
Schedae Informaticae Vol. 27 (2018): 31–45
doi: 10.4467/20838476SI.18.003.10408

Gradient Regularization Improves Accuracy of Discriminative
Models

Dániel Varga1, Adrián Csiszárik1,2, Zsolt Zombori1,2
1: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

2: ELTE, Institute of Mathematics, Department of Computer Science
Budapest, Hungary

{daniel,csadrian,zombori}@renyi.hu

Abstract. Regularizing the gradient norm of the output of a neural network is
a powerful technique, rediscovered several times. This paper presents evidence
that gradient regularization can consistently improve classification accuracy on
vision tasks, using modern deep neural networks, especially when the amount of
training data is small. We introduce our regularizers as members of a broader
class of Jacobian-based regularizers. We demonstrate empirically on real and
synthetic data that the learning process leads to gradients controlled beyond
the training points, and results in solutions that generalize well.

Keywords: neural network, generalization, gradient regularization, spectral
norm, Frobenius norm

1. Introduction and Related Work

Regularizing the gradient norm of a neural network’s output with respect to its inputs
goes back to Double Backpropagation [2], with variants independently rediscovered
several times [16, 11, 1, 4], most recently by the authors of this paper. Outside the
domain of neural networks, Sobolev regularization [13] is essentially the same concept,
a special case of the very general, classic method of approximating functions in Sobolev
space [5]. Smoothing splines [19] are another important special case.

Most recent applications [3, 16, 11, 15] focus on robustness against adversarial
sampling [18]. Here we argue that gradient regularization can be used for the more
fundamental task of increasing classification accuracy, especially when the available

32

training set is small. Our work explores a broad class of of Jacobian-based regularizers,
providing a unified framework for various gradient regularization approaches. After
introducing the general framework, we focus on the two most promising variants:
1) classic Double Backpropagation [2], and 2) SpectReg which is our contribution.

Our experiments control gradients at labeled training points, but we note that
SpectReg makes no use of labels and can be applied in a semi-supervised setting.

2. Analysis

We consider feed-forward classifier networks with a loss function L(x, y,Θ) =M(f(x,Θ), y) =
M(softmax(g(x,Θ)), y), with input x, one-hot encoded desired output y, neural net-
work f with a top softmax layer, network parameters Θ and categorical cross entropy
function M . The inputs and outputs of the softmax layer are called logits and prob-
abilities, respectively. The central object of our investigation is the Jacobian of the
logits Jg(x) =

∂
∂xg(x) with respect to the inputs.

2.1. Gradient Regularizaton Schemes

Gradient regularization penalizes large changes in the output of some neural network
layer, to enforce a smoothness prior. We get different variants depending on where
the gradients are computed (logits, probabilities, loss term), with respect to what
(inputs, hidden activations), what loss function is used to create a scalar loss. Some
of these variants require the computation of a full Jacobian matrix, which can be
made more efficient by the application of some projection, introducing new variants.
Here we present the most promising variants:

• Double Backpropagation (DoubleBack) [2, 11] Penalize the squared L2
norm of the gradient of the original loss term with respect to the inputs.

LDG(x, y,Θ) = L(x, y,Θ) + λ∥(∂

∂x
L(x, y,Θ))∥22

Although not obvious from its definition, DoubleBack can be interpreted as
applying a particular projection to the Jacobian of the logits and regularizing
it. We prove this in Subsection 2.3..

• Jacobian Regularizer (JacReg) [16] Penalize the squared Frobenius norm
of the Jacobian of the softmax output (probabilities) with respect to the input.

LJacReg(x, y,Θ) = L(x, y,Θ) + λ∥Jf∥2F
Symbolically computing the Jacobian is expensive as computation scales linearly
with the number of output labels. To alleviate this, a layer-wise approximation
is employed in [3] and [16].

33

• Frobenius Regularizer (FrobReg) (Our contribution, also introduced by
[8].) Penalize the squared Frobenius norm of the Jacobian of the logits with
respect to the input.

LFrobReg(x, y,Θ) = L(x, y,Θ) + λ∥Jg∥2F

FrobReg only differs from JacReg in that the Jacobian is computed on the
logits instead of the probabilities. Computation is equally expensive, however,
diminishing gradients due to the softmax transformation are less of a concern.

