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Abstract
Individualmigration has been regarded as an important factor for the evolution of cooperation in
mobile populations.Motivations ofmigration, however, can be largely divergent: one is highly
frustrated by the vicinity of an exploiter or defector, while other enthusiastically searches cooperator
mates. Albeit both extreme attitudes are observed in human behavior, but their specific impacts on
wellbeing remained unexplored. In this work, we propose an orientation-drivenmigration approach
formobile individuals in combinationwith thementionedmigration preferences and study their roles
in the cooperation level in a two-dimensional public goods game.We find that cooperation can be
greatly promotedwhen individuals aremore inclined to escape away from their defective neighbors.
On the contrary, cooperation cannot be effectivelymaintainedwhen individuals aremoremotivated
to approach their cooperative neighbors. In addition, comparedwith randommigration,movement
by leaving defectors can promote cooperationmore effectively. Bymeans of theoretical analysis and
numerical calculations, we furtherfind that when individuals only choose to escape away from their
defective neighbors, the average distance between cooperators and defectors can be enlarged, hence
the natural invasion of defection can be efficiently blocked.Ourwork, thus, provides further insight
on howdifferentmigration preferences influence the evolution of cooperation in the unified
framework of spatially social games.

1. Introduction

The emergence andmaintenance of cooperation among unrelated individuals has been a puzzling phenomenon
in nature and human societies [1]. Over the past decades, evolutionary game theory has provided a very
competent framework for studying the evolution of cooperative behavior [2–5]. In particular, the public goods
game has been recognized as a paradigm, which succinctly describes the essential dilemma of cooperation [2, 6].
Recent works on the public goods game have proposed effectivemeans to enable the evolution of cooperation,
such as punishment [7–13], reward [14–16], exclusion [17–20], and individualmigration [21].

Individualmigration is an essential characteristic of living organisms [22]. It has been demonstrated that the
mode of individualmobility does influence the evolutionary dynamics of cooperation among unrelated
individuals, which has attracted intensive research activity in recent years [23–39]. Theoretical and experimental
studies have shown that individualmobility can promote the evolution of cooperation [40–59]. In particular,
Meloniet al considered randommigration for individuals playing the prisoner’s dilemma game on a two-
dimensional plane and found that cooperation can bemaintainedwhen themoving velocity of individuals is not
too high [28]. Subsequently, Cardilloet al [40] found that in the public goods game, played on a two-
dimensional plane, lowmobility promotes cooperation, whereas high velocity can disrupt cooperation.What is
more,Helbing andYu [27]proposed success-drivenmigration underwhich individualsmove to the location
which is surrounded by cooperators in the prisoner’s dilemma game on a square lattice and demonstrated that
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suchmode ofmigration leads to the outbreak of cooperation. On the other hand, Chen et al proposed risk-
drivenmigration in the collective-risk social dilemma game on a square lattice and found that risk-driven
migration dramatically enhances the evolution of public cooperationwhen individualsmove away from
unfavorable locations [41].

It is worth pointing out thatmost of previous works consider randommigration [28, 40], success-driven
migration [27], or risk-drivenmigration [41] separately. They do not consider the orientation-drivenmigration
underwhich differentmigration preferences ormigrationmodes are considered in a unified framework. Indeed
individuals can adjust theirmoving orientation according to these preferredmodes. Bymeans ofmigration they
canmove away fromunfavorable environment, pursuit the profitable circumstances, or choose other directions
as theywish in realistic situations.However, it is still unclear how such orientation-drivenmigration influences
the evolution of cooperation andwhichmode of individualmigration can promote the evolution of cooperation
more effectively.

In this work, we thereby propose an orientation-drivenmigration into a population ofmobile individuals
playing the public goods game.We assume that individuals can choose the direction ofmobility depending on
the strategy types of their neighbors on a two-dimensional plane under such orientation-drivenmigration.
Correspondingly, individuals can choose to escape fromneighboring defectors ormove to neighboring
cooperators according to the settings of orientation parameters. Bymeans ofMonte Carlo simulations and
numerical calculations, we show that cooperation can be bestmaintainedwhen individuals choose to escape
fromneighboring defectors, when themobility velocity is not too high. On the contrary, cooperation cannot be
promotedwhen individuals aremore inclined tomove to neighboring cooperators. Furthermore, compared
with randommigration, we find that escaping fromneighboring defectors can better promote the evolution of
cooperation.

2.Model

In ourmodel, we consider a population ofN individuals who play the public goods game on a two-dimensional
plane of linear size Lwith periodic boundary conditions. Hence, the density of individuals is defined as
ρ=N/L2. Each individual is described via position and velocity vectors on the two-dimensional plane. Initially
each individual is distributed at random in the plane via using two independent randomvariables from [0, L]
interval, and correspondingly individual iʼs initial position is assigned as ri(0)=[xi(0), yi(0)].

