1	Ltd.Evaluation of various cheese whey treatment scenarios in single-chamber
2	microbial electrolysis cells for improved biohydrogen production
3	
4	Isaac Rivera ¹ , Péter Bakonyi ² , Manuel Alejandro Cuautle-Marín ¹ , Germán Buitrón ^{1,*}
5	
6	¹ Laboratory for Research on Advanced Processes for Water Treatment, Instituto de
7	Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de
8	México, Blvd. Juriquilla 3001, Querétaro 76230, México
9	
10	² Research Institute on Bioengineering, Membrane Technology and Energetics,
11	University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
12	
12	* Corresponding Author: Cormán Puitrón
13	Corresponding Author. German Button
14	Tel: +52 442 192 6165
15	Fax: +52 442 192 6185
16	E-mail: gbuitronm@ii.unam.mx

- 17 Abstract
- 18

In this study single-chamber microbial electrolysis cells (MECs) were applied to 19 20 treat cheese whey (CW), an industrial by-product, and recover H₂ gas. Firstly, this substrate was fed directly to the MEC to get the initial feedback about its H₂ generation potential. 21 The results indicated that the direct application of CW requires an adequate pH control to 22 23 realize bioelectrohydrogenesis and avoid operational failure due to the loss of bioanode 24 activity. In the second part of the study, the effluents of anaerobic (methanogenic) digester and hydrogenogenic (dark fermentative H₂-producing) reactor utilizing the CW were tested 25 in the MEC process (representing the concept of a two-stage technology). It turned out that 26 27 the residue of the methanogenic reactor – with its relatively lower carbohydrate- and higher 28 volatile fatty acid contents – was more suitable to produce hydrogen bioelectrochemically. 29 The MEC operated with the dark fermentation effluent, containing a high portion of 30 carbohydrates and low amount of organic acids, produced significant amount of undesired methane simultaneously with H₂. Overall, the best MEC behavior was attained using the 31 32 effluent of the methanogenic reactor and therefore, considering a two-stage system, methanogenesis is an advisable pretreatment step for the acidic CW to enhance the H₂ 33 34 formation in complementary microbial electrohydrogenesis.

35

36 Keywords: microbial electrohydrogenesis; microbial electrolysis cell; cheese whey;
37 methane; hydrogen, two-stage system

The production of hydrogen via biological methods has undergone a 40 significant development in the recent decades. As a result, the contemporary 41 approaches emphasize the utilization of various by-products for simultaneous waste 42 treatment and bioenergy recuperation, providing maximal environmental benefits 43 (Kumar et al., 2015). Among the anaerobic bioprocesses, dark fermentation is 44 currently the most mature one to transform organic materials to sustainable energy 45 carrier, biohydrogen (Bakonyi et al., 2014a). Though this technology is attractive 46 from many aspects e.g. high production rates, flexibility of the microbial 47 communities to a wider range of complex feedstock, general robustness and ability 48 to work under non-sterile conditions, no need for sophisticated and costly bioreactor 49 design, the achievable H₂ yields due to the formation of metabolic side-products – in 50 particular volatile fatty acids, solvents e.g. ethanol - are quite limited 51 (Sivagurunathan et al., 2016). The effluent of dark fermentation (hydrogenogenic 52 reactor) is therefore rich in chemical energy, which should be utilized to maximize 53 the energy extracted from the substrates. This requires multi-stage processes, where 54 after the main technological step, complementary systems are installed to convert 55 the volatile fatty acids (VFAs) and other soluble metabolic products to various forms 56 of bioenergy e.g. CH₄ by anaerobic digestion (methanogenesis reactor), 57 bioelectricity in microbial fuel cells (MFCs), H₂ using microbial electrohydrogenesis 58 cells (MECs), etc. (Kumar et al., 2016). 59

60	MECs are devices with full of perspectives (Zhen et al., 2015, 2016a) and
61	have been proven to efficiently handle problematic feedstock i.e. wastewaters
62	(Cusick et al., 2010; Zhou et al., 2013), anaerobic sludge (Liu et al., 2012; Lu et al.,
63	2012) and fermentation effluents (Lalaurette et al., 2009; Lu et al., 2009; Rivera el
64	al., 2015; Wang et al., 2011). Bioelectrochemical systems, such as MECs are
65	powered by bacteria called exoelectrogens, which are capable of transferring
66	electrons (liberated from substrate oxidation) to external terminal electron acceptors
67	such as the anode under adequate anaerobic conditions (Kumar et al., 2017; Rago et
68	al., 2015). Basically, the exoelectrogens in MECs are able to acclimate to various
69	environmental conditions, among which the composition of the feed seems to have a
70	notable impact (Kadier et al., 2014; Pant et al., 2010; Sleutels et al., 2011). In fact,
71	raw materials having different characteristics can induce dynamic changes in the
72	anodic surface biofilm, hosting the communities of exoelectrogens and other sort of
73	microorganisms living by alternative metabolism i.e. fermentation and
74	methanogenesis. This association of diverse populations can be syntrophic (Gao et
75	al., 2014; Kiely et al., 2011; Lovley, 2006) but in many cases, a strong competition
76	for the substrates occurs that lowers the attractiveness of the bioelectrochemical
77	system (Koók et al., 2016; Ruiz et al., 2013). Hence, the origin and properties of the
78	substrates may eventually lead to distinct operational responses of the MECs.

