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ABSTRACT 
We show how frictions and continuous transfers jointly affect equilibria in a model of 

matching in trading networks. Our model incorporates distortionary frictions such as 

transaction taxes, bargaining costs, and incomplete markets. When contracts are fully 

substitutable for firms, competitive equilibria exist and coincide with outcomes that 

satisfy a cooperative stability property called trail stabity. In the presence of frictions, 

competitive equilibria might be neither stable nor (constrained) Pareto-efficient. In the 

absence of frictions, on the other hand, competitive equilibria are stable and in the 

core, even if utility is imperfectly transferable. 
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Kereskedelmi hálózatok súrlódásokkal 

FLEINER TAMÁS – RAVI JAGADEESAN
 

JANKÓ ZSUZSANNA – ALEXANDER TEYTELBOYM
 

ÖSSZEFOGLALÓ 

Megmutatjuk, hogy a kereskedelmi hálózat modellben mind a súrlódás, mind a 

folytonos átválthatóság megléte hogyan befolyásolja a közgazdasági egyensúlyt. 

Modellünkben a torzítást eredményező súrlódási tényezők lehetnek tranzakciók után 

fizetendő illetékek, az alkufolyamathoz kapcsolódó költségek vagy hiányos piacok. 

Amennyiben a modellben szereplő cégek számára az egyes szerződések korlátlanul 

helyettesíthetők, úgy mindig létezik közgazdasági egyensúly, és megegyezik a trail-

stabilitásnak elnevezett kooperatív stabilitási tulajdonságot teljesítő 

végeredményekkel. Súrlódás megléte esetén azonban a közgazdasági egyensúlyi sem 

nem feltétlenül stabil, sem pedig nem feltétlenül Pareto-optimális. Súrlódás hiányában 

azonban a közgazdasági egyensúly akkor is stabil és mag-tulajdonságú, ha a hasznosság 

nem tökéletesen átváltható. 
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Trading networks with frictions

TAMÁS FLEINER RAVI JAGADEESAN ZSUZSANNA JANKÓ ALEXANDER TEYTELBOYM

We show how frictions and continuous transfers jointly a�ect equilibria in a model of matching in trading networks. Our model

incorporates distortionary frictions such as transaction taxes, bargaining costs, and incomplete markets. When contracts are fully

substitutable for �rms, competitive equilibria exist and coincide with outcomes that satisfy a cooperative stability property called trail

stability. In the presence of frictions, competitive equilibria might be neither stable nor (constrained) Pareto-e�cient. In the absence of

frictions, on the other hand, competitive equilibria are stable and in the core, even if utility is imperfectly transferable.

1 INTRODUCTION

Interdependence and specialization of production are central features of the modern economy. Many �rms have complex,

bilateral relationships with dozens of buyers and suppliers. The terms of these relationships are typically encoded in

complex contracts that specify goods traded or services rendered, delivery dates, penalties for non-completion, and, of

course, prices. Markets that involve heterogeneous and highly specialized contracts, talented workers, or sophisticated

machines can often be concentrated and thin. In such markets, it is à priori implausible to assume that agents act as

price-takers.

Models of matching with contracts, inspired by the work of Gale and Shapley [1962], elegantly capture interaction in

thin markets [Crawford and Knoer, 1981, Hat�eld and Milgrom, 2005, Kelso and Crawford, 1982, Roth, 1984]. Matching

models do not typically assume that agents are price-takers: instead, agents are free to engage in highly speci�c

contracts and rely on the consent of counterparties to maintain contractual relationships. The equilibrium concepts

employed in the matching literature, such as stability, require that recontracting should not be pro�table. Unlike typical

general equilibrium models, matching models can also incorporate indivisibilities, which are often present in thin

markets. Finally, matching models capture frictions, such as transaction taxes [Dupuy et al., 2017], bargaining costs

[Galichon et al., 2018], and the incompleteness of the �nancial market [Jagadeesan, 2017].
1

While cooperative solution concepts are well-founded thin markets, competitive solution concepts are often more

natural in thick markets [Edgeworth, 1881, Kelso and Crawford, 1982]. Nevertheless, competitive and cooperative

solution concepts are both appealing to some extent in markets of all sizes. For example, competitive equilibrium could

be a reasonable solution concept even in thin markets because it does not require �rms to coordinate directly with one

another. Cooperative solutions, on the other hand, o�er a credible foundation for the analysis of thick markets that

cannot clear—for example, due to price controls.
2

This paper establishes an equivalence between competitive equilibrium and an intuitive stability concept in markets

with frictions. As we will argue, our equivalence result provides new cooperative foundations for competitive equilibrium

and competitive foundations for our stability concept. We also show how frictions matter for the connection between

competitive and cooperative solution concepts.

We focus on trading networks to capture complex production linkages. Following Ostrovsky [2008], Hat�eld and

Kominers [2012], Hat�eld et al. [2013], and Fleiner et al. [2018b], we assume that agents interact via an exogenously

1
The �nancial market is incomplete if agents su�er from uninsurable risk—that is, if there is some Arrow [1953] security that is absent or cannot be

traded without transaction costs.

2
See Drèze [1975], Hat�eld et al. [2012, 2016], Andersson and Svensson [2014], and Herings [2015].
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speci�ed set of bilateral trades—which specify who is trading, what good or service is being traded, and any non-

pecuniary parameters of exchange. Trades have directions that correspond to the �ow of goods: upstream trades

represent purchases and downstream trades represent sales. In a market outcome, transfers are made for every realized

trade, encapsulating the role of money in the economy [Hat�eld et al., 2013]. We summarize outcomes as a set of

realized contracts, each of which speci�es a trade and a price.

Our model can capture distortionary frictions in reduced form. Formally, we allow agents to place di�erent values

on transfers associated to di�erent trades. Intuitively, when frictions are present, receiving one unit of transfer may not

fully o�set the cost of paying one unit of transfer. For example, transaction taxes and bargaining costs cause there to be

a wedge between payment and receipt. There might also be wedges between forms of transfer when �nancial markets

are incomplete. For example, if transfers are in trade credit that is subject to imperfectly-insurable default risk, then

creditors value payments less than debtors. Similarly, if currency markets are imperfect, then �rms may value local

currency more than foreign currency. However, like in general equilibrium models, we assume that transfers associated

to trades are one-dimensional, so that each realized trade has a well-de�ned price. This uni-dimensionality condition

rules out partial �nancing of purchases with trade credit and requires that each trade is priced in a single currency

[Jagadeesan, 2017].

Our �rst main result provides su�cient conditions for the existence of competitive equilibria. The key assumption is

that preferences over contracts are fully substitutable [Hat�eld and Kominers, 2012, Hat�eld et al., 2013, Ostrovsky,

2008]—that is, that upstream (resp. downstream) trades are grossly substitutable for each other, and that upstream and

downstream trades are grossly complementary to one another. Full substitutability can be regarded as the requirement

that the goods that �ow in trades are grossly substitutable [Baldwin and Klemperer, 2018, Hat�eld et al., 2019]. In our

model, full substitutability and a mild regularity condition together ensure that competitive equilibria exist.
3

To relate the competitive and cooperative approaches to the analysis of markets with frictions, we �rst explore

cooperative interpretations of competitive equilibria. We show that competitive equilibrium outcomes are always

trail-stable—i.e., immune to sequential deviations in which a �rm that receives an upstream (resp. downstream) contract

o�er can either accept the o�er outright or make an additional downstream (resp. upstream) contract o�er [Fleiner et al.,

2018b]. Trail stability is a natural extension of Gale and Shapley’s (1962) pairwise stability property to trading networks.