• Spectral Regularization (SpectReg) (Our contribution.) Apply a random
projection to the Jacobian of the logits, and penalize its squared L2 norm:

LSpectReg(x, y,Θ) = L(x, y,Θ) + λ∥Prnd(Jg)∥22

where Prnd(Jg) = JT
g r and r ∈ N (0, Im).

If the random projector of SpectReg is normalized onto the unit sphere (spherical
SpectReg), the norm of the projection is a lower bound to the (hard to compute)
spectral norm of the Jacobian, which motivates our naming. Furthermore, one
can easily show that spherical SpectReg is an unbiased estimator of the squared
Frobenius norm of the Jacobian, and so is SpectReg, up to constant scaling.
We have not observed any empirical differences between the spherical and the
unnormalized variants. The Frobenius norm is within a constant factor of the
spectral norm, so it can be interpreted as a proxy when our goal is to enforce a
Lipschitz property.

2.2. Starting from the linear case

It is instructive to first consider the toy edge case when the neural network consists
of a single dense linear layer. Here the weight matrix and the Jacobian coincide.
Thus, for this network, FrobReg is identical to L2 weight decay and SpectReg is an
estimator for weight decay. The Frobenius norm is submultiplicative, and the gradient
of the ReLU is upper bounded by 1. Thus, for a dense ReLU network the product of
layer-wise weight norms is an upper bound for the FrobReg loss term. Applying the
inequality of arithmetic and geometric means, we can see that the total weight norm
can be used to upper bound the FrobReg loss term. Penalizing the Frobenius norm
of the Jacobian seems to be closely connected to weight decay, however, the former is
more targeted to the data distribution. The Frobenius norm also serves as a proxy for
the spectral norm, as they are equivalent matrix norms. For multi-valued functions,
calculating, or even approximating the spectral norm is infeasible. Hence, Frobenius
norm regularization is a reasonable approach to enforce a Lipschitz-like property.

34

2.3. Choosing where the gradient is computed

Penalizing gradients computed at different vectors (logits, probabilities or loss) leads
to different regularizing effects, worth comparing theoretically.

1. logits vs. probabilities The Jacobian matrix of the softmax transformation is
Jsoftmax = (p1T)⊙ (I − p1T)T , where p is the probability vector and 1 denotes
the all-one vector. Consequently:

Jf = JsoftmaxJg =
[
(p1T)⊙ (I − p1T)T

]
Jg (1)

One can easily verify that as p tends to a one-hot vector, Jsoftmax tends to
the zero matrix. This results in a vanishing effect: once the network starts to
converge, JacReg disappears, while FrobReg and SpectReg does not.
JacReg does not punish big changes in the logits when they do not affect class
probabilities. This can lead to less robust predictions. Indeed, as our experi-
ments confirm, FrobReg and SpectReg consistently outperform JacReg.

2. probabilities vs. loss Since the Jacobian of cross-entropy is Jxent = −
[
y
p

]T
:

Jloss = JxentJf =

[
−y

p

]T
Jf (2)

Assuming that y is a one-hot vector, the gradient at the loss is obtained from the
Jacobian at the probabilities by selecting row t of Jf corresponding to the true
label and multiplying it with − 1

pt
. Most importantly, we no longer optimize the

full Jacobian Jf , only a single row.

3. logits vs. loss Composing the softmax and cross-entropy Jacobians, we obtain:

Jloss = JxentJsoftmaxJg =

[
−y

p

]T [
(p1T)⊙ (I − p1T)T

]
Jg (3)

Jloss =

[
− 1

pt

] [
(pt1

T)⊙ (yT − pT)
]
Jg (4)

Jloss = (p− y)TJg (5)

Equation 5 shows that calculating the gradient at the loss corresponds to ap-
plying a projection to the Jacobian of the logits, revealing a close connection
between DoubleBack and SpectReg. DoubleBack applies a projection in a par-
ticular direction, while SpectReg selects a uniformly random direction, hence
aims to control the gradients in all directions.
As our analysis shows, the gradient norms computed after the softmax layer
quickly vanish during training, which indicates that the weights of such regu-
larizers (JacReg, DoubleBack) require careful tuning. Indeed, our experiments
confirm this hypothesis. Regularization based on the logits (FrobReg, SpectReg)
is significantly more robust to the choice of hyperparameters.