In this study, we compared the performances of single-chamber microbial electrolysis cells (i) first directly fed with raw cheese whey and then (ii) with the effluents of methanogenic- and dark fermentative bioreactors treating this particular residue of the dairy industry, which sector can reportedly provide good sources of substrates for bioelectrochemical systems (Elakkiya and Matheswaran, 2013; Mardanpour et al., 2012; Moreno et al., 2015; Rago et al., 2017). The primary objective of the work was to determine the adequate strategy leading to better H₂ production in MEC and hence, the significance of the results is that it can guide how the acidic cheese whey should be treated to accomplish its improved energetic valorization using bioelectrohydrogenesis.

89

90 2. Materials and methods

91

92 **2.1. MEC operation**

93

One-chamber microbial electrolysis cells made of polyacrylate were used to 94 carry out the measurements employing graphite felt anode (60 cm^2 surface area, 95 Brunssen de Occidente S.A. de C.V., MEX) and Type 304 stainless steel mesh 60 96 cathode (71 cm² surface area, La Paloma Compañía de Metales S.A. de C.V., MEX) 97 98 with 4 cm electrode spacing. Titanium wire (Sigma-Aldrich Co, MO) was applied to make the internal connections of the MEC, while copper wiring served for external 99 connections. The MEC bioanode was inoculated and colonized in preliminary in a 100 MFC. This MFC was operated using anaerobic sludge as inoculum source and 20 101 mM sodium acetate source in 48 hour cycles for about two weeks (until stable 102 current production had been observed), in accordance with our recently published 103

work (Rivera et al., 2015). When the voltage profile of the MFC could be
reproduced at least for 3 batch cycles, the anode was ready to be transferred to the
MEC.

The MECs in this work had 58 cm³ headspace and 300 mL working volume. 107 In one series of the measurement, single-chamber MECs for treating complex, raw 108 cheese whey, which is a recognized by-product of the dairy industry (Moreno et al., 109 2015; Rago et al., 2017) (collected from our industrial partner and stored at 4 °C 110 until use to limit changes of its composition over time) were tested. In this case, the 111 MEC working volume was composed of 225 mL raw cheese whey as substrate and 112 besides, only phosphate buffer 100 mM (5.3 g/L KH₂PO₄, 10.7 g/L K₂HPO₄), 113 without any nutrients added. The soluble initial COD of this sample was 19.9 g/L. 114

In another experimental set, effluents from continuous (i) anaerobic 115 (methanogenic) digester and (ii) dark fermentative (hydrogenogenic) bioreactors 116 treating the raw CW were employed in subsequent MECs, presenting the concept of 117 a multi-stage system. To explain these processes, Fig. 1 can be consulted. In the 118 119 technological line of the methanogenic reactor, the CW (1:1 dilution with tap water) entered first an acidogenic reactor where acetic acid production was promoted. 120 Afterwards, the effluent from acidogenic reactor (pH=5.5) was forwarded to a 121 neutralizer tank to raise the pH to neutral value by 1.5 M NaOH. Subsequently, this 122 stream was fed to the methanogenic reactor (pH=7.2) and last but not least, its 123 effluent was used as substrate for the MEC. In the case of the dark fermentation 124 reactor, the cheese whey was diluted 10:1 and fed directly to the bioreactor (pH =125

4.5). After fermenting most of the carbohydrates in CW, the effluent from this process was fed to the MEC. In these measurements, the 300 mL MEC working volume contained 225 mL undiluted effluent and 75 mL phosphate buffer with the above mentioned composition. Before loading the effluents to the MEC, they were first centrifuged (10 min, 10000 rpm) and then membrane filtered (0.22 μ m pore size) to get rid of the indigenous biomass.

The MECs in this study, regardless of the type of substrate, were allowed to 132 run with 2 days long cycle times. Each experimental set was conducted in 133 duplicates and the observed standard error was lower than 5 %. The initial pH in all 134 cases was adjusted to 7 using 1 M HCl and NaOH. The MEC measurements started 135 with high-purity (>99.99 vol.%) N_2 sparging to remove O_2 and maintain the 136 anaerobic conditions thoroughly. The electric current was monitored via a 10 Ω 137 external resistor connected in series with the cell. The voltage across this resistor 138 was followed by a data recording card (USB 6008, National Instruments Inc. Austin, 139 TX) in LabView 7 software. MEC temperature was kept at 32 °C by a water bath 140 141 thermostat. Gas production was quantified using water displacement method by upturned measuring cylinders. 142

- 143
- 144
- 145

146

147 **2.2. Analytical methods**

148

 H_2 , CH_4 and CO_2 contents of the reactor headspace, volatile fatty acids 149 (VFAs) – acetic (HAc), butyric (HBu) and propionic (HPr) acids – and ethanol 150 (EtOH) were determined by gas chromatography as described earlier (Buitrón and 151 Carvajal, 2010). Chemical oxygen demand (COD) was analyzed by following the 152 Standard Methods (APHA, 1995). Total carbohydrates (T_{carb}) were measured as 153 described by Dubois et al. (1956), while lactic acid (HLa) (another VFA) was 154 analyzed in a DIONEX ICS-1500 ion chromatograph. Samples for liquid phase 155 analysis (in terms of VFA, EtOH and COD) were taken initially as well as at the end 156 of each MEC cycle (after 48 hours). 157 158 **2.3.** Calculations 159 160 MEC performance was assessed based on volumetric H₂ productivity 161 (HPR_v), cathodic hydrogen recovery (r_{cat}), energy yields relative to electrical (η_e) 162

and substrate (η_s) inputs and both (η_{e+S}) and Coulombic efficiency (E_c), according to Eqs. 1-7:

165

166 HPR_V (L H₂/L-d) =
$$\frac{Vh}{Vr x t}$$
 (1)

where V_h is the actual volume of H_2 formed (at STP conditions), while V_r and t are assigned to MEC working volume and operational (cycle) time, respectively.