Other solution concepts in matching theory are stability (in the sense of Hat�eld et al. [2013])—which requires that

there is no group of �rms that can commit to recontracting among themselves (possibly while dropping some existing

contracts)—and the core. However, in the presence of frictions, competitive equilibrium outcomes are typically neither

stable nor in the core.

Stable and trail-stable outcomes, on the other hand, have competitive interpretations. We say that an outcome lifts to

a competitive equilibrium if the outcome can be supported by competitive equilibrium prices—as an outcome already

speci�es the prices of realized trades, showing that an outcome lifts to a competitive equilibrium amounts to specifying

equilibrium prices for unrealized trades. We show that trail-stable and stable outcomes lift to competitive equilibria

under full substitutability and regularity conditions.
4

In the presence of frictions, therefore, the trail stability and

competitive equilibrium solution concepts are essentially equivalent, but they both di�er from stability.

3
As Hat�eld and Kominers [2012] and Hat�eld et al. [2013] show, full substitutability is necessary (in the maximal domain sense) for the existence of

equilibria in trading networks.

4
Hat�eld et al. [2013] show that stable outcomes lift to competitive equilibria under full substitutability in transferable utility economies. Our results

apply even in the presence of frictions and income e�ects.
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Fig. 1. Summary of our results. The squiggly arrows represent existence results, the ordinary arrows represent relationships
between solution concepts, and the dashed arrows shows li�ing results. Arrows are labeled by the hypotheses of the corresponding
results. FS stands for full substitutability (see Assumption 1), “Bounded CVs" stands for “bounded compensating variations" (see
Assumptions 2 and 2′), and “bounded WTP" stands for “bounded willingness to pay" (see Assumption 3).

The relationship between stability and competitive equilibria changes dramatically in the absence of distortionary

frictions. In this case, there are no wedges between payments and receipts, and we say that the market is complete.5

Completeness ensures that competitive equilibrium outcomes are strongly group stable (in the sense ofHat�eld et al.

[2013]), hence in particular stable, in the core, and Pareto-e�cient. As a result, the (strong group) stability, trail stability,

and competitive equilibrium solution concepts are all essentially equivalent in complete markets. Figure 1 summarizes

our results.

Taken as a whole, our results provide new foundations for competitive equilibrium and trail stability in thin and

thick markets. Our competitive interpretation of trail stability guarantees that, as long �rms coordinate on a trail-stable

outcome, they act as if they take prices as given. Hence, even though price-taking may not be a reasonable assumption

per se in thin markets, it is actually a consequence of cooperative behavior. On the other hand, our cooperative

interpretation of competitive equilibrium guarantees that �rms cannot improve upon equilibrium outcomes even by

deviations along trails. Therefore, while it may be di�cult for �rms to coordinate with each other in thick markets, any

equilibrium will yield a trail-stable outcome as long as �rms take prices as given.

From an applied perspective, our model may be of interest to structural econometricians. Recent work on estimation

in matching markets with transfers has focused on frictionless trading networks [Fox, 2017, 2018, Fox et al., 2018]

and two-sided markets with frictions [Cherchye et al., 2017, Galichon et al., 2018].
6

Since our model allows for both

frictions and interconnectedness, it opens up new applications. Consider, for example, the housing market. Houses are

highly di�erentiated and agents might act as both buyers and sellers, making the housing market an interconnected

trading network. There is no vertical supply chain structure. Interactions in the housing market su�er from bargaining

5
Our completeness condition is analogous to the requirement in general equilibrium theory that the �nancial market is complete. Indeed, when the

�nancial market is rich enough (i.e., all Arrow [1953] securities are present), agents’ marginal rates of substitution between forms of transfer are

equalized in equilibrium. By renormalizing the currency units of each form of transfer, we can assume that all agents are indi�erent between all forms of

transfer—see Section 6.

6
Other papers have focused on structural estimation in two-sided matching markets with transferable utility. See, for example, Choo and Siow [2006],

Fox [2010], Chiappori, Ore�ce, and Quintana-Domeque [2012], Fox and Bajari [2013], Dupuy and Galichon [2014], Galichon and Salanié [2014], and

Chiappori, Salanié, and Weiss [2017].
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frictions and other transaction costs—such as real estate agent fees and stamp duty land taxes [Hilber and Lyytikäinen,

2017]—making utility imperfectly transferable.
7

Structural methods based on our model would allow the econometrician

to partially identify agents’ preferences by assuming that the observed market outcome is trail-stable—or, equivalently,

associated to a competitive equilibrium.

Most previous models of matching in trading networks impose signi�cant additional conditions on the structure

of the trading network, the space of contracts, or preferences. Ostrovsky [2008], Westkamp [2010], and Hat�eld and

Kominers [2012] derive existence and structural results for acyclic networks, which cannot contain “horizontal" trade

between intermediaries.
8

Hat�eld et al. [2018] and Fleiner et al. [2018b] extend the analysis of Ostrovsky [2008] to

general trading networks. However, Ostrovsky [2008], Westkamp [2010], Hat�eld and Kominers [2012], and Fleiner et al.

[2018b] all assume that there are �nitely many contracts, ruling out continuous or unbounded prices and precluding

comparisons between the matching and general equilibrium approaches. Hat�eld et al. [2013] consider general trading

networks with continuous prices and technological constraints, but assume that utility is perfectly transferable, ruling

out distortionary frictions and income e�ects.
9

In a recent paper, Hat�eld et al. [2018] introduce continuous prices

into discrete models of matching in trading networks [Fleiner et al., 2018b, Hat�eld and Kominers, 2012, Ostrovsky,

2008, Westkamp, 2010] while allowing for technological constraints [Hat�eld et al., 2013]. Our model specializes that

of Hat�eld et al. [2018] to accommodate general equilibrium analysis. Hat�eld et al. [2018] show when chain stable

outcomes and stable outcomes—neither of which exist in our model—coincide. In contrast, we prove existence results

and relate competitive equilibrium to trail stability and stability.

This paper proceeds as follows. Section 2 introduces the model. Section 3 explains how our model captures frictions

and describes leading examples. Section 4 presents su�cient conditions for the existence of competitive equilibrium.

Section 5 de�nes trail stability and stability and relates these concepts to competitive equilibrium. Section 6 analyzes

complete markets. Section 7 concludes. Appendix A specializes to the case of acyclic networks. Appendix B formulates

an equivalent de�nition of full substitutability. The Supplementary Appendices present the omitted proofs and additional

examples.

2 MODEL

Our model is based on that of Hat�eld et al. [2018] but requires that prices be continuous and unbounded.

2.1 Firms and contracts

There is a �nite set � of �rms and a �nite set Ω of trades. Each trade l ∈ Ω is associated to a buyer b(l) ∈ � and a seller

s(l) ∈ � . Trades specify what is being exchanged as well as any non-pecuniary contract terms [Hat�eld et al., 2013].

A contract is a pair (l, ?l ) that consists of a trade l and a price ?l ∈ R. Thus, the set of contracts is - = Ω × R. Let

g : - → Ω be the projection that recovers the trade associated with a contract. An outcome is a set . ⊆ - such that

each trade is associated with at most one price in .—formally, |g (. ) | = |. |.
Given a set Ξ ⊆ Ω of trades and a �rm 5 ∈ �, let Ξ→5 denote the set of trades in Ξ in which 5 acts as a buyer, let

Ξ5→ denote the set of trades in Ξ in which 5 acts as a seller, and let Ξ5 = Ξ→5 ∪ Ξ5→ denote the set of trades in

7
In contrast, Shapley and Shubik [1972] and Hat�eld et al. [2013] assume that utility is perfectly transferable, while Shapley and Scarf [1974] and

Abdulkadiroğlu and Sönmez [1999] assume that utility is non-transferable.