Once the initial configuration of the system is set, two dynamical processes coevolve: orientation-driven
migration and strategy evolution. By adopting [60], at every time stepwe assume that each individual imoves
with a constant speed v and its position ri(t)=[xi(t), yi(t)] and velocity are updated bymeans of the following
equations

( ) ( ) ( ) ( )+ = + +t t tr r v1 1 , 1i i i

( ) ( ) ( )+ =t v tv v1 , 2i i

wherewe usedΔt=1 and ( ) tvi is a unit vector which is determined by the following equation

( ) ( ) ( ) ( )( )
h m= +t t tv f g . 3i i

CD

i
^

Thefirst term in the right side of equation (3) describes the orientation-driven force for individual i by strategy
distribution among the neighbors, and η quantifies its relative strength. For simplicity without loss of generality,
η is set to one in this study. Furthermore, we assume that
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Here the sumof equation (5) (equation (6)) is over individual iʼs neighboring cooperators (defectors) jwho are
within an Euclidean distance notmore than the threshold distance of interactionR that is,

[ ( ) ( )] [ ( ) ( )]- + - x t x t y t y t Ri j i j
2 2 . Here h(r) is a weight function and is set as -r w, wherew>1 in

agreementwith [60]. Notably, b 0 1 is a key parameter of ourmodel characterizing the relative weight
between the two extrememotivation attitudes. Forβ=0, individual i concentrates to go closer to neighboring
cooperators.Whereas forβ=1, individual i focuses exclusively to escape away fromneighboring defectors.
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The second term in the right side of equation (3) describes a steric repulsive force, so that individual overlap
can be prevented. The relatedμ parameter quantifies its relative strength on vi(t).We consider that

( ) ( )
( )
å= -
Î

g g r r , 7i
j S

i j

i
rep.

where the sum is over neighbors within a sphere of radiusR surrounding individual i. In agreement with [60] the
function g is set as

( )
[( ) ]

( )
s

=
+ -r r

g r
r

1 exp
, 8
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where ∣ ∣=r r̂ , rf describes the length scale of repulsion, andσ describes the steepness.
The second ingredient of our dynamicalmodel is the evolutionary public goods game played bymobile

individuals. Initially an individual i is designated as a cooperator [si(0)=1] or a defector [si(0)=0]with equal
probability. At each time step, we consider that the neighborhood of a given individual i ismade up by all the
individuals jwho arewithin an Euclidean distance notmore than the threshold distance of interactionR [61]. In
otherwords, when [ ( ) ( )] [ ( ) ( )]- + - x t x t y t y t Ri j i j

2 2 , individuals i and j are connected at time step t

andwe haveAij(t)=1, otherwiseAij(t)=0 in the adjacencymatrixA(t). Evidently, we have ( ) =A t 0ii .
Importantly, individual iwhose number of neighbors is ni does not only play a single public goods gamewith all
its corresponding neighbors, but also plays the public goods games in alternative groupswhere its neighbors are
the focal players. In a public goods gamewhere individual i participates in, each cooperator contributes the same
cost c (c is set to 1 in this studywithout loss of generality), while each defector contributes nothing. The total
contribution from cooperators ismultiplied by amultiplication factor r and then distributed equally among all
groupmembers independently of their strategies, hence the total payoff of individual i at time step t is given by
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where ( )d d= =1 1ij jk if ( )= =i j j k , otherwise ( )d d= =0 0ij jk .
After each round, each individual i has a chance to imitate the strategy of a randomly chosen neighbor j. If

Pj(t)<Pi(t), no update occurs. Otherwise, the strategy transfer occurswith the probability

( ) ( )
( )=

-
q

P t P t

M
, 10

j i

whereM ensures the proper normalization and is given by themaximumpossible difference between the total
payoffs of individuals i and j [5].We note that this strategy update rule is also known as discrete replicator
rule [62].

We emphasize that during the evolutionary process, there exist complicated coupling effects between the
evolutionary dynamics of individuals’motions and strategies. In particular, individuals’motion can change the
interaction structures of themobile population, which can also influence the strategy evolution in the
population.On the other hand, individuals’ strategy updates can also have consequences on howneighboring
playersmove.We correspondingly study this coevolutionarymodel bymeans ofMonte Carlo simulations.
Simulations are carried out in a populationwith sizeN=1000. As the key quantity, the fraction of cooperators
is defined as the density of cooperators in thewhole population.We are interested in concentrating on how the
mobility speed v, the orientation-drivenweightβ, the strength of steric repulsive force u, and the threshold
distanceR influence the fraction of cooperators, in order to clearly explore the effects of our proposed
orientation-drivenmigration on the evolution of cooperation. To do that, we set r=5.75, ρ=2, rf=0.2,
σ=0.1, andw=2 for simplicity.Wefind that ourmain results remain validwhen these parameter values are
changed. In addition, when the above described updating rules are applied, themobile populationmay converge
to one of the two possible absorbing states, which are full cooperation or full defection. To gain representative
behaviorwe run 200 independent realizations for each set of parameter values and compute the fraction of times
that the population evolves to full cooperation. Alternatively, if the population does not converge to an
absorbing state after 106 updates, then the cooperation level is determined in the stationary state by averaging the
fraction of cooperators in the population over the last 104 updates.

3. Results

Wefirst present the fraction of cooperators in dependence on themobility speed v for different values of the
orientation-drivenweightβ, as shown in figure 1.Wefind that for each value ofβ the fraction of cooperators
decreases with increasing the speed v, but cooperators can flourish for low values of v. In particular, the highest
level of cooperation can be reached for large values ofβ. For the sake of comparison, we also show the fraction of
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cooperators as a function of themobility speed v for randommigration infigure 1.Wefind that when the speed
is not high, the fraction of cooperators for orientation-drivenmigrationwith largeβ is always higher than that
for randommigration. In addition, note that the cooperation level forβ=0.5 is close to that obtained for
randommigrationwhen the same value of speed v is applied. Thismay be because the case ofβ=0.5
corresponds to a situationwhere attraction by cooperators has the same strength to the aversion to defectors,
which approaches the case of randommigration inwhich diffusion is independent of strategies of neighboring
players [42].