170

171
$$\operatorname{rcat}(\%) = \frac{\operatorname{Nh}}{\operatorname{Nce}}$$
 (2)

172

where Nh is the moles of hydrogen actually produced and Nce represents the molesof H₂ obtainable based on the measured current.

175

176 Nce =
$$\frac{\int_{t=0}^{t} I(t)dt}{2F}$$
(3)

177

where dt is the data recording time interval, 2 is a factor to convert moles of electrons to moles of H₂ and F is the Faraday's constant (96 485 C/mol e^{-}).

180

181
$$\eta_e(\%) = \frac{Wh}{We} \times 100$$
 (4)

182

where Wh is the energy content of H_2 experimentally produced and We is the electrical energy investment, calculated according to Logan et al. (2008).

186
$$\eta_s(\%) = \frac{Wh}{Ws} \times 100$$
 (5)

188 where Ws is the energy content of the substrate consumed, calculated according to189 Logan et al. (2008).

191
$$\eta_{e+S}(\%) = \frac{Wh}{We+Ws} \times 100$$
 (6)

193 Ec (%) =
$$\frac{\text{Nce}}{\text{Nth}} \times 100$$
 (7)

where Nth is the moles of hydrogen maximally generated from the COD consumed,

196 calculated in accordance with Logan et al. (2008).

197 **3. Results and discussion**

198

3.1. On the use of raw cheese whey for H₂ production in the MEC

200

Cheese whey – in different forms i.e. powder and with various characteristics – is a by-product generated at an industrial-scale and was shown to be feasible in conventional dark fermentation process for H₂ production (Antonopoulou et al., 2008; Davila-Vazques et al., 2009; Kargi et al., 2012). However, little attention has been paid for its energetic valorization in bioelectrochemical systems so far as only a limited number of papers investigated this possibility i.e. Moreno et al. (2015), Rago et al. (2017) and Tremouli et al. (2013).

The results on the direct use of raw CW in the MEC process (Fig. 2) indicate 208 that the intensity gas production was quite high in the first 20 hours, after which a 209 210 plateau was reached. Moreover, it can also be seen in **Fig. 2** that the current density had a declining tendency from the beginning off the experiments, meaning that the 211 electrogenic bacteria got inhibited and bioelectrochemical gas production decreased 212 proportionally. This assumes actually that after approx. the 10th hour of MEC 213 operation, the source of biological gas formation was almost exclusively the 214 classical fermentation pathways. Methane production was significant (45 vol.%), 215 more or less equal to that of H₂ (41 vol.%) and CO₂, constituted the rest of the 216 composition (14%). The appearance of methane may be related with the remarkable 217 carbohydrate content of the substrate (Table 1), which was previously found to be 218

responsible for boosted methanogenic activity in biological electrolysis cell (Rivera et al., 2015). Besides, the fact that CH₄ could become a dominant gas is associated with the properties of the anaerobic mixed culture that was originally employed to colonize the MEC bioanode (Rivera et al., 2015).

The final pH of the MECs at the end of the 48 h cycle was 3.8. This can be 223 associated with the release of volatile fatty acids in considerable quantities during 224 carbohydrate degradation (Table 1). These compounds reduced the pH, which could 225 not apparently be compensated by the phosphate buffer. The accumulation of these 226 227 acidic components assumes that exoelectrogenic microorganisms (responsible for VFA consumption) could not keep a pace with the VFA generation coming from the 228 metabolism of fermentative bacteria coexisting in the anodic biofilm. Probably, the 229 pH change from a value of 7 to 3.8 was too drastic, making the exoelectrogenic 230 microorganisms unable to properly acclimate to sudden acidification and causing in 231 the end the deterioration their exoelectrogenic activity. Previously, optimal pH range 232 for these strains was reported in the range of 6-9 (Patil et al., 2011). The hypothesis 233 234 concerning the negative impact of the pH drop is supported by the observations from a consecutive MEC cycle (data not shown), where quasi no current production by 235 236 the microorganisms could be registered, thus it is implied that the biofilm was seriously damaged. Overall, the fact that (i) only poor electric current was generated 237 and electrohydrogenesis came to an end quickly (Fig. 2) and (ii) the gas production 238 239 did not stop (but was rather continued by fermentation) led to the accumulation of volatile fatty acids, which decreased pH and caused the loss of electrochemical 240

activity on the bioanode. However, understanding these complex phenomena will
require more experimentation and hence, elaborating the response of the MEC
bioanode community will definitely be an important aspect of our next study.