8
In Appendix A, we impose acyclicity and show that trail-stable, stable, and competitive equilibrium outcomes coincide under full substitutability and a

regularity condition.

9
Hat�eld et al. [2013] allow for �xed transaction costs, such as shipping costs and lump-sum transaction taxes, but not variable transaction taxes and the

other frictions considered in this paper.
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Ξ in which 5 is involved (either as a buyer or as a seller). For a set . ⊆ - of contracts, we de�ne .→5 , .5→, and .5

analogously.

An arrangement is a pair [Ξ;?] of a set of trades Ξ ⊆ Ω and a price vector ? ∈ RΩ . Given an arrangement [Ξ;?] ,
de�ne an associated outcome ^ ( [Ξ;?]) ⊆ - by

^ ( [Ξ;?]) = {(l, ?l ) | l ∈ Ξ}.

That is, ^ ( [Ξ;?]) is the outcome at which the trades in Ξ are realized at prices given by ? . Note that arrangements

specify prices even for unrealized trades.

2.2 Utility functions and transfers

Each �rm’s utility depends only on the trades that involve it and on the transfers that it pays and receives. Formally,

�rm 5 has a utility function D 5 : P(Ω5 ) × RΩ5 → R ∪ {−∞}.10
We assume that D 5 is continuous and that

C ≤ C ′ =⇒ D 5 (Ξ, C) ≤ D 5 (Ξ, C ′)

with equality only if D 5 (Ξ, C) = −∞, so that monetary transfers are relevant to �rms whenever their utility is �nite.

We also assume that D 5 (∅, 0) ∈ R, so that money is relevant to �rms at any outcome that they prefer to autarky. The

transferable utility trading network model of Hat�eld et al. [2013] is recovered when

D 5 (Ξ, C) = E 5 (Ξ) +
∑
l ∈Ω5

Cl

for some valuation function E 5 : P(-5 ) → R ∪ {−∞}.
To analyze competitive equilibria, we need to consider �rms’ demands at any given price vector. Prices give rise to

transfers in the following manner. Firms receive no transfer for a trade if they do not agree to the trade. Firms receive

transfers equal to the prices of any realized sales (downstream trades) and pays transfers equal to the prices of any

realized purchases (upstream trades). Maximizing utility at a price vector ? ∈ RΩ5 gives rise to a collection of sets of

demanded trades

� 5 (?) = arg max

Ξ⊆Ω5
D 5

(
Ξ,

(
?Ξ5→ , (−?)Ξ→5 , 0Ω5rΞ

))
.

Thus, � 5 is the demand correspondence of �rm 5 .

As is typical in matching theory (see Aygün and Sönmez [2013]), we also need to consider �rms’ choices from sets of

available contracts. Given an outcome . ⊆ -5 , de�ne * 5 (. ) = D 5 (g (. ), C), where Cl is the transfer associated with

trade l .
11

Since prices are continuous, �rms might be indi�erent between certain outcomes. We therefore de�ne the

choice correspondence � 5 : P(-5 ) ⇒ P(-5 ) by

� 5 (. ) = arg max

outcomes / ⊆.
* 5 (/ ) .

10
We write P(/ ) for the power set of a set / .

11
Formally, we write

Cl =


0 if l ∉ g (. )
?l if (l, ?l ) ∈ .5→
−?l if (l, ?l ) ∈ .→5

.
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2.3 Competitive equilibrium

In a competitive equilibrium, �rms act as price-takers and the market for each trade clears—either a trade is demanded

(at the speci�ed price) by both the buyer and the seller or it is demanded by neither. As in Hat�eld et al. [2013], in order

to fully specify a competitive equilibrium, we need to assign prices to all trades, including ones that are not realized.

De�nition 1. An arrangement [Ξ;?] is a competitive equilibrium if Ξ5 ∈ � 5 (?Ω5 ) for all 5 .

As interchangeable trades with di�erent counterparties can be priced di�erently, our competitive equilibria have

personalized prices (as in Hat�eld et al. [2013]).
12

We call an outcome� a competitive equilibrium outcome if� = ^ ( [Ξ;?])
for some competitive equilibrium [Ξ;?].

3 DISTORTIONARY FRICTIONS

In our model, �rms may value transfers from di�erent trades di�erently, so that a unit of Cl might be worth less to the

�rm than a unit of Cl′ .
13

This feature allows our model to capture (in a reduced form) distortionary frictions, such

as variable transaction taxes, bargaining costs, and certain forms of �nancial market incompleteness. This section

illustrates exactly how our model can capture these distortionary frictions and how they in turn a�ect competitive

equilibria.

3.1 Transaction taxes

Suppose, for example, that _ proportion of any transfer must be paid to the government. We assume that the recipient of

the transfer pays the proportional transaction tax—this assumption is without loss of generality. Thus, the net transfer

received or paid by a �rm for a trade l is

C̃l =


(1 − _)Cl if Cl ≥ 0

Cl if Cl < 0

,

where Cl is the gross transfer. Hence, when Cl ≥ 0, the �rm is a recipient of the transfer and receives (1 − _)Cl ;

when Cl < 0, the �rm is a payer and pays Cl in full. As a result, if �rm 5 has quasilinear preferences and valuation

E 5 : P(-5 ) → R ∪ {−∞}, then the utility function D 5 is

D 5 (Ξ) = E 5 (Ξ) +
∑
l ∈Ω5

C̃l .

When _ < 1 and E 5 (∅) ∈ R, the utility function D 5 satis�es our conditions on preferences (i.e., it is continuous and

satis�es the requisite monotonicity conditions). Note that transaction taxes make utility imperfectly transferable even

if preferences are quasilinear.

We can model transaction taxes similarly even in the presence of income e�ects. If �rm 5 has utility function D̂ 5

before taxes, then the net-of-tax utility function is

D 5 (Ξ, C) = D̂ 5
(
Ξ, C̃

)
.

More generally, our framework can capture non-linear transaction taxes and subsidies. Suppose that Λl ( |?l |) tax

must be paid on a transfer of size |?l | for trade l. If �rm 5 has utility function D̂ 5 before taxes, then the net-of-tax

12
For example, trades of the same good with di�erent counterparties can have di�erent prices in a competitive equilibrium.

13
That is, �rms could have di�erent marginal rates of substitution between transfers associated to di�erent trades.
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utility function is

D 5 (Ξ, C) = D̂ 5
(
Ξ, C̃

)
,

where

C̃l =


Cl − Λl (Cl ) if Cl ≥ 0

Cl if Cl < 0

.

The case of Λl ( |?l |) = _ |?l | recovers the proportional transaction tax discussed above. When marginal tax rates are

strictly less than one
14

and D̂ 5 is continuous and satis�es the requisite monotonicity properties, D 5 is continuous and

satis�es the requisite monotonicity properties as well. It is straightforward to extend the de�nition of C̃ to capture

transaction taxes that depend on the directions of transfers.

3.2 Bargaining costs and incomplete financial markets

There are at least two more interesting distortionary frictions that can sometimes be modeled as transaction taxes.

First, surplus might be lost during negotiation. In a reduced form, bargaining costs can be modeled as transaction

taxes [Galichon et al., 2018], and hence �t neatly into the framework described in Section 3.1.

Second, �nancial markets might be imperfect or otherwise incomplete. For example, suppose that �rms pay for

goods in trade credit, which is paid o� in cash after goods are exchanged. In the absence of risk aversion, uninsurable

idiosyncratic default risk can also be modeled as a transaction tax.
15

Formally, the possibility that �rm 5 defaults with

(subjective) probability d can be modeled as losing d proportion of any payment made by 5 . Our model can still capture

uninsurable idiosyncratic default risk in the presence of risk aversion, but not using the transaction tax framework.