35

2.4. Computationally efficient regularization of the Jacobian

Some of the variants presented in Subsection 2.1. compute gradients on a vector
(FrobReg, JacReg), while others first apply a projection (DoubleBack, SpectReg) and
hence we compute the gradient of a single scalar. Due to the linarity of the gradi-
ent, both scenarios can be interpreted as regularizing the Jacobian matrix. If our
regularizer is of the form ∥JT

g w∥2, then

∥ ∂

∂x
⟨g(x), w⟩∥ = ∥(∂

∂x
g(x))Tw∥

While in theory the projection should yield a negligible increase of computational
burden, current tensor libraries all employ backwards automatic differentiation, which
means that they do not reuse shared intermediate results when calculating the vector
gradients, i.e. the rows of the Jacobian. Consequently, FrobReg/JacReg is vastly
slower and vastly more memory-hungry than their peers that use projection, the
performance ratio scaling with the number of class labels.

The following Claim is an easy consequence of the linearity of expectation:

Claim 1. If R is a distribution of row vectors with covariance matrix Im, then
Er∼R[∥rJ∥22] = ∥J∥2F .

Consequently, spherical SpectReg is an unbiased estimator of the squared Frobe-
nius norm of the Jacobian and so is SpectReg, up to constant scaling.

2.5. Easy implementation

Calculating gradient regularization terms is made easy and fast by modern tensor
libraries. Figure 1 shows the full Tensorflow implementation of the two regularizers
that we focus on.

doubleback_loss = tf.reduce_sum(
tf.square(tf.gradients(loss, [input])[0]))

projector = tf.random.normal((BATCH_SIZE, OUTPUT_DIM))
proj = tf.reduce_sum(

logits * projector, axis=1)
spectreg_loss = tf.reduce_sum(

tf.square(tf.gradients(proj, [input])[0]))

Figure 1. TensorFlow implementations for the DoubleBack and SpectReg regulariz-
ers

36

3. Related Work

The idea to control gradient norms with respect to the inputs first appeared in [2]
who called it Double Backpropagation. However, due to slow hardware and a missing
technical apparatus for symbolic differentiation at that time, they only evaluated the
idea on networks with two hidden layers. The TangentProp variant was introduced in
[14] where the magnitude of change is controlled only in some input space directions,
corresponding to selected invariances. This, for example, can be used to promote
rotational invariance by using the direction of infinitesimal rotation in pixel space.

Jacobian Regularization

The Jacobian Regularizer introduced by [16] works by regularizing the Frobenius norm
of the Jacobian of the softmax output with respect to the input. For smaller networks
the authors symbolically compute the Jacobian. For larger networks they employ
a Frobenius norm based regularization for each layer individually, for performance
reasons. Such layer-wise regularization of the Frobenius norm was also employed in
[3].

Robustness to adversarial examples

The Double Backpropagation formula was rediscovered by [11] who named it Data-
Grad. However, the authors do not actually implement the formula, rather, a finite
difference approximation is used: after finding adversarial samples by gradient de-
scent, they penalize large changes in the loss function between the data point and its
adversarially perturbed version. This approximation improves robustness to adver-
sarial sampling. Recently, [15] use symbolically computed Double Backpropagation
to improve model interpretability as well as robustness against adversarial noise.

Sobolev training

A generalized form of the Double Backpropagation idea is when an oracle gives in-
formation about the gradients (or even the Hessian) of the target function, and we
incorporate this into a loss term. This is investigated in [1], focusing on distillation
and synthetic gradients, applications where such an oracle is available. In contrast to
this approach, we demonstrate the counter-intuitive fact that in the absence of such
an oracle, simply pushing gradient norms toward zero at the data points can already

37

have a beneficial regularization effect.

Spectral norm regularization

Concurrent with our work [20] enforce smoothness by penalizing an upper bound to
the spectral norm of the neural network at all points of the input space. The price
of this global effect is that the upper bound is potentially very far from the actual
spectral norm. Our approach, on the other hand, focuses on the data manifold and
provides input specific regularization effect.