From the energetic aspects of MEC performance using raw CW, though 244 extremely high cathodic hydrogen recovery ($r_{cat} = 263.7$ %) and electricity input-245 based energy recovery ($\eta_e = 488.2$ %) were attained, it may have been primarily 246 encountered due to the considerable fermentative reactions taking place in the MEC. 247 The calculation of the Coulombic efficiency (roughly 1 %) provides a good proof 248 249 for the weak bioelectrochemical phenomena to be taken into account. The low 250 Coulombic efficiency helps to deduce that electromicrobial H₂ production – due to the quasi fully unexploited potential of the substrate via bioelectrocatalytic pathways 251 - remained negligible. These results suggest that preventive actions have to be taken 252 to keep the MEC system in good conditions for longer-terms in multiple cycles. For 253 example, on-line pH control or decreased organic loading rate (to avoid the 254 formation of VFAs in excessive quantities) can be proposed to prevent the 255 256 occurrence of unfavorably acidic conditions.

Alternatively, the raw cheese whey may be subjected to two-stage processes, where it is first converted to energy carriers i.e. methane and hydrogen and consecutively, the effluents of these reactors are used as input materials for complementary H_2 production in the MEC system. This concept was further investigated in this work and discussed in the next section. The experiences

regarding the conversion of raw cheese whey in the classical methanogenic and hydrogenogenic reactors will be presented in another paper, here the focus is only on the treatment of their effluents in the microbial electrolysis cells.

265

3.2. Comparative evaluation of MEC performances operated with the effluents of methanogenic and hydrogenogenic processes treating raw cheese whey

268

The residual (soluble) by-products present in the effluent of anaerobic 269 reactors (i.e. methanogenic digester or H₂ fermenter) can be viewed as a good source 270 of chemical energy for electro-active strains working on the anode of microbial 271 electrohydrogenesis cells (Rózsenberszki et al., 2017, Zhen et al., 2016b). For 272 273 instance, typical compounds such as acetate, butyrate, propionate, lactate, etc. as 274 dead-end products cannot be further decomposed by fermentative H₂ producing bacteria and therefore, multi-step, integrated systems e.g. those applying 275 bioelectrochemical systems as a complementary step are suggested to drive the 276 conversion towards better completeness and extract further amount of energy before 277 the effluent is finally discharged to the environment (Rózsenberszki et al., 2017). 278

In this work, two real effluents with initial characteristics listed in **Table 2** were tested in a one chamber biocatalyzed electrolysis cell (i) to determine how the MECs perform with VFA- or relatively carbohydrate-richer streams and consequently (ii) to justify the adequate treatment (either methanogenesis or dark

fermentation) of cheese whey substrate before MECs are applied for additional H₂ 283 284 recovery. As it can be seen in **Table 2**, although the two effluents were different from an initial COD point of view, quite comparable removal efficiencies could be 285 obtained: 25.5 % and 24.3 % for the methanogenic and dark fermentation residue, 286 respectively. Nevertheless, according to Fig. 3 it is clear that the methanogenic 287 effluent resulted in much higher cumulative gas production but the picture changes 288 significantly when it is normalized to the amount of COD actually removed (mg 289 Δ COD). In this case, the MEC treating the spent media of the CH₄-producing reactor 290 achieved 0.11 mL gas/mg Δ COD, while this value was 0.15 mL/mg Δ COD for the 291 MEC operated using the dark fermentation effluent. Though the \triangle COD-based total 292 gas formation is 36 % higher for the dark fermentation effluent, it is worthy to take a 293 look at the compositions of the gases formed in the MECs. Fig. 4 depicts the 294 average headspace gas quality at the end of the MEC cycles and it can be concluded 295 that in contrast with its methanogenic counterpart (where CH₄ percent was below 296 detection level), the dark fermentation effluent provoked remarkable methane 297 298 generation (43 vol. %), accompanied by lower H₂ percentage (32 vol.%). This, in the end, caused a 62 % depression in the volumetric H₂ productivity (0.06 vs. 0.16 L 299 H₂/L-d). Since the MECs had bioanodes of identical initial characteristics (Rivera et 300 al., 2015), it seems to be a reasonable assumption that the dissimilar effluent 301 composition (higher VFA and lower carbohydrate content for the methanogenic and 302 the contrary for the dark fermentation residue, as seen in Table 2) was the 303 responsible factor for the different behaviors. 304

As mentioned above in Section 3.1, carbohydrates can likely enhance the growth of non-electrochemically active microorganisms i.e. methanogens (Rivera et al., 2015). Though the methane production could reportedly be a treat from acetaterich feedstock (Kumar et al., 2017), in this study, under the conditions tested with the methanogenic effluent having remarkably higher acetate content, promoted CH₄ formation was not encountered, implying the primary involvement of carbohydrates in this reaction.

312 Approaches with various degree of success have been proposed in the 313 literature to restrict the activity of these strains, such as pretreatment of the seed inocula (Bakonyi et al., 2014b), application of antibiotics (Catal et al., 2015), 314 preliminary enrichment of the exoelectrogenic bacteria (Liu et al., 2008; Pierra et al., 315 2015ab; Wang et al., 2010), reduced MEC cycle time (Rivera et al., 2015; Wang et 316 al., 2009), appropriate pH adjustment (Moreno et al., 2015) and operation with well-317 regulated anode potential (Selembo et al., 2009). However, in some cases, the 318 methanogens can still survive (Escapa et al., 2013) and if they grow above a level to 319 320 tolerate, system re-start remains the only reasonable option (Nam et al., 2011).