More generally, our model can capture settings in which �rms disagree about the relative values of di�erent forms of

transfer due to the incompleteness of the �nancial market.
16

3.3 Leading examples

We now illustrate how distortionary frictions can a�ect competitive equilibria. We focus on proportional transaction

taxes (with _ = 10%) for the sake of simplicity, but in light of the discussion of Section 3.2, we could instead incorporate

bargaining costs or incomplete markets.

The �rst example considers a cyclic economy in which �rms have quasilinear preferences and transaction taxes are

incorporated using the framework described in Section 3.1. We show that equilibria can be Pareto-comparable.

Example 1 (Cyclic economy). There is a proportional transaction tax on all transfers of _ = 10%. As depicted in

Figure 2(a), there are two �rms, 51 and 52, which interact via two trades. The �rms share the same utility function

D 58 (Ξ, C) = E (Ξ) +
∑
l ∈Ω58

C̃l ,

14
Formally, we require that Λl is continuous, Λl (0) = 0, and G2 − Λl (G2) < G1 − Λl (G1) for all G1 > G2 > 0.

15
As Jagadeesan [2017] points out, our model cannot capture settings with imperfectly-insurable default risk in which �rms partially �nance purchases

with trade credit and partially pay in cash.

16
For example, �rms might prefer one type of transfer over another if trades are priced in di�erent currencies. The presence of multiple currencies with

common exchange rates does not distort markets per se. On the other hand, uninsurable risk or transaction costs associated with currency conversion can

be modeled as variable transaction costs.
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(a) Trades in Examples 1 and 3.
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(b) Trades in Example 2.

Fig. 2. Trades in Examples 1, 2, and 3. Arrows point from sellers to buyers.

where the valuation E is de�ned by

E (∅) = 0

E ({Z ,k }) = 10

E ({Z }) = E ({k }) = −∞.

There are two sets of trades that can be supported in competitive equilibria: ∅ and {Z ,k }. For example, the

arrangement [{Z ,k };?] is a competitive equilibrium if −100 ≤ ?Z = ?k ≤ 100, and the arrangement [∅;?] is a

competitive equilibrium if ?Z = ?k ≥ 100 or ?Z = ?k ≤ −100.17

Note that there are Pareto-comparable competitive equilibria: both 51 and 52 strictly prefer [{Z ,k }; (0, 0)] over

any other competitive equilibrium with ?Z = ?k . As pointed out by Hart [1975], the existence of Pareto-comparable

equilibria suggests that equilibria are constrained suboptimal.The competitive equilibria of the form [{Z ,k };?] and

[∅;?] with ?Z = ?k ≠ 0 are constrained Pareto-ine�cient.

In contrast, by the First Welfare Theorem, competitive equilibria cannot be Pareto-comparable in economies without

transaction taxes (see Supplementary Appendix F).

The second example shows that adding an outside option for 51 to Example 1 can shut down trade between 51 and 52.

The fact that enlarging the market can harm all �rms suggests that equilibria are constrained suboptimal in the enlarged

market [Hart, 1975]. The constrained suboptimality is due to pecuniary externalities. In the context of Examples 1

and 2, adding an outside option can cause prices to become extreme, inducing heavy trading losses (due to taxes) that

shut down the market. In contrast, in economies without transaction taxes, adding an outside option can only a�ect

which other trades are realized if the outside option is used in equilibrium (see Supplementary Appendix F).

Example 2 (Cyclic economy with an outside trade). As depicted in Figure 2(b), there are three �rms, 51, 52, and 53, which

interact via three trades. The �rms’ utility functions are

D 58 (Ξ, C) = E 58 (Ξ) +
∑
l ∈Ω58

C̃l ,

17
In general, [ {Z ,k };? ] is a competitive equilibrium if and only if

min{?Z , 0.9?Z } +min{−?k ,−0.9?k } ≥ −10 and min{−?Z ,−0.9?Z } +min{?k , 0.9?k } ≥ −10.

Similarly, [∅;? ] is a competitive equilibrium if and only if

min{?Z , 0.9?Z } +min{−?k ,−0.9?k } ≤ −10 and min{−?Z ,−0.9?Z } +min{?k , 0.9?k } ≤ −10.
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where E 58 is the valuation of �rm 58 . We let E 58 (∅) = 0 for all �rms. Extending Example 1, �rm 51’s valuation is de�ned

by

E 51 ({Z ,k }) = E 51 ({Z ′,k }) = 10

E 51 ({Z }) = E 51 ({Z ′}) = E 51 ({k }) = −∞

E 51 ({Z , Z ′}) = E 51 ({Z , Z ′,k }) = −∞.

As in Example 1, �rm 52’s valuation is de�ned by

E 52 ({Z ,k }) = 10

E 52 ({Z }) = E 52 ({k }) = −∞.

Firm 53’s valuation is de�ned by E 53 ({Z ′}) = 300.

Trade Z ′ cannot be realized in equilibrium due to the technological constraints of 51 and 52 . Thus, we must have

?Z ′ ≥ 300 in any competitive equilibrium, as 53 must weakly prefer ∅ over {Z ′} in equilibrium. For trade to occur, 51

must prefer Z over Z ′, and so we must have ?Z ≥ 300. With 10% taxation and ?Z ≥ 300, at least $30 in taxes must be

paid if Z is traded. But $30 exceeds the gains from trade between 51 and 52, and so trade cannot occur in any competitive

equilibrium. An example of a competitive equilibrium is [∅;?] , where ?Z = ?k = ?Z ′ = 350. Thus, introducing an

outside option that is not used can shut down a market when there are distortionary transaction taxes.
18

4 EXISTENCE OF COMPETITIVE EQUILIBRIA

Due to the presence of indivisibilities, competitive equilibria need not exist in our model without further assumptions

on preferences. Our key condition is full substitutability [Hat�eld et al., 2013].
19

Intuitively, full substitutability requires

that every �rm views its upstream trades as gross substitutes for each other, its downstream trades as gross substitutes

for each other, and its upstream and downstream trades as gross complements for one another.
20

Assumption 1 (Full substitutability—FS, Hat�eld et al., 2013). For all 5 ∈ � and all �nite sets of contracts .,. ′ ⊆ -5
with .5→ ⊆ . ′5→ and .→5 ⊇ . ′→5 , we have

/ ′ ∩ .5→ ⊆ / and / ∩ . ′→5 ⊆ /
′

if � 5 (. ) = {/ } and � 5 (. ′) = {/ ′}.

Full substitutability requires that an expansion in the set of upstream (resp. downstream) options and a contraction

in the set of downstream (resp. upstream) options only makes upstream (resp. downstream) contracts less attractive and

downstream (resp. upstream) contracts more attractive for the �rm. Technically, we impose this condition only on sets

of contracts from which the �rm’s utility-maximizing choice is unique. In Appendix B, we show that full substitutability

is equivalent to a substitutability property that deals with indi�erences more explicitly.
21

18
However, �rms 51 and 52 trade Z andk in every core outcome, and the core is non-empty. Indeed, the outside option does not disrupt trade in the core

because 51 and 53 cannot form a core block without breaking o� all trade with 52 .

19
Full substitutability generalizes gross substitutability [Gul and Stacchetti, 1999, Kelso and Crawford, 1982]. We use the choice-language full substitutability

condition introduced by Hat�eld et al. [2013], which extends the same-side substitutability and cross-side complementarity conditions of Ostrovsky

[2008] to choice correspondences.

20
Section IIB in Hat�eld et al. [2013] provides a detailed discussion of the full substitutability condition in the context of trading networks with transferable

utility. For example, full substitutability rules out complementarities between inputs.