Sensitivity and generalization

Very recently, [10] perform a large scale empirical study that shows correlation be-
tween sensitivity to input perturbations and generalization. They find that for net-
works that generalize well, the Frobenius norm of the Jacobian tends to have smaller
norm. Their findings strengthen the motivation for gradient regularizaton.

4. Experiments

We compare gradient regularization with various other methods in order to position
this technique on the landscape. Our results show that SpectReg and DoubleBack
consistently increase accuracy of baselines on a wide variety of classification tasks.

Our experiments use reduced training sets as we found that gradient regularization
is particularly useful in such scenarios. By small MNIST and small CIFAR-10/100
we refer to these datasets restricted to 200 randomly selected training points per
class. 1 We also run experiments on TinyImageNet-200 2, a standard reduced version
of the ImageNet dataset containing 500 training images per class. We also use a
synthetic dataset SIN generated from function f(x) = sin(5x), with 100 training
points sampled uniformly from [−1, 1] and added Gaussian noise (σ = 0.1). None
of our experiments employ data augmentation, to force the model to generalize from
limited data. Each dataset is trained on a baseline network that performs reasonably
well on the full set, without any attempt to reach the state of the art.

• For MNIST, we implement a standard modern incarnation of the classic LeNet-5
1 Note that our small datasets are not static: at the beginning of each experiment we randomly

select a new subset of the training corpus, hence our methods cannot overfit to the selected points.
2 https://tiny-imagenet.herokuapp.com

38

architecture [9], that has 61706 parameters and that achieves 99.1% test accu-
racy on the full (unaugmented) MNIST.

• For CIFAR-10/100, we use a residual network (ResNet) [6], consisting of three
levels (with 48, 96 and 192 filters). This network has 2.5 million parameters
and achieves 93.71% test accuracy on the full (augmented) CIFAR-10.

• For TinyImagenet-200, we use the ResNet-18 architecture that has been used
for the ImageNet training in [6] with appropriate modification for 200 labels.
The network has around 11.3 million parameters.

• For SIN, we use an MLP network with 5 dense layers of 64 neurons and ReLU
nonlinearity, followed by a single linear neuron.

An individual experiment consists of 10 runs of the same setup, each time with a
different randomly chosen training set. All reported numbers are the mean of these
runs evaluated on 10000 test points, accompanied with the standard deviation in
parentheses. Hyperparameters are tuned on 10000 validation points. The hyperpa-
rameters that are not explicitly discussed are all tuned for the baseline model and
kept constant for the regularized versions.

Weight decay and gradient regularization

Weight decay is probably still the most widespread regularization method. On small
MNIST, gradient regularization yields more accuracy gain than weight decay. For
small CIFAR-10/100, weight decay is more important than gradient regularization,
but the latter still brings significant benefit. In our exploratory experiments, DoubleBack
slightly outperformed other variants on MNIST, however, we could not tune it on CI-
FAR to rival SpectReg. Overall, we found SpectReg to be the most robust regularizer
and here we only present accuracy results for this variant, in Table 1.

Table 1. Gradient regularization alongside weight decay.

Without weight decay With weight decay
Dataset Baseline SpectReg Baseline SpectReg WD
small MNIST 97.25 (0.22) 97.69 (0.11) 97.40 (0.15) 97.73 (0.13) 0.0005
small CIFAR-10 48.27 (0.82) 50.41 (0.65) 55.63 (2.06) 59.24 (1.48) 0.003
small CIFAR-100 37.81 (0.33) 41.80 (0.70) 49.56 (2.96) 52.49 (0.65) 0.003

Table 2. Comparison of Dropout and Batchnorm versus DoubleBack and SpectReg.

Dataset NoGR SpectReg DoubleBack
Baseline small MNIST 96.99 (0.15) 97.59 (0.13) 97.56 (0.24)
Batchnorm small MNIST 96.89 (0.23) 96.94 (0.27) 96.89 (0.22)
Dropout small MNIST 97.29 (0.19) 97.65 (0.14) 97.98 (0.12)

39

Gradient Regularization Compared with Dropout and Batch Normalization

On small MNIST, we find that both DoubleBack and SpectReg outperform both
Dropout [17] and Batch Normalization [7], two well established techniques. We ob-
serve further accuracy gain when Dropout and DoubleBack/SpectReg is combined.
Table 2 summarizes our results. While in all other experiments the MNIST baseline
includes dropout, here the baseline is only regularized with weight decay.