Plotting the time profile of electric current produced by the bacteria for the two series of experiments (**Fig. 5**) it can be inferred that it got stabilized at 0.13-0.15 mA cm⁻² quite instantly and in return, the gas production started virtually having no lag-phase (**Fig. 3**). On the other hand, the current with the spent media of the methane reactor was growing rather slowly but gradually and after 20-25 hours it

exceeded 0.13-0.15 mA cm⁻². The highest, roughly mA cm⁻² was registered in the 326 327 last phase of the MEC cycle. This better, peak electric current reflects the higher activity of the exoelectrogenic strains in the bioanode, which contributed possibly to 328 achieve the enhanced HPRv with the methanogenic effluent. The final pH of the 329 MECs, in contrast with case of raw cheese whey evaluated in Section 3.1., did not 330 change significantly and was found in the 6.9-7.1 interval. The current densities 331 presented in Fig. 3 were highly reproducible (on the grounds of less than 5 % 332 deviation in the results of duplicates), confirming that the behavior of the biofilm 333 was not affected and the bacteria were able to keep their activity for multiple cycles. 334

The comparison of the MEC performances from the point of view of 335 energetic process indicators is given in Table 3, where one can realize that the 336 MECs operated with the methanogenic effluent were far more attractive than with 337 the dark fermentation effluent. However, it is interesting to point to the fact that the 338 Coulombic efficiency in the latter MEC was over 90 %. Such high values are hardly 339 reported for bioelectrochemical systems unless the so-called H₂-recycling effect 340 plays a significant role in the single-chamber devices (Lalaurette et al., 2009; 341 Parameswaran et al., 2011; Ruiz et al., 2013; Ullery et al., 2013). 342

This means that the H₂ liberated at the cathode is partly uptaken by certain members of the anodic biofilm to reconvert it to acetate via homoacetogenesis (Saddy, 2013). This acetate is consecutively oxidized by the exoelectrogenic bacteria that boosts current production (Dhar et al., 2015) or alternatively, the H₂ gas

can directly be used to generate bioelectricity (Montpart et al., 2014). In both cases, higher E_c will be obtained at the expense of undesired H₂ consumption and hence similar to methanogenesis, it is to avoid as much as possible i.e by constructing systems where the anode and the cathode are spatially separated (Rago et al., 2017).

351

352 **4. Conclusions**

353

In this study it was demonstrated that microbial electrolysis cells can be 354 355 considered for the treatment of cheese whey to recover biohydrogen. In case cheese whey is directly applied, strategies i.e. careful pH control seems to be necessary 356 357 otherwise the acidification will potentially inhibit the exoelectrogens. Nevertheless, if cheese whey is converted in a two-step process (where complementary MEC 358 359 utilizes the effluents coming from methanogenesis or hydrogenesis treating the raw 360 cheese whey), H₂ gas can be gained with better success. Though the MECs operated 361 with either methanogenic effluent or dark fermentation effluents had similar organic 362 matter removal efficiencies, the latter system produced considerable amount of 363 methane, attributed possibly to the higher amounts of carbohydrates present. Thus, it 364 seems that anaerobic digestion rather than dark fermentation should be used as the 365 main technological step to valorize cheese whey and obtain a liquid residue that is more suitable for auxiliary MEC process. 366

367

368 Acknowledgements

260	ł
202	,

370	The financial support of Secretaría de Energía -Sustentabilidad Energética-
371	CONACYT (Cluster Biocombustibles gaseosos project 247006) is gratefully
372	acknowledged. Péter Bakonyi acknowledges the support received from National
373	Research, Development and Innovation Office (Hungary) under grant number PD
374	115640. The technical assistance by Jaime Perez is appreciated.
375	
376	References
377	
378	1. Antonopoulou, G., Stamatelatou, K., Venetsaneas, N., Kornaros, M.,
379	Lyberatos, G., 2008. Biohydrogen and methane production from cheese whey
380	in a two-stage anaerobic process. Ind. Eng. Chem. Res. 47, 5227-5233.
381	2. APHA, 1995. Standard methods for the examination of water and
382	wastewater. 19th ed. New York, USA: American Public Health Association.
383	3. Bakonyi, P., Nemestóthy, N., Simon, V., Bélafi-Bakó, K., 2014a. Review on
384	the start-up experiences continuous fermentative hydrogen producing
385	bioreactors. Renew. Sustain. Energy Rev. 40, 806-813.
386	4. Bakonyi, P., Borza, B., Orlovits, K., Simon, V., Nemestóthy, N., Bélafi-
387	Bakó, K., 2014b. Fermentative hydrogen production by conventionally and
388	unconventionally heat pretreated seed cultures: A comparative assessment.
389	Int. J. Hydrogen Energy 39, 5589-5596.