21
Several of our proofs use the equivalence between our two de�nitions of full substitutability.
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Hat�eld et al. [2013] also need to assume that �rms’ valuations of sets of trades are never +∞ to ensure that

competitive equilibria exist. We impose a similar condition that is adapted to settings in which utility is not perfectly

transferable. Our condition requires that compensating variations of moving from autarky to trade are bounded

below—i.e., that no set of trades is so desirable that it is preferred to autarky at any level of total transfers. This condition

is satis�ed in transferable utility economies when valuations are bounded above.

Assumption 2 (Bounded compensating variations—BCV). For all 5 ∈ �, we have

inf

D 5 (Ξ,C ) ≥0

∑
l ∈Ω5

Cl > −∞.

BCV requires that net transfers

∑
l ∈Ω5 Cl are bounded below over all transfer vectors C that are acceptable alongside

some set of trades Ξ. If a �rm is willing to accept trades alongside arbitrary negative net transfers, then BCV fails. BCV

is a weak assumption that is likely to be satis�ed in any real-world economy. In particular, BCV is satis�ed in Examples 1

and 2. Note that BCV allows for technological constraints, in that it permits sets of trades to be so undesirable to a �rm

that they remain worse than autarky regardless of how much the �rm receives in transfers.

FS and BCV together ensure that competitive equilibria exist in trading networks. In Supplementary Appendix F, we

show by example that competitive equilibria may not exist if BCV is not satis�ed.

Theorem 1. Under FS and BCV, competitive equilibria exist.

To prove Theorem 1, we construct a modi�ed economy by giving every �rm options to execute all trades at a very

undesirable price. Speci�cally, we give every �rm the option to make any trade by paying a cost of

Π > −
∑
5 ∈�

inf

D 5 (Ξ,C ) ≥0

∑
l ∈Ω5

Cl . (1)

The penalty Π can be chosen to be �nite due to BCV. Hence, �rms have bounded willingness to pay for any contract in

the modi�ed economy, in a sense that we make precise in Section 5.2.
22

We discretize prices and use a generalized

Deferred Acceptance algorithm [Fleiner et al., 2018b, Hat�eld and Kominers, 2012, Ostrovsky, 2008] to show the

existence of approximate equilibria in the modi�ed economy. A limiting argument yields the existence of competitive

equilibria in the modi�ed economy, as in Crawford and Knoer [1981] and Kelso and Crawford [1982]. The fact that Π is

su�ciently large (i.e., (1) is satis�ed) ensures that we actually obtain competitive equilibria in the original economy.
23

5 RELATIONSHIPS BETWEEN COMPETITIVE EQUILIBRIA
AND COOPERATIVE SOLUTION CONCEPTS

We now study the relationships between competitive equilibria and cooperative solution concepts from matching

theory. Instead of assuming that �rms are price-takers, we allow �rms to recontract while keeping or dropping existing

contracts. We focus on two solution concepts: trail stability and stability.

A key ingredient of any reasonable stability property is individual rationality, which requires that no �rm wants to

drop any signed contract.

22
Hat�eld et al. [2013] apply a related, but not exactly analogous, transformation in the proof of their existence result (Theorem 1 in Hat�eld et al. [2013]).

Speci�cally, Hat�eld et al. [2013] give �rms both the option to make a trade by paying a cost of Π and the option to dispose of an undesired trade for a cost

of Π (for a su�ciently large Π). The Hat�eld et al. [2013] approach does not in general preserve full substitutability at the level of generality of our model.

23
Theorem 1 generalizes Theorem 2 in Kelso and Crawford [1982] and Theorem 1 in Hat�eld et al. [2013].
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De�nition 2 (Hat�eld et al., 2013, Roth, 1984). An outcome � ⊆ - is individually rational if �5 ∈ � 5 (�5 ) for all

5 ∈ � .

5.1 Trail stability

Trail stability [Fleiner et al., 2018b] is a natural extension of pairwise stability (in the sense of Gale and Shapley [1962])

to trading networks. A trail is a sequence of contracts such that a buyer in one contract is a seller in the next contract.

A trail may involve a �rm more than once and can begin and end with contracts that involve the same �rm.

De�nition 3. A sequence of contracts (G1, . . . , G=) is a trail if b(G8 ) = s(G8+1) for all 1 ≤ 8 ≤ = − 1.

Trail-stable outcomes are immune to sequential deviations called locally blocking trails. A locally blocking trail

begins with a �rm o�ering a sale that it wishes to sign given its existing contracts, possibly while dropping some

existing contracts. The buyer may accept the o�ered contract while dropping some of his existing contracts, in which

case a locally blocking trail is formed. The buyer may also hold the proposal and o�er an additional sale to the original

proposer or to another �rm. This trail of linked o�ers continues until a �rm accepts an o�ered contract without having

to o�er another sale, in which case a locally blocking trail is formed.
24

Our formal de�nition of trail stability extends the de�nition given by Fleiner et al. [2018b] to settings with indi�er-

ences.

De�nition 4. A trail (I1, . . . , I=) locally blocks an outcome � if:

• �51 ∉ � 51 (�51 ∪ {I1}), where 51 = s(I1);
• �58+1 ∉ � 58+1 (�58+1 ∪ {I8 , I8+1}) for 1 ≤ 8 ≤ = − 1, where 58+1 = b(I8 ) = s(I8+1); and

• �5=+1 ∉ � 5=+1 (�5=+1 ∪ {I=}), where 5=+1 = b(I=).
Such a trail is called a locally blocking trail. An outcome is trail-stable if it is individually rational and there is no locally

blocking trail.

A trail locally blocks an individually rational outcome if, at every point at which a trail passes through a �rm, the

�rm would like some of the contracts that are available to it locally in the trail (when given access to the existing

contracts). Intuitively, one should think of contracts in a locally blocking trail as being proposed by telephone by a

manager at one �rm to a manager at another [Fleiner et al., 2018b]. If the sequence of phone conversations returns

to a �rm, a di�erent manager (e.g., one from another division) picks up the phone and considers the latest o�er. Her

decisions are independent of the o�ers received and made by the �rst manager. Any manager’s unilateral decision to

accept an o�ered contract completes a locally blocking trail.

5.2 A cooperative interpretation of competitive equilibria

The main result of this section provides a cooperative interpretation of competitive equilibrium that holds even in the

presence of frictions.

Theorem 2. Every competitive equilibrium outcome is trail-stable.

Theorem 2 implies that price-taking �rms cannot improve upon a market equilibrium by deviating along trails. In

light of Theorem 2, any prediction of our model that holds in every trail-stable outcome must hold in every competitive

equilibrium outcome.

24
Note that locally blocking trails can also develop in the reverse direction, with �rms o�ering to buy instead of to sell.
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To see the intuition behind Theorem 2, consider any competitive equilibrium and any trail. In order for sellers to

want to propose the contracts in the trail, the prices of all trades in the trail must be greater than their equilibrium prices.

But the last buyer will only accept an o�er if the price in the last contract is lower than the equilibrium price of the

corresponding trade. Hence, there cannot be any locally blocking trails. Theorem 2 does not require any assumptions

beyond the monotonicity of utility in transfers. As we will show in Section 5.3, competitive equilibria do not satisfy

stronger cooperative solution concepts in the presence of frictions.

In light of Theorem 2, the conclusions of Examples 1 and 2 hold for trail-stable outcomes as well. Thus, trail-stable

outcomes can su�er from constrained suboptimality due to pecuniary externalities despite being de�ned cooperatively.
25

Theorems 1 and 2 yield su�cient conditions for the existence of trail-stable outcomes.
26

Corollary 1. Under FS and BCV, trail-stable outcomes exist.