In order to qualify the effect of orientation-drivenweightβ on the evolution of cooperation in detail, we
further show the fraction of cooperators as a function ofβ for different values of v, as shown infigure 2.Wefind
that for each value of v the fraction of cooperators increases gradually as the value ofβ increases. Notably, full
cooperation can be reached for largeβ, especially when themobility speed is low. For smallβ values, however,
the cooperation promoting effect ismoderate even at lowmobility speed. In addition, figure 2 shows the
comparison of randommigration case with the orientation-driven cases obtained at different speed values.We
can see that for each value of v, there exists a critical value ofβ, abovewhich orientation-drivenmigration can
better promote cooperation than randommigration. These results indicate that when individuals aremore
inclined to escape away fromdefectors in their interactive neighborhoods, the evolution of cooperation can be
promoted. In particular, cooperation can be best promotedwhen individuals concentrate exclusively to escape

Figure 1. Fraction of cooperators in dependence on the speed v for randommigration and orientation-drivenmigrationwith different
values ofβ. Parameters:μ=1 andR=1.

Figure 2. Fraction of cooperators as a function of the orientation-drivenweightβ for different values of speed v. Dashed line are used
to indicate the fractions of cooperators for randommigration at these speed values, i.e. black (v=0.01), red (v=0.03), blue
(v=0.05), green (v=0.07), and purple (v=0.1). Parameters:R=1 andμ=1.
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away from their neighboring defectors. On the contrast, the evolution of cooperation is not supportedwhen
individuals are focusing tomove close to cooperators in their neighbors.

In order to gain deeper insight about the effects of orientation-drivenmovement on the evolution of
cooperation, we present a series of snapshots of strategy evolution about themicroscopic process for three
representative values ofβ infigure 3. For the sake of comparison, we also plot the typical snapshots of strategy
evolution for randommigration here.Meanwhile, we further illustrate how the average number of a
cooperator’s or defector’s neighboring cooperators or defectors changes in time for these different cases, as
presented in the rightmost columnoffigure 3.We can see that for randommigration (top row), widespread
cooperative patches occur in themobile population at the early stage of evolution.With the invasion of
defectors, then several isolated cooperators and tiny separated cooperator formations are found in the two-
dimensional plane.We can alsofind that with the decrease of the number of cooperators in the population, the
average numbers of neighboring cooperators and defectors of cooperators both decrease during this period of
evolution. Finally, cooperators will disappear and instead defectors will dominate thewhole population.When
the orientation-drivenmigration is considered, we can find that forβ=0 (second row), although cooperators
move towards to neighboring cooperators,meanwhile defectors alsomove towards to neighboring cooperators.
Due to the evolutionary advantage of defectors to cooperators and such kind of orientation-drivenmigration for
moving close to cooperators, the average number of neighboring cooperators of cooperators decreases, while the
average number of neighboring defectors of cooperators increases during the period of evolution.
Correspondingly, cooperators’ clusters cannot be formed, and cooperators will disappear soon in the
population.While forβ=0.5 (third row), on one hand individuals will consider tomove close to their
neighboring cooperators, on the other hand theywill consider to escape away from their neighboring defectors.
Correspondingly, during the evolutionary process a cooperators’ cluster can be gradually formed from
widespread cooperative patches. However, the cluster size is not large enough, so it cannot resist the invasion of
defectors successfully. During this period of evolution, we can see that the average number of neighboring
cooperators of cooperators can first increase, butwith the invasion of defectors it will decrease then.Meanwhile

Figure 3. First four columns depict the time evolution of spatial patterns for randommigration and orientation-drivenmigrationwith
three different values ofβ. Here blue color represents cooperator while red colormarks defector players. Thefifth column depicts how
the average number of individual’s neighbors change in time in thementioned cases. Here, kCC (kCD) denotes the average number of
neighboring cooperators (defectors) around cooperator players, while kDC (kDD)marks the average number of neighboring
cooperators (defectors) of defector players.We define here =k 0DC and =k 0DD when there are no defectors in the population,
whereas =k 0CC and =k 0CD mean that there are no cooperators in the population. Parameters are v=0.1,R=1, andμ=1.
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the average number of neighboring defectors of cooperators increases. Subsequently, the cooperators’ cluster
will shrink, andfinally disappear. Forβ=1 (bottom row), individuals concentrate to escape away from their
neighboring defectors.We can find that a single large compact cluster of cooperators can be formed from
numerous cooperators patches in the two-dimensional plane. Correspondingly, the average number of
neighboring cooperators of cooperator players can increase, while the average number of neighboring defectors
of cooperator agents decreases during the period of evolution. Consequently, this compact cluster can not just
resist the invasion of defectors, but it can also grow and expand. As a result, cooperationwillfinally prevail in the
whole population.

The comparison of time evolution in the fifth columnhighlights that kDD
always growsfirst due to the

successful imitation of defector strategy in themixed initial state. But this effect is weakened significantly at a
largeβ valuewhere players (including cooperators) aremotivated to escape from the vicinity of defectors.
Consequently, this is the only case where kCD

decays in time, hence defectors are not fed anymore by neighboring
cooperators. This explains the striking difference between the outcomes of plotted cases.

To support our argument quantitatively, infigure 4(a)we showhow the average distance dCD between
cooperators and defectors in the neighborhoods evolves in time forβ=0 andβ=1.We can observe that in the
early stage the average distance between neighboring cooperators and defectors gradually increases with time for
β=1. In contrast, forβ=0 the same average distance remains practically unchanged in the beginning and
decays later.We note, however, that this late decay is just a simple consequence of the fact that the population
becomes homogeneouswhere only defectors remain. In addition, in the intermediate state when both strategies
are present the average distance between neighboring cooperators and defectors is always higher forβ=1 than
that forβ=0.