390	5.	Buitrón, G., Carvajal, C., 2010. Biohydrogen production from Tequila
391		vinasses in an anaerobic sequencing batch reactor: effect of initial substrate
392		concentration, temperature and hydraulic retention time. Bioresour. Technol.
393		101, 9071-9077.
394	6.	Catal, T., Lesnik, K.L., Liu, H., 2015. Suppression of methanogenesis for
395		hydrogen production in single-chamber microbial electrolysis cells using
396		various antibiotics. Bioresour. Technol. 187, 77-83.
397	7.	Cusick, R.D., Kiely, P.D., Logan, B.E., 2010. A monetary comparison of
398		energy recovered from microbial fuel cells and microbial electrolysis cells
399		fed winery or domestic wastewaters. Int. J. Hydrogen Energy 35, 8855-8861.
400	8.	Davila-Vazques, G., Cota-Navarro, C.B., Rosales-Colunga, L.M., de León-
401		Rodríguez, A., Razo-Flores, E., 2009. Continuous biohydrogen production
402		using cheese whey: Improving the hydrogen production rate. Int. J. Hydrogen
403		Energy 34, 4296-4304.
404	9.	Dhar, B.R., Elbeshbishy, E., Hafez, H., Lee, H.S., 2015. Hydrogen
405		production from sugar beet juice using an integrated biohydrogen process of
406		dark fermentation and microbial electrolysis cell. Bioresour. Technol. 198,
407		223-230.
408	10	Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., 1956.
409		Colorimetric method for determination of sugars and related substances.
410		Anal. Chem. 28, 350-356.

- 411 11. Elakkiya, E., Matheswaran, M., 2013. Comparison of anodic metabolisms in
 412 bioelectricity production during treatment of dairy wastewater in microbial
 413 fuel cell. Bioresour. Technol. 136, 407-412.
- 414 12. Escapa, A., Manuel, M.F., Morán, A., Gómez, X., Guiot, S.R., Tartakovsky,
 415 B., 2009. Hydrogen production from glycerol in a membraneless microbial
 416 electrolysis cell. Energy Fuels 23, 4612-4618.
- 417 13. Gao, Y., Ryu, H., Santo Domingo, J.W., Lee, H.S., 2014. Syntrophic
 418 interactions between H₂ scavenging and anode-respiring bacteria can improve
 419 current density in microbial electrochemical cells. Bioresour. Technol. 153,
 420 245-253.
- 421 14. Kadier, A., Simayi, Y., Kalil, M.S., Abdeshahian, P., Hamid, A.A., 2014. A
 422 review of the substrates used in microbial electrolysis cells (MECs) for
 423 producing sustainable and clean hydrogen gas. Renew. Energy 71, 466-472.
- 424 15. Kargi, F., Eren, N.S., Ozmichi, S., 2012. Bio-hydrogen production from
 425 cheese whey powder (CWP) solution: Comparison of thermophilic and
 426 mesophilic dark fermentations. Int. J. Hydrogen Energy 37, 8338-8342.
- 427 16. Kiely, P.D., Regan, J.M., Logan, B.E., 2011. The electric picnic: synergistic
 428 requirements for exoelectrogenic microbial communities. Curr. Opin.
 429 Biotechnol. 22, 378-385.

430	17. Koók, L., Rózsenberszki, T., Nemestóthy, N., Bélafi-Bakó, K., Bakonyi, P.,
431	2016. Bioelectrochemical treatment of municipal waste liquor in microbial
432	fuel cells for energy valorization. J. Clean. Prod. 112, 4406-4412.
433	18. Kumar, G., Bakonyi, P., Zhen, G, Sivagurunathan, P., Koók, L., Kim, S.H., et
434	al., 2017. Microbial electrochemical systems for sustainable biohydrogen
435	production: Surveying the experiences from a start-up viewpoint. Renew.
436	Sustain. Energy Rev. 70, 589-597.
437	19. Kumar, G., Bakonyi, P., Kobayashi, T., Xu, K.Q., Sivagurunathan, P., Kim,
438	S.H., et al., 2016. Enhancement of biofuel production via microbial
439	augmentation: The case of dark fermentative hydrogen. Renew. Sustain.
440	Energy Rev. 57, 879-891.
441	20. Kumar, G., Bakonyi, P., Periyasamy, S., Kim, S.H., Nemestóthy, N., Bélafi-
442	Bakó, K., 2015. Lignocellulose biohydrogen: Practical challenges and recent
443	progress. Renew. Sustain. Energy Rev. 44, 728-737.
444	21. Lalaurette, E., Thammannagowda, S., Mohagheghi, A., Maness, P.C., Logan,
445	B.E., 2009. Hydrogen production from cellulose in a two-stage process
446	combining fermentation and electrohydrogenesis. Int. J. Hydrogen Energy 34,
447	6201-6210.

22. Liu, W., Huang, S., Zhou, A., Zhou, G., Ren, N., Wang, A., et al., 2012.
Hydrogen generation in microbial electrolysis cell feeding with fermentation
liquid of waste activated sludge. Int. J. Hydrogen Energy 37, 13859-13864.