Gradient Regularization versus Confidence Penalty

One recent regularization technique is Confidence Penalty (CP) [12]. It penalizes
the negentropy of the softmax output, and brings small but consistent accuracy im-
provements on many tasks. We find that gradient regularization performs better than
CP on small MNIST. They seem to perform orthogonal tasks and can be combined
to obtain further improvements. Table 3 shows our results. We also make these
comparisons on small CIFAR-10 and small CIFAR-100 in Table 4.

Table 3. Confidence Penalty versus SpectReg and DoubleBack on small MNIST.

Dataset Baseline SpectReg DoubleBack
No CP small MNIST 97.39 (0.11) 97.79 (0.12) 97.89 (0.12)
CP small MNIST 97.57 (0.15) 97.89 (0.12) 98.07 (0.09)

Table 4. Comparing SpectReg, DoubleBack and CP on small CIFAR-10/100.

Dataset Baseline SpectReg DoubleBack CP
small CIFAR-10 55.63 (2.06) 59.24 (1.48) 57.45 (1.79) 58.30 (1.79)
small CIFAR-100 49.56 (2.96) 52.49 (0.65) 48.72 (2.84) 51.04 (1.29)

The effect of training set size

Regularizers are more useful for smaller training sets, however, as we show in Figure 2
Left they maintain a significant benefit even for as much as 20000 training points on
MNIST. DoubleBack performs best for all sizes, followed by SpectReg.

40

Scaling with the number of labels

As Table 5 shows, gradient regularization works well even for the significantly more
complex TinyImageNet-200 dataset. Note that in our various experiments the number
of class labels range from 10 to 200, and the effect of gradient regularization does not
fade with increased label count. That is, SpectReg is beneficial regardless of whether
the number of matrix rows projected is 10 or 200.

Table 5. Results on the TinyImageNet-200 dataset.

Top-1 accuracy Top-5 accuracy
Dataset Baseline SpectReg Baseline SpectReg
TinyImageNet-200 44.62 (0.58) 50.76 (0.59) 70.20 (0.58) 75.93 (0.40)

Table 6. Comparing SpectReg, FrobReg and JacReg on small MNIST.

Dataset SpectReg JacReg FrobReg
small MNIST 97.79% (0.12) 97.63% (0.15) 97.76% (0.13)

1000.0 2000.0 3000.0 5000.0 10000.0 15000.0 20000.0
Train size

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Te
st

 a
cc

ur
ac

y

type
DoubleBack
SpectReg
JacReg
Confidence Penalty
Baseline (weight decay)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

f(x
) =

 si
n(

5x
)

The effect of SpectReg on function approximation
0.0
0.001
0.01
0.1
1.0
10.0
100.0
train

Figure 2. Left: Comparison of various regularization methods on Small MNIST
using different training set sizes. DoubleBack performs best for all sizes. Right:
Increasing the weight of the SpectReg regularizer on a small synthetic dataset. Al-
though the gradient is controlled only in 100 training points, the whole manifold
becomes smoother.

SpectReg vs. DoubleBack

Table 7 compares SpectReg and DoubleBack. While DoubleBack is consistently bet-
ter on MNIST, it greatly degrades on the more complex CIFAR data. On CIFAR-

41

100, DoubleBack even reduces generalization. We hypothesize that this is because
DoubleBack is applied after the softmax layer and the quick vanishing effect makes it
very hard to properly tune the model. 3 In comparison, SpectReg requires minimal
tuning and even a "wrong" weight yields close to optimal performance. Also note
the large standard deviation of the DoubleBack results on CIFAR. This is possibly
due to the fact that regularization is only applied to one particular projection of the
Jacobian and random perturbations (like selecting a different subset of the data) can
have larger effect. The robustness of SpectReg is what we believe makes it a better
candidate in applications.

Table 7. Comparing SpectReg and DoubleBack.

