(n)

x(n) + δ(n)
+

γ(n)ρ(n)σ(n)
1 + eβ(n)x(n−k)−α(n)

+ q(n) + r(n), n = 0, 1, . . . , (3.7)

x(n + 1) = a(n)x(n) + β(n)e−σ(n)x(n−k) + q(n) + r(n), n = 0, 1, . . . (3.8)

and

x(n + 1) = a(n)x(n) +
β(n)

1 + xγ(n− k)
+ q(n) + r(n), n = 0, 1, . . . (3.9)
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respectively.
First, consider Eq. (3.7). It is of the form of Eq. (1.1) with

f (n, x) =
a(n)x2

x + δ(n)
and g(n, x) =

ν(n)ρ(n)σ(n)
1 + eβ(n)x−α(n)

+ q(n).

As
d f
dx

=
a(n)x(x + 2δ(n))

(x + δ(n))2 , x ≥ 0,

we see that f (n, x) is nondecreasing in x. We next note that

f (n, x)− a(n)x =
−a(n)δ(n)x

x + δ(n)
, x ≥ 0

and
d

dx
( f (n, x)− a(n)x) =

−a(n)δ2(n)
(x + δ(n))2 , x ≥ 0,

thus f (n, x) ≤ a(n)x and f (n, x)− a(n)x is nonincreasing in x. As

dg
dx

= −β(n)ν(n)ρ(n)σ(n)
eβ(n)x−α(n)

(1 + eβ(n)x−α(n))2
, x ≥ 0

and
d2g
dx2 = −β2(n)ν(n)ρ(n)σ(n)

eβ(n)x−α(n)(1− eβ(n)x−α(n))

(1 + eβ(n)x−α(n))3
, x ≥ 0,

we see that g(n, x) is nonincreasing in x, and for each n,
∣∣ dg(n,x)

dx

∣∣ achieves a maximum when

x = α(n)
β(n) , and ∣∣∣∣dg(n, x)

dx

∣∣∣∣
x= α(n)

β(n)

=
β(n)ν(n)ρ(n)σ(n)

4
.

Thus g(n, x) is L-Lipschitz with L(n) = β(n)ν(n)ρ(n)σ(n)
4 . Hence, we have the following conclu-

sion from Theorem 2.5.

Corollary 3.1. Assume that

â =
ω−1

∏
j=0

a(j) < 1.

Suppose there exists a positive constant B such that

n+k+ω−1

∑
i=n

(
n+k+ω−1

∏
j=i+1

a(j)

)[
q(i) +

ν(i)ρ(i)σ(i)
1 + eB·β(i)−α(i)

− B2a(i)δ(i)
B + δ(i)

]
≥ 0, n = 0, 1, . . . , ω− 1

and

1
1− â

n+k+ω−1

∑
i=n

(
n+k+ω−1

∏
j=i+1

a(j)

)(
ν(i)ρ(i)σ(i)

1 + e−α(i)
+ q(i)

)
≤ B, n = 0, 1, . . . , ω− 1.

Suppose also that either

a(n) ≤ 1 and
n+k

∑
i=n

(
n+k

∏
j=i+1

a(j)

)
β(i)ν(i)ρ(i)σ(i) < 4, n = 0, 1, . . . , ω− 1
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or
n+k+ω−1

∑
i=n

(
n+k+ω−1

∏
j=i+1

a(j)

)
β(i)ν(i)ρ(i)σ(i) < 4, n = 0, 1, . . . , ω− 1.

Then every solution {x(n)} of Eq. (3.7) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is the unique periodic solution with period ω of the following equation

y(n + 1) =
a(n)y2(n)

y(n) + δ(n)
+

γ(n)ρ(n)σ(n)
1 + eβ(n)y(n−k)−α(n)

+ q(n), n = 0, 1, . . .

Next consider Eq. (3.8). It is in the form of Eq. (1.1) with

f (n, x) = a(n)x and g(n, x) = β(n)e−σ(n)x + q(n).