For comparisonwe also showhow the average distance dCD between cooperators and defectors in the
population evolves in time forβ=0 andβ=1, as presented infigure 4(b).We canfind that in thewhole
population the average distance of cooperator and defector players remains unchanged at the early stage of
evolution independently of the value ofβ. But later this average distance gradually increases forβ=1, while it
decreases forβ=0. Furthermore, thementioned critical distance forβ=1 always exceeds the same value for
β=0. These results demonstrate that themotivation to escape away fromneighboring defectors canwiden
effectively the average distance between cooperators and defectors: both in the neighborhoods and in thewhole
population. This effect, however, is completelymissing, when players aremotivated to approach cooperator
neighbors. Hence, we can conclude that the evolution of cooperation can be better promoted by escaping away
fromdefectors than searching the vicinity of cooperators.

In the following, we present a simplemodel calculation to explain further the paramount importance of
above described average distance of competing strategies. Accordingly, we consider two simplifiedmathematical
models, which respectively describe themotion among one cooperator and two defectors (appendix A) and the
motion among two cooperators and one defector player (appendix B).

Thesemodels allow us to obtain dynamical equations ofmotion forβ=0 andβ=1 extreme cases (see
appendices A andB formore details). Herewe define the average distance between cooperators and defectors as
dCD=(h1+h2)/2, where h1 is the distance between cooperatorC (C1) and defectorD1 (D) in appendix A (B),
and h2 is the distance between cooperatorC (C2) and defectorD2 (D) in appendix A (B). Bymeans of numerical
calculations, we present the average distance dCD as a function of the initial value h1(0) forβ=0 andβ=1 in
these simplifiedmodels, as depicted infigure 5. Infigure 5(a), we canfind that the average distance dCD increases
with the initial value of h1 both forβ=0 andβ=1. But for each initial value of h1, the average distance dCD for

Figure 4.Panel (a) shows the average distance between cooperators and defectors as a function of time calculated among neighboring
players forβ=0 andβ=1. Panel (b) shows the time evolution of the average distance between cooperators and defectors calculated
in thewhole population for the sameβ values. Parameters are v=0.1,R=1, andμ=1.
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β=1 is always higher than that forβ=0. Infigure 5(b), we can find that the average distance dCD increases
with the initial value of h1 forβ=1, and the average distance forβ=0 is always zero for each initial value of h1.
Hence the former is always higher than the latter for each initial value of h1. Indeed thesemotion patterns of our
simplifiedmodels can also appear in ourmodel, and hence they clearly explainwhy the distance between
cooperators and defectors is widenedwhen players are principallymotivated to leave defector neighbors and
may be reducedwhen players are focusing to approach cooperator neighbors. This difference, as we stressed, has
a decisive factor on thefinal evolutionary outcome.

Inwhat follows, we study the influence of the strengthμ of steric repulsive force on the evolution of
cooperation for different values ofβ. Our results are summarized infigure 6wherewe plot the fraction of
cooperators in dependence onμ.We see that the cooperation level can always be raised by increasing the value of
μ especially at highβ values. In the absence of relevant repulsive force at smallμ values, however, cooperators
cannot survive.We note that in the randommigration case the applied parameter values would also result in a
full defector state. Thesefindings indicate that the introduction of the steric repulsive force can promote the
evolution of cooperation under orientation-drivenmigrationwith high valueβ.

Finally, it remains of interest to explore how the threshold distance of interactionsR influences the evolution
of cooperation for different values ofβ under the orientation-drivenmigration protocol. As shown infigure 7,
we observe that the cooperation level always decreases if we increase the interaction range. This effect is specially
pronounced at smallβ values. Furthermore, when highermobility speed is applied (not shown) the decay of
cooperation level is evenmore stressful. Notably, the cooperation level for randommigration is less than that for
large b value. These findings support that orientation-drivenmigration outperforms randommigration for the
evolution of cooperation at large values ofβ and small values ofR.

Figure 5.Panel (a) shows the average distance between cooperators and defectors in the simplifiedmotionmodel of one cooperator
and two defectors as a function of the initial value of h1 forβ=0 andβ=1. Panel (b) shows the average distance between cooperators
and defectors in the simplifiedmotionmodel of one defector and two cooperators as a function of the initial value of h1 forβ=0 and
β=1. Parameters: v=0.1,R=1, andμ=1.

Figure 6. Fraction of cooperators in dependence on the strength of steric repulsive forceμ for different values ofβ as indicated in the
legend. Parameters are v=0.1 andR=1.We note that randommigration yields zero cooperation level at these parameter values.
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4.Discussion

In this work, we have proposed an orientation-drivenmigration approach into the spatial public goods game
and studied how it influences the evolution of cooperation. Under the orientation-drivenmigration, each
individual can adjust itsmotion direction according to themotion directions of its neighbors. In principle,
individuals prefer tomove closer to their neighboring cooperators or favor to escape away from their
neighboring defectors. Considering these two extreme driving forces into the orientation-drivenmigration
approach, in the framework ofMonte Carlo simulationswe have found that the orientation-drivenmigration
can strongly enhance the evolution of cooperationwhen the speed of individuals is not too high. In particular,
cooperation can be promotedwhen individuals aremore inclined to evade defectors in their neighbors, whereas
cooperation cannot be effectivelymaintainedwhen individuals aremore inclined tomove close to cooperators
in their neighbors. Furthermore, comparedwith randommigration, escaping away fromneighboring defectors
for individuals can promote the evolution of cooperationmore effectively. Bymeans of theoretical analysis and
numerical calculations, we furtherfind that the key feature is the average distance of competing strategies, hence
escaping away fromneighboring defectors canwiden the average distance between cooperator and defector
individuals. This quantity has a paramount importance, because its large value can effectively block the invasion
of defectors into cooperators and hence is favorable to the formation and expansion of cooperative clusters for
the evolution of cooperation. In addition, we have found that cooperation can bemore enhanced by high
strength of steric repulsive force and low threshold distance of interaction.