Dataset Baseline SpectReg DoubleBack
small MNIST 97.39 (0.11) 97.79 (0.12) 97.89 (0.12)
small CIFAR-10 55.63 (2.06) 59.24 (1.48) 57.45 (1.79)
small CIFAR-100 49.56 (2.96) 52.49 (0.65) 48.72 (2.84)

Approximating the Frobenius norm of the Jacobian does not decrease accuracy

We compare SpectReg, JacReg and FrobReg. We can see from Table 6 (and especially
from Figure 2 Left) that it is more beneficial to control the Jacobian on the logits
(SpectReg, FrobReg), rather than on the probabilities (JacReg). We also conclude
that minimizing a random projection of the Jacobian (SpectReg) does not lead to a
loss in accuracy, compared with the full calculation of the Jacobian (FrobReg). We
know that the SpectReg loss term is an unbiased estimator (up to a constant factor)
of the FrobReg loss term, and these experiments indicate that the approximation of
the expectation (FrobReg) with a single sample (single random projection applied by
SpectReg) is sufficient.

Gradient Regularization’s effect on the magnitude of network parameters

Figure 3 shows the effect of DoubleBack weight λ on accuracy, and on the squared L2
weight norm. There is a positive correlation between λ and accuracy until a phase
transition point where accuracy collapses. For small MNIST, this phase transition
point is around DoubleBack λ = 20, regardless of the amount of weight decay.

Without weight decay, DoubleBack acts as a kind of weight decay itself, inasmuch
as increasing the DoubleBack weight decreases the weight loss of the trained network.
For models with weight decay, the relationship is more complex: below the phase tran-
sition, DoubleBack counteracts weight decay, above the phase transition it reinforces
its effect.

3 Indeed, even on MNIST, we found DoubleBack to be extremely sensitive to its weight.

42

The fact that DoubleBack affects a global attribute of the network such as total
weight loss supports the hypothesis that its effect is global, not limited to the immedi-
ate neighborhood of the training points where the gradient norm is regularized. In the
next subsection we give a clear demonstration of this phenomenon on our synthetic
task.

10 3 10 1 101 103

DataGrad

0
50

100
150
200

W
ei

gh
t l

os
s wd = 0.0

Weight loss Test accuracy

10 3 10 1 101 103

DataGrad

wd = 0.0001

10 3 10 1 101 103

DataGrad

wd = 0.0005

10 3 10 1 101 103

DataGrad

wd = 0.001

10 3 10 1 101 103

DataGrad

wd = 0.005

10 3 10 1 101 103

DataGrad

wd = 0.01

0.96
0.97
0.98

Ac
cu

ra
cy

Figure 3. Black: weight loss, primary y-axis. Blue: accuracy, secondary y-axis.
Each chart uses different weight decay. Increasing λ increases accuracy, until a phase
transition where accuracy collapses. Below this transition point, the weight loss of
the trained network increases with λ, except for the case of zero weight decay, where
DoubleBack takes the role of weight decay.

Local gradient control does not lead to pathological gradient landscape

A reasonable objection to gradient regularization is that it controls the gradients only
in the training points. A highly overparametrized network is capable of representing
a "step function" that is extremely flat around the training points and contains un-
wanted sudden jumps elsewhere. Such a solution results in low gradient loss with high
actual gradient norms in some points. However, all our experiments indicate that the
learning process of neural networks struggles to find such pathological solutions and
instead smoothens the function on its whole domain. We emphasize that in all of
our experiments except for TinyImagenet, the datasets are so small that the models
are inevitably overfitting, yielding close to 100% train accuracy. In such setting, it is
remarkable that gradient control does not overfit.

Figure 2 Right demonstrates this phenomenon on the SIN dataset. Our network is
highly overparametrized network that has the capacity to simultaneously achieve zero
reconstruction loss and zero SpectReg loss on the training data. However, training
converges to a smooth function instead.

While too strong regularization degrades the approximation, a well tuned SpectReg
yields much better fit to our target function. Table 8 shows the mean squared error on
the test set for various values of SpectReg λ. SpectReg can reduce the mean squared
error of the baseline model by a factor of 10.

43

Table 8. Mean squared error (MSE) on SIN for various SpectReg weights. The
optimal weight is 0.03 which yields a reduction in MSE by a factor of 10.