(1.3) is satisfied for any B > 0 and (1.4) holds for B large enough. Observing

dg
dx

= −β(n)σ(n)e−σ(n)x, x ≥ 0,

we see that g(n, x) is nonincreasing in x and∣∣∣∣dg
dx

∣∣∣∣ ≤ β(n)σ(n) for x ≥ 0,

which implies that for each n, g(n, x) is L-Lipschitz with L(n) = β(n)σ(n). Hence, we have
the following conclusion from Theorem 2.5.

Corollary 3.2. Assume that
ω−1

∏
j=0

a(j) < 1

and that either

a(n) ≤ 1 and
n+k

∑
i=n

(
n+k

∏
j=i+1

a(j)

)
β(i)σ(i) < 1, n = 0, 1, . . . , ω− 1

or
n+k+ω−1

∑
i=n

(
n+k+ω−1

∏
j=i+1

a(j)

)
β(i)σ(i) < 1, n = 0, 1, . . . , ω− 1.

Then every solution {x(n)} of Eq. (3.8) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is the unique periodic solution with period ω of the following equation

y(n + 1) = a(n)y(n) + β(n)e−σ(n)y(n−k) + q(n), n = 0, 1, . . .
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Finally, consider Eq. (3.9). It is in the form of (1.1) with

f (n, x) = a(n)x and g(n, x) =
β(n)

1 + xγ
+ q(n).

gain, (1.3) is satisfied for any B > 0 and (1.4) hold for B large enough. Observing that

dg
dx

= −β(n)
γxγ−1

(1 + xγ)2 and
d2g
dx2 = β(n)

γxγ−2((γ + 1)xγ − (γ− 1))
(1 + γ)3

we see that for each n, when γ = 1,∣∣∣∣dg
dx

∣∣∣∣ ≤ ∣∣∣∣dg
dx

∣∣∣∣
x=0

= β(n) for x ≥ 0

and when γ > 1,
∣∣ dg

dx

∣∣ attains its maximum at x∗ =
(γ−1

γ+1

)1/γ and∣∣∣∣dg
dx

∣∣∣∣
x=x∗

=
(γ− 1)

γ−1
γ (γ + 1)

γ+1
γ

4γ
β(n), n = 0, 1, . . . , ω− 1.

Hence, g(n, x) is L-Lipschitz with

L(n) =

β(n), γ = 1,

(γ−1)
γ−1

γ (γ+1)
γ+1

γ

4γ β(n), γ > 1.

It follows from Theorem 2.5 that the following conclusion holds.

Corollary 3.3. Assume that
ω−1

∏
j=0

a(j) < 1.

Suppose also that when γ = 1, either

a(n) ≤ 1 and
n+k

∑
i=n

(
n+k

∏
j=i+1

a(j)

)
β(i) < 1, n = 0, 1, . . . , ω− 1

or
n+k+ω−1

∑
i=n

(
n+k+ω−1

∏
j=i+1

a(j)

)
β(i) < 1, n = 0, 1, . . . , ω− 1;

when γ > 1, either

a(n) ≤ 1 and
n+k

∑
i=n

(
n+k

∏
j=i+1

a(j)

)
β(i) <

4γ

(γ− 1)
γ−1

γ (γ + 1)
γ+1

γ

, n = 0, 1, . . . , ω− 1

or
n+k+ω−1

∑
i=n

(
n+k+ω−1

∏
j=i+1

a(j)

)
β(i) <

4γ

(γ− 1)
γ−1

γ (γ + 1)
γ+1

γ

, n = 0, 1, . . . , ω− 1.

Then every solution {x(n)} of Eq. (3.9) satisfies

lim
n→∞

(x(n)− ỹ(n)) = 0

where {ỹ(n)} is the unique periodic solution of with period ω of the following equation

y(n + 1) = a(n)y(n) +
β(n)

1 + yγ(n− k)
+ q(n), n = 0, 1, . . .
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