5.3 Stability

Groups of �rms might still be able to commit to recontracting at a trail-stable outcome. Stability rules out such

recontracting opportunities, which are called blocks, and may be a more natural solution concept in settings in which

�rms can coordinate easily.
27

Hat�eld et al. [2013] extend the de�nition of stability to settings with indi�erences.

De�nition 5 (Hat�eld et al., 2013). A non-empty set of contracts / ⊆ - r � blocks � if, for all 5 ∈ � and . ∈
� 5 (�5 ∪ / 5 ), we have / 5 ⊆ . . An outcome is stable if it is individually rational and unblocked.

In a stable outcome, no group of �rms can commit to recontracting among themselves while being free to drop any

contracts. Unfortunately, competitive equilibria may be unstable in the presence of frictions; moreover, stable outcomes

need not even exist.
28

Hence, as Fleiner et al. [2018b] argue, stability may be too stringent of a solution concept in

general networks.

Example 2 continued (Stable outcomes need not exist in the presence of frictions). There are no stable outcomes in

Example 2. Indeed, note that the no-trade outcome is unstable, since it is blocked by trade between 51 and 52. Note also

that 51 and 53 cannot trade in any individually rational outcome due to the technological constraints faced by 51 and 52.

On the other hand, any individually rational outcome that involves trade between 51 and 52 is blocked by trade

between 51 and 53. Indeed, note that Z cannot be traded at any price greater than $200 in an individually rational

outcome, since the social surplus of trade between 51 and 52 is only $20 and making a transfer of at least $200 requires

paying a transaction tax of at least $20. But the contract (Z ′, 250) blocks any outcome in which Z is traded at price

below $250.
29

As noted by Hat�eld and Kominers [2012], requiring that the trading network is acyclic—i.e., that it forms a vertical

supply chain—helps restore the existence of stable outcomes in settings with discrete, bounded prices. Appendix A

25
As shown by Blair [1988] and Klaus and Walzl [2009], (pairwise) stable outcomes can su�er from constrained suboptimality even in two-sided

many-to-many matching markets.

26
Corollary 1 is a version of Theorem 1 in Fleiner et al. [2018b]—which generalizes Theorem 1 in Ostrovsky [2008] from supply chains to general

networks—for settings with prices that are continuous and potentially unbounded.

27
See Roth [1984, 1985], Hat�eld and Milgrom [2005], Echenique and Oviedo [2006], and Hat�eld and Kominers [2012, 2017].

28
Determining whether a stable outcome exists and determining whether a particular outcome is stable are both computationally intractable problems in

trading networks with cycles and discrete contracts [Fleiner, Jankó, Schlotter, and Teytelboym, 2018a]. Trail stability is more natural from a computational

perspective—trail-stable outcomes can be found in polynomial time using the generalized Deferred Acceptance algorithm under full substitutability

[Fleiner et al., 2018b].

29
An alternative proof can be given using one of our lifting results (Theorem 3). Indeed, note that the no-trade outcome is not stable. However, any stable

outcome must lift to a competitive equilibrium by Theorem 3, and trade does not occur in any competitive equilibrium.



Tamás Fleiner, Ravi Jagadeesan, Zsuzsanna Jankó, and Alexander Teytelboym 13

shows that similar logic carries over to our setting, which features unbounded, continuous prices. The underlying

reason is that stability and trail stability coincide in acyclic networks, at least under FS, as we show in Appendix A.

Even in trading networks with cycles, under FS, stability actually re�nes trail stability.
30

Proposition 1. Under FS, every stable outcome is trail-stable.

If FS is not satis�ed, then stable outcomes may not be trail-stable (see Supplementary Appendix F).

5.4 Competitive interpretations of trail stability and
stability

We now develop competitive interpretations of trail stability and stability. Formally, we say that an outcome � lifts

to a competitive equilibrium if � is a competitive equilibrium outcome—that is, if � can be supported by competitive

equilibrium prices. As an outcome speci�es prices for realized trades, the non-trivial part of lifting an outcome to a

competitive equilibrium is �nding equilibrium prices for unrealized trades.

Hat�eld et al. [2013] show by example that stable outcomes do not generally lift to competitive equilibria when FS is

not satis�ed. Therefore, we maintain FS throughout this section. We �rst prove a positive result, namely that stable

outcomes lift to competitive equilibria under the conditions for the existence of competitive equilibria.
31

Theorem 3. Under FS and BCV, stable outcomes lift to competitive equilibria.

Frictions can cause stable outcomes to fail to exist in general networks as Example 2 shows. Therefore, for many

trading networks with frictions, Theorem 3 has no bite. On the other hand, trail-stable outcomes need not lift to

competitive equilibria even under FS and BCV, as the following example shows.

Example 3 (Trail-stable outcomes need not lift to competitive equilibria under FS and BCV). As depicted in Figure 2(a),

there are two �rms, 51 and 52, which interact via two trades. The �rms share the same utility function

D 58 (Ξ, C) = E (Ξ) +
∑
l ∈Ω

Cl ,

where E is as in Example 1. The no-trade outcome is trail-stable but ine�cient. However, as utility is transferable,

all competitive equilibrium outcomes are e�cient. In particular, the no-trade outcome cannot lift to a competitive

equilibrium.

In Example 3, both �rms face hard technological constraints: they are unwilling to execute any trade individually at

any �nite price, but would like to complete both trades together. The no-trade outcome is trail-stable because neither

the buyer nor the seller is willing to o�er to buy or sell a single trade at any �nite price.

To ensure that trail-stable outcomes lift to a competitive equilibrium, we impose a di�erent regularity condition than

BCV. Intuitively, we require that �rms have bounded willingness to pay for any trade.

Assumption 3 (Bounded willingness to pay—BWP). There exists " such that for all �rms 5 ∈ � and all �nite sets of

contracts ., / ⊆ -5 with / ∈ � 5 (. ):

• If (l, ?l ) ∈ /→5 , then ?l < " .

30
Proposition 1 is a version of Lemma 5 in Fleiner et al. [2018b] for settings with prices that are continuous and potentially unbounded.

31
Theorem 3 generalizes Theorem 6 in Hat�eld et al. [2013] to trading networks with distortionary frictions and income e�ects. Stable outcomes exist in

acyclic networks even in the presence of frictions, as we show in Appendix A.
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• If (l, ?l ) ∈ / 5→, then ?l > −" .

BWP requires that no �rm is willing to pay more than " for any trade—i.e., no �rm is willing to buy any trade at a

price more than " or sell any trade at a price less than −" . BWP rules out certain technological constraints, including

those that are permitted under BCV and by Hat�eld et al. [2013]. In particular, BWP does not allow a �rm to require

a particular input in order to produce a particular output, as such constraints make a �rm willing to pay arbitrarily

high prices for the input if the �rm is able to procure arbitrarily high prices for the output. However, BWP allows for

capacity constraints, since they never make trades desirable at extremely unfavorable prices.

BWP helps ensure that trail-stable outcome lift to competitive equilibria.
32

Theorem 4. Under FS and BWP, trail-stable outcomes lift to competitive equilibria.

Theorem 4 provides a competitive interpretation of trail stability: any trail-stable outcome is consistent with price-

taking equilibrium behavior by all �rms (at least under FS and BWP). In light of Theorem 4, any prediction of our model

that holds in every competitive equilibrium must hold in every trail-stable outcome.

Theorems 2 and 4 imply that competitive equilibria are essentially equivalent to trail-stable outcomes in our model.
33

Corollary 2. Under FS and BWP, competitive equilibrium outcomes and trail-stable outcomes exist and coincide.

Corollary 2 provides competitive foundations for trail stability and cooperative foundations for competitive equilib-

rium: the assumption that �rms coordinate on a trail-stable outcome (as in a thin market) produces the same predictions

as the assumption that �rms take prices in equilibrium (as in a thick market). Therefore, equilibrium analysis can be

performed using scale-independent solution concepts, even in markets with frictions.