SpectReg λ 0 0.001 0.003 0.01 0.03 0.1 0.3 1 3
MSE (1e-5) 16.6 24.5 2.5 2.3 1.6 3.4 74.9 497.7 1264.4

5. Conclusion

Our paper presents evidence that gradient regularization can increase classification
accuracy, especially for smaller training set sizes. We introduce Spectral Regularization
and after comparing it to other gradient regularization schemes, we find that it is the
most promising variant. Despite the fact that gradient control is applied only at
the training points, we find that stochastic gradient descent converges to a solution
where gradients are globally controlled. Even for very small training set sizes, the
regularized models become smoother on the whole data manifold.

Below we list some of what we see as promising further research on gradient
regularization:

• We considered gradients calculated with respect to inputs. In the future, we
plan to investigate gradients calculated with respect to hidden activations.

• Our understanding of the counterintuitive interaction between gradient regular-
ization and stochastic gradient descent is still limited. A full-blown theory may
yet be out of sight, but it is reasonable to expect that well-chosen experiments
on synthetic benchmarks will lead to important new insights.

Acknowledgement

The project was supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002). Furthermore, it was supported by
the Hungarian National Excellence Grant 2018-1.2.1-NKP-00008, the HU-MATHS-IN
project (EFOP 3.6.2-16.), as well as the ERC grant agreement 617747 (FP7/2007-
2013).

44

References

[1] Wojciech M. Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and
Razvan Pascanu. Sobolev training for neural networks. In NIPS, pages 4281–
4290, 2017.

[2] H. Drucker and Y LeCun. Double backpropagation: Increasing generalization
performance. In Proceedings of the International Joint Conference on Neural
Networks, volume 2, pages 145–150, Seattle, WA, July 1991. IEEE Press.

[3] Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust
to adversarial examples. CoRR, abs/1412.5068, 2014.

[4] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron
Courville. Improved training of wasserstein gans. In Advances in Neural Infor-
mation Processing Systems 30 (NIPS 2017). Curran Associates, Inc., December
2017. arxiv: 1704.00028.

[5] László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A Distribution-
Free Theory of Nonparametric Regression. Springer series in statistics. Springer,
2002.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.

[7] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Francis R. Bach and
David M. Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of
JMLR Workshop and Conference Proceedings, pages 448–456. JMLR.org, 2015.

[8] Daniel Jakubovitz and Raja Giryes. Improving DNN robustness to adversarial
attacks using jacobian regularization. CoRR, abs/1803.08680, 2018.

[9] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[10] Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Sensitivity and generalization in neural networks: an
empirical study. In International Conference on Learning Representations, 2018.

[11] Alexander G. Ororbia II, Daniel Kifer, and C. Lee Giles. Unifying adversar-
ial training algorithms with data gradient regularization. Neural Computation,
29(4):867–887, 2017.

[12] Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey E.
Hinton. Regularizing neural networks by penalizing confident output distribu-
tions. CoRR, abs/1701.06548, 2017.

45

[13] Lorenzo Rosasco, Silvia Villa, Sofia Mosci, Matteo Santoro, and Alessandro Verri.
Nonparametric sparsity and regularization. Journal of Machine Learning Re-
search, 14(1):1665–1714, 2013.

[14] Patrice Y. Simard, Bernard Victorri, Yann LeCun, and John S. Denker. Tangent
prop - A formalism for specifying selected invariances in an adaptive network. In
NIPS, pages 895–903. Morgan Kaufmann, 1991.

[15] A. Slavin Ross and F. Doshi-Velez. Improving the Adversarial Robustness and
Interpretability of Deep Neural Networks by Regularizing their Input Gradients.
ArXiv e-prints, November 2017.

[16] Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel R. D. Rodrigues. Robust
large margin deep neural networks. IEEE Trans. Signal Processing, 65(16):4265–
4280, 2017.

[17] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

[18] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
CoRR, abs/1312.6199, 2013.

[19] G. Wahba. Spline Models for Observational Data. Society for Industrial and
Applied Mathematics, Philadelphia, 1990.

[20] Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving
the generalizability of deep learning. CoRR, abs/1705.10941, 2017.

	Introduction and Related Work
	Analysis
	Gradient Regularizaton Schemes
	Starting from the linear case
	Choosing where the gradient is computed
	Computationally efficient regularization of the Jacobian
	Easy implementation

	Related Work
	Experiments
	Conclusion