- 451 23. Liu, Y., Harnisch, F., Fricke, K., Sietmann, R., Schröder, U., 2008.
 452 Improvement of the anodic bioelectrocatalytic activity of mixed culture
 453 biofilms by a simple consecutive electrochemical selection procedure.
 454 Biosens. Bioelectron. 24, 1006-1011.
- 455 24. Logan, B.E., Call, D., Cheng, S., Hamelers, H.V.M., Sleutels, T.H.J.A.,
 456 Jeremiasse, A.W., et al., 2008. Microbial electrolysis cells for high yield
 457 hydrogen gas production from organic matter. Environ. Sci. Technol. 42,
 458 8630-8640.
- 459 25. Lovley, D.R., 2006. Microbial fuel cells: novel microbial physiologies and
 460 engineering approaches. Curr. Opin. Biotechnol. 17, 327-332.
- 26. Lu, L., Xing, D., Liu, B., Ren, N., 2012. Enhanced hydrogen production from
 waste activated sludge by cascade utilization of organic matter in
 microbialelectrolysis cells. Water Res. 46, 1015-1026.
- 27. Lu, L., Ren, N., Xing, D., Logan, B.E., 2009. Hydrogen production with
 effluent from an ethanol–H₂-coproducing fermentation reactor using a singlechamber microbial electrolysis cell. Biosens. Bioelectron. 24, 3055-3060.
- 28. Mardanpour, M.M., Esfahany, M.N., Behzad, T., Sedaqatvand, R., 2012.
 Single chamber microbial fuel cell with spiral anode for dairy wastewater
 treatment. Biosens. Bioelectron. 38, 264-269.
- 470 29. Montpart, N., Ribot-Llobet, E., Garlapati, V.K., Rago, L., Baeza, J.A.,
 471 Guisasola, A., 2014. Methanol opportunities for electricity and hydrogen

- 472 production in bioelectrochemical systems. Int. J. Hydrogen Energy 39, 770473 777.
- 30. Moreno, R., Escapa, A., Cara, J., Carracedo, B., Gómez, X., 2015. A twostage process for hydrogen production from cheese whey: Integration of dark
 fermentation and biocatalyzed electrolysis. Int. J. Hydrogen Energy 40, 168175.
- 31. Nam, J.Y., Tokash, J.C., Logan, B.E., 2011. Comparison of microbial
 electrolysis cells operated with added voltage or by setting the anode
 potential. Int. J. Hydrogen Energy 36, 10550-10556.
- 32. Pant, D., Van Bogaert, G., Diels, L., Vanbroekhoven, K., 2010. A review of
 the substrates used in microbial fuel cells (MFCs) for sustainable energy
 production. Bioresour. Technol. 101, 1533-1543.
- 33. Parameswaran, P., Torres, C.I., Lee, H.S., Rittmann, B.E., KrajmalnikBrown, R., 2011. Hydrogen consumption in microbial electrochemical
 systems (MXCs): The role of homo-acetogenic bacteria. Bioresour. Technol.
 102, 263-271.
- 34. Patil, S.A., Harnisch, F., Koch, C., Hübschmann, T., Fetzer, I., CarmonaMartínez, A.A., et al., 2011. Electroactive mixed culture derived biofilms in
 microbial bioelectrochemical systems: The role of pH on biofilm formation,
 performance and composition. Bioresour. Technol. 102, 9683-9690.

- 35. Pierra, M., Carmona-Martínez, A.A., Trably, E., Godon, J.J., Bernet, N.,
 2015a Microbial characterization of anode-respiring bacteria within biofilms
 developed from cultures previously enriched in dissimilatory metal-reducing
 bacteria. Bioresour. Technol. 195, 283-287.
- 36. Pierra, M., Carmona-Martínez, A.A., Trably, E., Godon, J.J., Bernet, N.,
 2015b. Specific and efficient electrochemical selection of Geoalkalibacter
 subterraneus and Desulfuromonas acetoxidans in high current-producing
 biofilms. Bioelectrochemistry 106, 221-225.
- 37. Rago, L., Baeza, J.A., Guisasola, A., 2017. Bioelectrochemical hydrogen
 production with cheese whey as sole substrate. J. Chem. Technol. Biotechnol.
 92, 173-179.
- 38. Rago, L., Ruiz, Y., Baeza, J.A., Guisasola, A., Cortés, P., 2015. Microbial
 community analysis in a long-term membrane-less microbial electrolysis cell
 with hydrogen and methane production. Bioelectrochemistry 106, 359-368.
- 39. Rivera, I., Buitrón, G., Bakonyi, P., Nemestóthy, N., Bélafi-Bakó, K., 2015.
 Hydrogen production in a microbial electrolysis cell fed with a dark
 fermentation effluent. J. Appl. Electrochem. 45, 1223-1229.
- 40. Rózsenberszki, T., Koók, L., Bakonyi, P., Nemestóthy, N., Logrono, W., 509 2017. 510 Pérez, M., et al., Municipal waste liquor treatment via bioelectrochemical and fermentation $(H_2 + CH_4)$ processes: Assessment of 511 various technological sequences. Chemosphere 171, 692-701. 512

513	41. Ruiz, Y., Baeza, J.A., Guisasola, A., 2013. Revealing the proliferation of
514	hydrogen scavengers in a single-chamber microbial electrolysis cell using
515	electron balances. Int. J. Hydrogen Energy 38, 15917-15927.
516	42. Saady, N.M.C., 2013. Homoacetogenesis during hydrogen production by
517	mixed cultures dark fermentation: Unresolved challenge. Int. J. Hydrogen
518	Energy 38, 13172-13191.
519	43. Selembo, P.A., Perez, J.M., Lloyd, W.A., Logan, B.E., 2009. High hydrogen
520	production from glycerol or glucose by electrohydrogenesis using microbial
521	electrolysis cells. Int. J. Hydrogen Energy 34, 5373-5381.
522	44. Sivagurunathan, P., Kumar, G., Bakonyi, P., Kim, S.H., Kobayashi, T., Xu,
523	K.Q., et al., 2016. A critical review on issues and overcoming strategies for
524	the enhancement of dark fermentative hydrogen production in continuous
525	systems. Int. J. Hydrogen Energy 41, 3820-3836.
526	45. Sleutels, T.H.J.A., Darus, L., Hamelers, H.V.M., Buisman, J.N., 2011. Effect
527	of operational parameters on Coulombic efficiency in bioelectrochemical
528	systems. Bioresour. Technol. 102, 11172-11176.
529	46. Tremouli, A., Antonopoulou, G., Bebelis, S., Lyberatos, G., 2013. Operation
530	and characterization of a microbial fuel cell fed with pretreated cheese whey
531	at different organic loadings. Bioresour. Technol. 131, 380-389.