The importance of our observation is based on the fact that individualmigration is pervasive in living
organisms, and has been considered into evolutionary gamemodels [27, 40–42]. It has been found that it can
lead to the outbreak of cooperation. In particular, when individualmigration preferences are considered,
moving away unfavorable environment [41] andmoving into profitable circumstance [27] can be regarded as
two significantly differentmigrationmodes for individuals. Previousworks have demonstrated that these
optionsmay both greatly promote the evolution of cooperation [27, 41]. But if these two different driving forces
for individualmigration are both considered into the same framework of spatial games, whichmode of
individualmigration can promote the evolution of cooperationmore?Ourwork has clearly answered this
question, andwe have found that cooperation can be bestmaintainedwhen individuals only choose to escape
away from their neighboring defectors. On the contrary, cooperation cannot be effectivelymaintainedwhen
individuals only choose tomove close to their neighboring cooperators. Furthermore, wefind that our proposed
orientation-drivenmigration approach can promote cooperation for lowmobility, which is similar to the
finding in [40] that observed lowmobility promotes cooperation under randommigration.However, compared
with randommigration studied in [40], we find that escaping fromneighboring defectors can better promote the
evolution of cooperation.Ourworkmay thus unveil the evolution of cooperation driven by differentmigration
preferences, andwe hope that this researchwill contribute relevantly to our understanding of their role in
determining the ultimate fate of themobile population.

Figure 7. Fraction of cooperators in dependence on the threshold distance of interaction rangeR for different values ofβ as indicated
in the legend. Parameters are v=0.02 andμ=1.We note that randommigrationwould result in less cooperation levels at these
parameter values, when comparedwith the case of large b value.
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AppendixA. Simplifiedmotionmodel of one cooperator and two defectors

In this paper, we consider a simplifiedmotionmodel inwhich there are one cooperatorC and two defectorsD1

andD2 , and aim to derive the dynamical equations in the scenariowhere theweight function h(r) is a power-law
function. To do that, wefirst set the position and velocity of cooperatorC as rC=(xC, yC) and v, respectively.
Andwe set the position and velocity of defectorD1 as ( )= x yr ,D D D1 1 1

and v1, respectively; the position and
velocity of defectorD2 as ( )= x yr ,D D D2 2 2

and v2, respectively. Correspondingly, we have

∣ ∣ ∣ ∣ ∣ ∣= = = vv v v1 2 .We further have ˆ= vv Vi i and ˆ= vv V, where V̂i and V̂ are the unit vectors, and i=1,
2. Furthermore, we denote with = -h r rC D1 1

( = -h r rC D2 2
) be the vector distance between cooperator (C)

and defectorD1 (D2). Correspondingly, we have ˆ= hh hi i i, where ĥi is the unit vector and hi is the distance

between cooperatorC and defectorDi. In addition, we have ∣ ∣ ( ) ( )= = - + -h x x y yhi i C D C D
2 2

i i
, where

i=1, 2.

A.1. The case of b = 0
In this case, we assume that two defectorsmove towards cooperatorC directly. Since there are no other
cooperators in the neighborhood of cooperatorC, we consider that cooperatorCmoves alongwith afixed
direction, which is the direction of v. For simplicity, butwithout losing generality, we consider that the
migration direction of cooperatorC is the positive direction of x-axis in the cartesian coordinate (see figure A1),
and correspondingly set the dynamical position of cooperatorC as (vt, 0). Hence, we

have ( )= - +h vt x yi D D
2 2

i i
.

Meanwhile, for defectorsD1 andD2 the dynamical equations ofmotion can be described as

⎧⎨⎩ ( )



q
q

=
=

x v

y v

cos ,

sin ,
A.1

D i

D i

i

i

where θi (i=1, 2) represents the angle between the vector velocities of cooperatorC and defectorDi. For
simplicity butwithout losing generality, we consider that ( ) ( ) ( )q= -x h0 0 cos 0D 1 11

and
( ) ( ) ( )q= -y h0 0 sin 0D 1 11

for defectorD1, and ( ) ( ) q= -x h0 0 cosD 2 22
and ( ) ( ) ( )q= -y h0 0 sin 0D 2 22

for
defectorD2.

Figure A1.Two defectorsD1 andD2move close to cooperatorC. θ1 (θ2 ) represents the angle between the vector velocities of
cooperator (C) and defectorD1 (D2).
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In addition, we have q =
-

-
tan i

y

vt x

Di

Di

. Accordingly, we have

( )
q =

-

y

vt x
tan ,i

D

D

2

2

2
i

i

and

( )q
= +

-

y

vt x

1

cos
1 .

i

D

D
2

2

2
i

i

Considering that θi should be restricted between (0,π/2) or (−π/2, 0), thuswe have

( )
q =

-

- +

vt x

vt x y
cos ,i

D

D D
2 2

i

i i

and

( )
q =

-

- +

y

vt x y
sin .i

D

D D
2 2

i

i i

Hence, the dynamical equations ofmotion for defectors become

⎧

⎨
⎪⎪

⎩
⎪⎪

( )

( )

( )





=
-

- +

=
-

- +

x
v t vx

vt x y

y
vy

vt x y

,

.