6 COMPLETE MARKETS

Trail-stable and competitive equilibrium outcomes might be constrained Pareto-ine�cient in the presence of proportional

transaction taxes or other distortionary frictions (see Examples 1 and 2). In the presence of transaction taxes, for

example, all �rms �nd reductions in outgoing payments more desirable than equal increases in incoming payments. As

a result, �rms have di�erent marginal rates of substitution between forms of transfer, unlike in settings with complete

�nancial markets.

Since we do not explicitly model �nancial markets, we formalize “equalization of marginal rates of substitution

between forms of transfer" as “indi�erence between all forms of transfer" in de�ning our market completeness condition.

Intuitively, if the �rms share the same marginal rates of substitution between forms of transfer, then transfers can be

redenominated so that the marginal rates of substitution become 1. The possibility of redenomination is precisely why,

for example, the presence of multiple currencies does not cause market incompleteness per se.

Assumption 4 (Complete markets—CM). For all 5 ∈ � and C, C ′ ∈ RΩ5 with

∑
l ∈Ω5 Cl =

∑
l ∈Ω5 C

′
l , we have

D 5 (Ξ, C) = D 5 (Ξ, C ′) for all Ξ ⊆ Ω5 .

Recall that, in Examples 1 and 2, paying one unit is more costly for �rms than receiving one unit (due to transaction

taxes). Assumption CM rules out these di�erences in the costs of transfers and requires that �rms only care about the

32
Despite the fact that BWP is not satis�ed in Examples 1 and 2, trail-stable outcomes lift to competitive equilibria in both examples. Thus, BWP is

su�cient but not necessary for trail-stable outcomes to lift to competitive equilibria.

33
To derive Corollary 2 formally, we need to establish that competitive equilibria exist under FS and BWP, as Theorem D.1 in the Supplementary Appendix

shows.
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total transfers that they receive or pay. Therefore, CM requires that a unit of transfer for one trade be equivalent to a

unit of transfer for any other trade.
34

Under CM, we can write D 5 (Ξ, C) = D 5 (Ξ, @), where @ =
∑
l ∈Ω Cl is the total or

net transfer. Note that while CM rules out distortionary frictions—such as variable sales taxes, bargaining costs, and

incompleteness in �nancial markets—�xed transaction costs and income e�ects are still permitted under CM.
35

We begin our analysis of trading networks with complete markets by recalling the de�nition of strong group stability,

which is the most stringent stability property from the literature on matching with contracts. A strongly group stable

outcome is immune to blocks by coalitions of �rms that can commit to better, new contracts and maintain any existing

contracts with each other and with �rms outside the blocking coalition.

De�nition 6 (Hat�eld et al., 2013). An outcome� is strongly unblocked if there do not exist a non-empty set / ⊆ - r�
and sets of contracts . 5 ⊆ �5 ∪ / 5 for 5 ∈ � such that . 5 ⊇ / 5 and* 5

(
. 5

)
> * 5

(
�5

)
for all 5 ∈ � with / 5 ≠ ∅.

An outcome is strongly group stable if it is individually rational and strongly unblocked.

In De�nition 6, . 5 is the set of contracts that 5 signs in the block. Note that . 5 need not be 5 ’s best choice from

the set of available contracts. In particular, strong group stability rules out blocks in which �rms only improve their

utility by selecting all of the blocking contracts. Hence, as Hat�eld et al. [2013] show, strong group stability is stronger

than stability. Moreover, . 5 can contain existing contracts that the counterparties no longer want. In particular, strong

group stability rules out blocks in which di�erent members of the blocking coalition can make selections from the set

of existing contracts that are incompatible with one another or involve �rms outside the coalition. Hence, strong group

stability also re�nes properties such as (strong) setwise stability [Echenique and Oviedo, 2006, Klaus and Walzl, 2009]

and the core.
36

It appears extremely unlikely that �rms would rationally deviate from a strongly group stable outcome, and

competitive equilibria are strongly group stable in complete markets.
37

Theorem 5 (First Welfare Theorem). Under CM, competitive equilibrium outcomes are strongly group stable.

Since strongly group stable outcomes are stable and in the core, Theorem 5 implies that competitive equilibrium

outcomes are stable and in the core in complete markets. As core outcomes are Pareto-e�cient, Theorem 5 is a version

of the First Welfare Theorem [Debreu, 1951].

Combining Theorem 5 with our results on markets with frictions, we obtain that all of the solution concepts described

in this paper are essentially equivalent in complete markets (under FS and BWP).

Corollary 3. Under FS, BWP, and CM, competitive equilibrium outcomes, strongly group stable outcomes, stable outcomes,

and trail-stable outcomes exist and coincide.

When markets are complete, we can also restate BCV more simply using only total transfers, since �rms are indi�erent

regarding the sources of transfers.

34
In particular, any transferable utility economy satis�es CM.

35
When assumed jointly, FS and CM restrict income e�ects for certain agents. In particular, intermediaries that buy or sell more than one trade cannot

experience income e�ects. However, �rms that act only as buyers or only as sellers can experience limited income e�ects. Moreover, �rms that buy or sell

only one trade at a time can experience arbitrary income e�ects. In incomplete markets, on the other hand, all �rms can experience income e�ects even

under FS.

36
As pointed out by Hat�eld et al. [2013], strong group stability also re�nes strong stability [Hat�eld and Kominers, 2015], and group stability [Konishi

and Ünver, 2006].

37
Theorem 5 extends Theorem 5 in Hat�eld et al. [2013], which shows that competitive equilibrium outcomes are strongly group stable, to settings with

income e�ects or risk aversion.
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Assumption 2′ (Bounded CVs under CM—BCV-CM). For all 5 ∈ �, we have

inf

D 5 (Ξ,@) ≥D 5 (∅,0)
@ > −∞.

In complete markets, under FS and BCV-CM, we obtain an equivalence between competitive equilibrium and (strong

group) stability.
38

Corollary 4. Under FS, BCV-CM, and CM, competitive equilibrium outcomes, strongly group stable outcomes, and stable

outcomes exist and coincide.39

7 CONCLUSION

This paper develops a model of di�erentiated markets with frictions based on matching in trading networks. Competitive

equilibria exist in our model when trades are fully substitutable (and mild regularity conditions are satis�ed) but may

be ine�cient. In the presence of frictions, competitive equilibria may be unstable but still essentially coincide with

trail-stable outcomes. In complete markets, on the other hand, competitive equilibria are essentially equivalent to

stable outcomes and trail-stable outcomes, even in the presence of income e�ects. Our results provide new cooperative

foundations for competitive equilibrium and competitive foundations for trail stability that apply in thin markets and

in markets with frictions.

We leave three theoretical open questions. First, can the complete markets condition be relaxed while still guarantee-

ing that competitive equilibrium outcomes are stable? Second, to what extent can the condition that �rms have bounded

willingness to pay for trades be relaxed while still ensuring that trail-stable outcomes lift to competitive equilibria?

Third, can externalities or peer e�ects (as analyzed by Pycia [2012], Pycia and Yenmez [2017], and Rostek and Yoder

[2017]) be incorporated into our analysis?
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Appendix

A ACYCLIC NETWORKS

In acyclic trading networks, or supply chains, no �rm can be simultaneously upstream and downstream from another

�rm even via intermediaries [Hat�eld and Kominers, 2012, Ostrovsky, 2008, Westkamp, 2010].

Assumption A.1 (Acyclicity—AC). There do not exist = ≥ 1 and trades l1, . . . , l= such that s(l8+1) = b(l8 ) for all

1 ≤ 8 ≤ =, where l=+1 = l1 .