- 47. Ullery, M.L., Logan, B.E., 2014. Comparison of complex effluent treatability
 in different bench scale microbial electrolysis cells. Bioresour. Technol. 170,
 534 530-537.
- 48. Wang, A., Sun, D., Cao, G., Wang, H., Ren, N., Wu, W.M., et al., 2011.
 Integrated hydrogen production process from cellulose by combining dark
 fermentation, microbial fuel cells, and a microbial electrolysis cell.
 Bioresour. Technol. 102, 4137-4143.
- 49. Wang, A., Sun, D., Ren, N., Liu, C., Logan, B.E., Wu, W.M., 2010. A rapid
 selection stragety fron an anodophilic consortium for microbial fuel cells.
 Bioresour. Technol. 101, 5733-5735.
- 50. Wang, A., Liu, W., Cheng, S., Xing, D., Zhou, J., Logan, B.E., 2009. Source
 of methane and methods to control its formation in single chamber microbial
 electrolysis cell. Int. J. Hydrogen Energy 34, 3653-3658.
- 545 51. Zhen, G., Kobayashi, T., Lu, X., Kumar, G., Xu, K., 2016a. Biomethane
 546 recovery from Egeria densa in a microbial electrolysis cell-assisted anaerobic
 547 system: Performance and stability assessment. Chemosphere 149, 121-129.
- 52. Zhen, G., Kobayashi, T., Lu, X., Kumar, G., Hu, Y., Bakonyi, P., et al.,
 2016b. Recovery of biohydrogen in a single-chamber microbial
 electrohydrogenesis cell using liquid fraction of pressed municipal solid
 waste (LPW) as substrate. Int. J. Hydrogen Energy 41, 17896-17906.

552	53. Zhen, G., Kobayashi, T., Lu, X., Xu, K., 2015. Understanding methane
553	bioelectrosynthesis from carbon dioxide in a two-chamber microbial
554	electrolysis cells (MECs) containing a carbon biocathode. Bioresour.
555	Technol. 186, 141-148.

556 54. Zhou, M., Wang, H., Hassett, D.J., Gu, T., 2013. Recent advances in
557 microbial fueld cells (MFCs) and microbial electrolysis cells (MECs) for
558 wastewater treatment, bioenergy and bioproducts. J. Chem. Technol.
559 Biotechnol. 88, 508-518.

562	Figure Legend
563	
564	Fig. 1 – Schematic figure of the treatment train for the three scenarios for cheese
565	whey treatment in MEC.
566	
567	Fig. 2 – The cumulative gas production (blue diamond) obtained with raw cheese
568	whey as substrate for H_2 production in MEC and registered current density (red
569	square) as a function of time.
570	
571	Fig. 3 – Progress curves presenting the gas production using the effluent of
572	methanogenic (red squares) and hydrogenogenic reactors (green triangles) treating
573	raw cheese whey as substrate.
574	
575	Fig. 4 – (A) and (B) are headspace gas composition using the effluent of
576	methanogenic and hydrogenogenic reactors as substrates, respectively.
577	
578	Fig. 5 – The measured current densities in the MECs utilizing the effluent of
579	methanogenic (red) and hydrogenogenic reactors (blue) as substrates, respectively.
580	

Table 1 – Initial and final liquid phase concentrations during raw cheese whey
treatment in MEC

	Concentration (mg/L)			
	Initial	Final		
Total carbohydrates	17350	1440		
Acetic acid	264	679		
Propionic acid	18	39		
Butyric acid	22	153		
Lactic acid	BDL	1959		
Ethanol	56	851		

BDL: below detection level

Table 2 – Liquid phase analysis of MECs utilizing the effluents of anaerobic
digester (higher VFA, lower carbohydrate content) and dark fermentation reactor
(higher carbohydrate, lower VFA content)

MEC feedstock		COD	Tcarb	HAc	HPr	HBu	HLa	EtOH
		(mg/L)						
Anaerobic	Initial	4009	10	703	1697	140	271	BDL
effluent	Final	2985	BDL	428	1399	121	30	BDL
Dark	Initial	1624	87	176	424	35	98	BDL
effluent	Final	1229	7	BDL	103	294	45	BDL

BDL: below detection level

593 Table 3 – Energetic performance of MEC treating different effluents

Source of effluent	r_{cat} (%)	$\eta_e(\%)$	η_{s} (%)	$\eta_{e+s}(\%)$	E _c (%)
Methanogenic reactor	63	116.6	25.3	20.8	31.8
Dark fermentative H ₂ reactor	22	40.7	12.4	9.5	92.7

650 Fig. 4