A.2

D
D

D D

D
D

D D

2

2 2

2 2

i
i

i i

i

i

i i

According to the above equations, we can further calculate the average distance dCD between cooperatorC
and the two defectorsD1,D2 forβ=0 in this simplifiedmotionmodel. To do that, we solve equation (A.2) via
numerical integrations by using Runge–Kuttamethod [63]with time step dt=10−3 and 2000 time steps. The
initial conditions are h2(0)=2,−π/2<θ1(0)<0, 0<θ2(0)<π/2, and ( ) h1 0 21 . Thenwe can
respectively obtain the h1 and h2 values, and correspondingly have dCD=(h1+h2)/2.We emphasize that for
each initial value h1(0), we can obtain a dCD value forfixed θ1(0) and θ2(0) values, and the average distance dCD
forβ=0 infigure 5(a) is obtained by averaging over all these distance values for uniformly distributed initial
values θ1(0) between (−π/2, 0) and uniformly distributed initial values θ2(0) between (0,π/2).

A.2. The case of b = 1
In this case, we assume that defectorsD1 andD2 willmovewith the opposite directions. For simplicity but
without losing generality, we assume that themigration direction of defectorD1 is the positive direction of y-
axis, while themigration direction of defectorD2 is the negative direction of y-axis (seefigure A2).We further set
the positions of two defectors as ( )+y vt0, 1 and ( )-y vt0, 2 , respectively, where y1 and y2 respectively
represent the initial values of yD1

and yD2
. Hencewe have ( ) ( )q= -y h 0 sin 01 1 1 and ( ) ( )q= -y h 0 sin 02 2 2 . For

simplicity, we assume that initially cooperatorC locates on the positive x-axis. Correspondingly, we have
( ) ( ) ( )q=x h0 0 cos 0C 1 1 and yC(0)=0.
For cooperatorC, the dynamical equations ofmotion can be described as

⎧⎨⎩ ( )



q
q

=
=

x v
y v

cos ,
sin ,

A.3
C

C

where θ represents the angle between the vector velocity of cooperatorC and the positive x-axis.

In addition, we have q =
-

tan i
y y

x

C Di

C
.We further have

( )
q

= +
-y y

x

1

cos
1 .

i

C D

C
2

2

2
i

Weconsider that θi should be restricted between (0,π/2) or (−π/2, 0) and the position of the cooperator
x 0C , so we have

( )
q =

+ -

x

x y y
cos ,i

C

C C D
2 2

i
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and

( )
q =

-

+ -

y y

x y y
sin .i

C D

C C D
2 2

i

i

In addition, the direction of cooperatorC is given by

ˆ
ˆ ˆ

∣ ˆ ˆ ∣
=

+

+

- -

- -

h h

h h
V

h h

h h
,

w w

w w
1 1 2 2

1 1 2 2

where ˆ ˆ= +- -h hV h hw w
1 1 2 2.We further have

∣ ∣ ( )q q= + + -- - - -h h h hV 2 cos .w w w w
1

2
2

2
1 2 2 1

Using the definition of the inner product of vectors, we obtain

⎧

⎨
⎪⎪

⎩
⎪⎪

( ) ˆ · ˆ ( )

( )

( ) ˆ · ˆ ( )

( )

q q
q q

q q

q q
q q

q q

- = =
+ -

+ + -

- = =
+ -

+ + -

- -

- - - -

- -

- - - -

h h

h h h h

h h

h h h h

V h

V h

cos
cos

2 cos
,

cos
cos

2 cos
.

w w

w w w w

w w

w w w w

1 1
1 2 2 1

1
2

2
2

1 2 2 1

2 2
2 1 2 1

1
2

2
2

1 2 2 1

As a result, we have

⎧

⎨
⎪⎪

⎩
⎪⎪

( ) ( )

( ) ( )
( ) ( )

( ) ( )

q
q q q q q q q q

q q q q

q
q q q q q q q q

q q q q

=
+ - - - -

+ + - -

=
+ - - - -

+ + - -

- - - -

- - - -

- - - -

- - - -

h h h h

h h h h

h h h h

h h h h

cos
sin cos sin sin cos sin

2 cos sin
,

sin
cos cos cos cos cos cos

2 cos sin
.

w w w w

w w w w

w w w w

w w w w

1 2 2 2 1 2 2 1 1 2 1 1

1
2

2
2

1 2 2 1 2 1

1 2 2 2 1 2 2 1 1 2 1 1

1
2

2
2

1 2 2 1 1 2

Hence, the dynamical equations of themotion for cooperatorC are given as

⎧

⎨
⎪⎪

⎩
⎪⎪

( ) ( )

( ) ( )
( ) ( )

( ) ( )

( )





q q q q q q q q

q q q q
q q q q q q q q

q q q q

=
+ - - - -

+ + - -

=
+ - - - -

+ + - -

- - - -

- - - -

- - - -

- - - -

x v
h h h h

h h h h

y v
h h h h

h h h h

sin cos sin sin cos sin

2 cos sin
,

cos cos cos cos cos cos

2 cos sin
,

A.4

C

w w w w

w w w w

C

w w w w

w w w w

1 2 2 2 1 2 2 1 1 2 1 1

1
2

2
2

1 2 2 1 2 1

1 2 2 2 1 2 2 1 1 2 1 1

1
2

2
2

1 2 2 1 1 2

where ( )= + - -h x y y vtC C1
2

1
2 , ( )= + - +h x y y vtC C2

2
2

2 ,
( )

q =
+ -

cos i
x

x y y

C

C C Di
2 2

,

and
( )

q =
-

+ -
sin i

y y

x y y

C Di

C C Di
2 2

.

According to the above equations, we can further calculate the average distance dCD between cooperatorC
and twodefectorsD1,D2 forβ=1 in this simplifiedmotionmodel. To do that, we solve equation (A.4) via
numerical integrations by using Runge–Kuttamethod [63]with time step dt=10−3 and 2000 time steps.Here

Figure A2. Individuals escape away fromdefectors in the situation inwhich there are one cooperator and two defectors. θ represents
the angle between the positive x-axis and the vector velocity of cooperatorC, and θi represents the angle between the positive x-axis
and the vectorhi.
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the initial conditions are h2(0)=2,w=2,−π/2<θ1(0)<0, 0<θ2(0)<π/2, and ( ) h1 0 21 . Thenwe
can respectively obtain the h1 and h2 values and calculate dCD=(h1+h2)/2.We emphasize that for each initial
value h1(0), we can obtain a dCD value forfixed θ1(0) value, and the average distance dCD forβ=1, plotted in
figure 5(a), is obtained by averaging over all these distance values for uniformly distributed initial values θ1(0)
between (−π/2, 0) and uniformly distributed initial values θ2(0) between (0,π/2).

Appendix B. Simplifiedmotionmodel of one defector and two cooperators

In the following, we consider a simplifiedmotionmodel inwhich there are a defector (D) and two cooperators
C1 andC2, and then derive the dynamical equations in the scenario where theweight function h(r) is a power-law
function. To do that, wefirst set the position and velocity of defectorD as rD=(xD, yD) and v, respectively. And
we set the position and velocity of cooperatorC1 as ( )= x yr ,C C C1 1 1

and v1, respectively; the position and velocity
of cooperatorC2 as ( )= x yr ,C C C2 2 2

and v2, respectively. Correspondingly, we have ∣ ∣v =∣ ∣v1=∣ ∣ = vv2 .We

further have ˆ= -vv Vi i and ˆ= -vv V , where V̂i and V̂ are the unit vectors, and i=1, 2. Furthermore, we
denote by = -h r rD C1 1

( = -h r rD C2 2
) the distance vector of cooperatorC1 (C2) and defectorD.

Correspondingly, we have ˆ= hh hi i i, where ĥi is the unit vector and hi is the distance between defectorD and

cooperatorCi. In addition, we have ( ) ( )= - + -h x x y yi D C D C
2 2

i i
, where i=1, 2.

B.1. The case of b = 0
In this case, we assume that cooperatorsC1 andC2 willmove towards to each other. For simplicity without losing
generality, we assume that themigration direction of cooperatorC1 is the negative direction of y-axis, while the
migration direction of cooperatorC2 is the positive direction of y-axis (see figure B1).We further set the
positions of two cooperators as ( )-y vt0, 1 and ( )+y vt0, 2 , respectively. Hencewe have ( ) ( )q= -y h 0 sin 01 1 1

and ( ) ( )q= -y h 0 sin 02 2 2 . For simplicity butwithout losing generality, we assume that initially defectorD
locates on the positive x-axis. Correspondingly, we have ( ) ( ) ( )q=x h0 0 cos 0D 1 1 and yD(0)=0.

For defectorD, the dynamical equations ofmotion can be thus described as

⎧⎨⎩ ( )



q
q

=
=

x v
y v

cos ,
sin ,

B.1
D

D

where θ represents the angle between the vector velocity of cooperatorC and the positive x-axis.

In addition, we have q =
-

tan i
y y

x

D Ci

D
.We further have

( )
q

= +
-y y

x

1

cos
1 .

i

D C

D
2

2

2
i

Weconsider that when defector (D)moves close to the origin (O), the direction of defector (D) becomes the
negative or positive direction of y-axis, sowe have x 0D . Considering that θi should be restricted between (0,
π/2) or (−π/2, 0), thuswe have

Figure B1. Individualsmove close to cooperators in the situation inwhich there are two cooperators and one defector. θ represents the
angle between the positive x-axis and the vector velocity of defectorD, and θi represents the angle between the positive x-axis and the
vector hi.
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( )
q =

+ -

x

x y y
cos ,i

D

D D C
2 2

i

and

( )
q =

-

+ -

y y

x y y
sin .i

D C

D D C
2 2

i

i

In addition, the direction of defectorD is given by

ˆ
ˆ ˆ

∣ ˆ ˆ ∣
= -

+

+

- -

- -

h h

h h
v

h h

h h
,

w w

w w
1 1 2 2

1 1 2 2

where ˆ ˆ= - -- -h hV h hw w
1 1 2 2.We further have

∣ ∣ ( )q q= + + -- - - -h h h hV 2 cos .w w w w
1

2
2

2
1 2 2 1

Using the definition of the inner product of vectors, we obtain

⎧

⎨
⎪⎪

⎩
⎪⎪

( ) ˆ · ˆ ( )

( )

( ) ˆ · ˆ ( )

( )

q q
q q

q q

q q
q q

q q

- = = -
+ -

+ + -

- = = -
+ -

+ + -

- -

- - - -

- -

- - - -

h h

h h h h

h h

h h h h

V h

V h

cos
cos

2 cos
,

cos
cos

2 cos
.

w w

w w w w

w w

w w w w

1 1
1 2 2 1

1
2

2
2

1 2 2 1

2 2
2 1 2 1

1
2

2
2

1 2 2 1

As a result, we have

⎧

⎨
⎪⎪

⎩
⎪⎪

( ) ( )

( ) ( )
( ) ( )

( ) ( )

q
q q q q q q q q

q q q q

q
q q q q q q q q

q q q q

= -
+ - - - -

+ + - -

= -
+ - - - -

+ + - -

- - - -

- - - -

- - - -

- - - -

h h h h

h h h h

h h h h

h h h h

cos
sin cos sin sin cos sin

2 cos sin
,

sin
cos cos cos cos cos cos

2 cos sin
.

w w w w

w w w w

w w w w

w w w w

1 2 2 2 1 2 2 1 1 2 1 1

1
2

2
2

1 2 2 1 2 1

1 2 2 2 1 2 2 1 1 2 1 1

1
2

2
2

1 2 2 1 1 2

Hence, the dynamical equations of themotion for defectorD are given by

⎧

⎨
⎪⎪

⎩
⎪⎪

( ) ( )

( ) ( )
( ) ( )

( ) ( )

( )





q q q q q q q q

q q q q
q q q q q q q q

q q q q

= -
+ - - - -

+ + - -

= -
+ - - - -

+ + - -

- - - -

- - - -

- - - -

- - - -

x v
h h h h

h h h h

y v
h h h h

h h h h

sin cos sin sin cos sin

2 cos sin
,

cos cos cos cos cos cos

2 cos sin

, B.2

D

w w w w

w w w w

D

w w w w

w w w w

1 2 2 2 1 2 2 1 1 2 1 1

1
2

2
2

1 2 2 1 2 1

1 2 2 2 1 2 2 1 1 2 1 1

1
2

2
2

1 2 2 1 1 2

where ( )= + - +h x y y vtD D1
2

1
2 , ( )= + - -h x y y vtD D2

2
2

2 , ( )
( )

q = =
+ -

icos 1, 2i
x

x y y

D

D D Ci
2 2

,

and
( )

q =
-

+ -
sin i

y y

x y y

D Ci

D D Ci
2 2

.

According to the above equations, we can further calculate the average distance dCD between cooperatorsC1,
C2 and defectorD forβ=0 in this simplifiedmotionmodel. To do that, we solve equation (B.2) via numerical
integrations by using Runge–Kuttamethod [63]with time step dt=10−3 and 2000 time steps. The initial
conditions are h2(0)=2,w=2,−π/2<θ1(0)<0, 0<θ2(0)<π/2, and ( ) h1 0 21 . Thenwe can
respectively obtain the h1 and h2 values, and correspondingly the critical distance dCD=(h1+h2)/2.We
emphasize that for each initial value h1(0), we can obtain a dCD value forfixed θ1(0) value, and the average
distance dCD forβ=0 infigure 5(b) is obtained by averaging over all these distance values for uniformly
distributed initial values θ1(0) between (−π/2, 0) and uniformly distributed initial values θ2(0) between (0,π/2).

B.2. The case of b = 1
In this case, we know that two cooperators escape away fromdefectorD. Since there are no other defectors in the
neighborhood of defectorD, we consider that defectorDmoves alongwith afixed direction, which is the
direction of v. For simplicity, we consider that themigration direction of defectorD is the positive direction of x-
axis in the cartesian coordinate (see figure B2), and correspondingly set the dynamical position of defectorD as

(vt, 0). Hencewe have ( )= - +h vt x yi C C
2 2

i i
.We consider that ( ) ( ) ( )q=x h0 0 cos 0C 1 11

and

( ) ( ) ( )q=y h0 0 sin 0C 1 11
for cooperatorC1, and ( ) ( ) q=x h0 0 cosC 2 22

and ( ) ( ) ( )q=y h0 0 sin 0C 2 22
for cooperator

C2.
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Meanwhile, for cooperatorsC1 andC2 the dynamical equations ofmotion can be described as

⎧⎨⎩ ( )



q
q

=
=

x v

y v

cos ,

sin ,
B.3

C i

C i

i

i

where θi(i=1, 2) represent the angle between the vector velocities of defectorD and cooperatorCi.

In addition, we have q =
-

tan i
y

x vt

Ci

Ci

. Accordingly, we have

( )
q =

-

y

x vt
tan ,i

C

C

2

2

2
i

i

and

( )q
= +

-

y

x vt

1

cos
1 .

i

C

C
2

2

2
i

i

Considering that θi should be restricted between (0,π/2) or (−π/2, 0), thuswe have

( )
q =

-

- +

x vt

x vt y
cos ,i

C

C C
2 2

i

i i

and

( )
q =

- +

y

x vt y
sin .i

C

C C
2 2

i

i i

Hence, the dynamical equations ofmotion for two cooperators become

⎧

⎨
⎪⎪

⎩
⎪⎪

( )

( )

( )





=
-

- +

=
- +

x
vx v t

x vt y

y
vy

x vt y

,

.

B.4

C
C

C C

C
C

C C

2

2 2

2 2

i
i

i i

i

i

i i

According to these equations, we can further calculate the average distance dCD between cooperatorsC1,C2

and defectorD forβ=1 in this simplifiedmotionmodel. To do that, we solve equation (B.4) via numerical
integrations by using Runge–Kuttamethod [63]with time step dt=10−3 and 2000 time steps. The initial
conditions are h2(0)=2, 0<θ1(0)<π/2,−π/2<θ2(0)<0, and ( ) h1 0 21 . Thenwe can respectively
obtain the h1 and h2 values, and correspondingly have dCD=(h1+h2)/2.We emphasize that for each initial
value h1(0), we can obtain a dCD value forfixed θ1(0) and θ2(0) values, and the average distance dCD forβ=1 in
figure 5(b) is obtained by averaging over all these distance values for uniformly distributed initial values θ1(0)
between (0,π/2) and uniformly distributed initial values θ2(0) between (−π/2, 0).

Figure B2.Two cooperators escape away fromone defector. θ1 (θ2) represents the angle between the vector velocities of defectorD and
cooperatorC1 (C2).
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