As shown by Ostrovsky [2008] and Hat�eld and Kominers [2012], imposing acyclicity can help ensure the existence

of stable outcomes in trading networks with frictions. In acyclic networks, trail stability is tautologically equivalent to

chain stability (in the sense of Ostrovsky [2008]). The following lemma relates stability and trail stability in acyclic

networks.

Lemma A.1. Under FS and AC, every trail-stable outcome is stable.

Proposition 1 and Lemma A.1 imply that trail-stable and stable outcomes coincide in supply chains under FS, yielding

a continuous-price version of Theorem 7 in Hat�eld and Kominers [2012].

We now derive several results concerning acyclic networks as corollaries of our results on general trading networks

with frictions. First, competitive equilibria are stable under FS and AC (by Theorem 2 and Lemma A.1).

Corollary A.1. Under FS and AC, every competitive equilibrium outcome is stable.

Theorem 1 and Corollary A.1 imply that FS, BCV, and AC are together su�cient for the existence of stable outcomes.
40

Corollary A.2. Under FS, BCV, and AC, stable outcomes exist.

In light of Lemma A.1, trail-stable outcomes must lift to competitive equilibria in supply chains under FS and BCV

by Theorem 3. Hence, imposing acyclicity allows us to replace BWP with BCV in Theorem 4.

Corollary A.3. Under FS, BCV, and AC, trail-stable outcomes lift to competitive equilibria.

B AN EQUIVALENT DEFINITION OF FULL SUBSTITUTABILITY

This appendix states a version of Theorem A.1 in Hat�eld et al. [2019]. More precisely, we show that full substitutability

implies strong full substitutability, a condition that deals with indi�erences more directly.

Strong full substitutability combines four conditions, which are each similar to conditions de�ned in Appendix

A in Hat�eld et al. [2019]. The �rst condition, increasing-price full substitutability for sales, requires that sales are

substitutable to each other and complementary to purchases as prices rise (i.e., as the set of available purchases shrinks

and the set of available sales expands). The analogous condition for purchases is decreasing-price full substitutability for

purchases. We also consider similar two other conditions, decreasing-price full substitutability for sales and increasing-

price full substitutability for purchases, which are not exactly analogous to the �rst two conditions due to income e�ects.

Assumption 1′ (Strong FS—SFS). For all 5 ∈ �, �nite .,. ′ ⊆ -5 , and / ∈ � 5 (. ):
40

Corollary A.2 is a version of Theorem 1 in Ostrovsky [2008] and Theorem 3 in Hat�eld and Kominers [2012] for settings in which prices are continuous.

However, Corollary A.2 holds even when willingness to pay is unbounded (i.e., BWP is not satis�ed), unlike the existence results proved by Ostrovsky

[2008] and Hat�eld and Kominers [2012].
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• (Increasing-price full substitutability for sales—IFSS) If .→5 ⊇ . ′→5 and .5→ ⊆ . ′
5→, then there exists

/ ′ ∈ � 5 (. ′) with / ′ ∩ .5→ ⊆ / .
• (Decreasing-price full substitutability for purchases—DFSP) If .5→ ⊇ . ′5→ and .→5 ⊆ . ′→5 , then there exists

/ ′ ∈ � 5 (. ′) with / ′ ∩ .→5 ⊆ / .
For all 5 ∈ �, �nite .,. ′ ⊆ -5 , and ~ ∈ . such that there exists / ∈ � 5 (. ) with ~ ∈ / :

• (Decreasing-price full substitutability for sales—DFSS) If .→5 ⊆ . ′→5 and .5→ ⊇ . ′5→ 3 ~, then there exists

/ ′ ∈ � 5 (. ′) with ~ ∈ / ′.
• (Increasing-price full substitutability for purchases—IFSP) If .5→ ⊆ . ′5→ and .→5 ⊇ . ′→5 3 ~, then there

exists / ′ ∈ � 5 (. ′) with ~ ∈ / ′.

The main theorem of this section asserts that FS and SFS are equivalent.

Theorem B.1. FS is equivalent to SFS.

We use Theorem B.1 to deal with indi�erences in the proofs of several of our results. Although Hat�eld et al. [2019]

rule out income e�ects, Theorem B.1 is logically independent of Theorem A.1 in Hat�eld et al. [2019] as we derive a

weaker conclusion.
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Supplementary appendix

C PROOF OF THEOREM ??

Fix a �rm 5 ∈ � . We �rst translate the statement of Theorem B.1 to demand-language, taking care to account for the

possibility that a trade is not available at any �nite price. We then apply a perturbation argument similar to the proof

of Theorem B.1 in Hat�eld et al. [2019] to prove a demand language version of Theorem B.1, which is equivalent to

Theorem B.1. We note that the notation and the lemma (Lemma C.1) discussed in this section are also used in the proof

of Theorem 1.

C.1 Passing to demand language

We use in�nite prices to denote unavailable trades for the sake of notational convenience. Formally, de�ne a set of

prices by

P = (R ∪ {−∞})Ω5→ × (R ∪ {∞})Ω→5 ,

where R ∪ {−∞} and R ∪ {∞} are topologized with the disjoint union topologies. Given ? ∈ P and Ξ ⊆ Ω5 , let

* 5 (Ξ|?) = D 5
(
Ξ,

(
?Ξ5→ , (−?)Ξ→5 , 0Ω5rΞ

))
denote 5 ’s utility of trading set Ξ of contracts at price vector ?, where we write D 5 (Ξ, C) = −∞ if Cl = −∞ for some

l ∈ Ω5 . De�ne the extended demand correspondence D5 : P ⇒ P(Ω5 ) by

D5 (?) = arg max

Ξ⊆Ω5
* 5 (Ξ|?) .

Note that the restriction of the extended demand correspondence to RΩ5 is precisely the demand correspondence � 5 .

We write full substitutability in demand language similarly to Hat�eld et al. [2019].

De�nition C.1 (Hat�eld et al., 2019). D5 is (demand-language) fully substitutable if for all ? ≤ ? ′ ∈ P with |D5 (?) | =
|D5 (? ′) | = 1, we have

Ξ′ ∩ {l ∈ Ω5→ | ?l = ? ′l } ⊆ Ξ

Ξ ∩ {l ∈ Ω→5 | ?l = ? ′l } ⊆ Ξ′,

where D5 (?) = {Ξ} and D5 (? ′) = {Ξ′}.

We now write the constitutent conditions of strong full substitutability in demand language similarly to Hat�eld

et al. [2019].

De�nition C.2. D5 is (demand-language) increasing-price fully substitutable for sales if for all ? ≤ ? ′ ∈ P and

Ξ ∈ D5 (?), there exists Ξ′ ∈ D5 (? ′) with

Ξ′ ∩ {l ∈ Ω5→ | ?l = ? ′l } ⊆ Ξ.

De�nition C.3. D5 is (demand-language) decreasing-price fully substitutable for sales if for all ? ≥ ? ′ ∈ P and

k ∈ Ξ ∈ D5 (?) withk ∈ Ω5→ and ?k = ? ′
k
, there exists Ξ′ ∈ D5 (? ′) withk ∈ Ξ′.

The original substitutability conditions are equivalent to their demand-language analogues, as the following lemma

shows formally.
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LemmaC.1. � 5 is fully substitutable (resp. increasing-price fully substitutable for sales, decreasing-price fully substitutable
for sales) if and only if D5 is.

Proof. Given a �nite set of contracts . ⊆ -, de�ne a price vector ? 5 (. ) ∈ RΩ5 by

? 5 (. )l =


sup(l,@) ∈. @ for l ∈ Ω5→
inf (l,@) ∈. @ for l ∈ Ω→5

,

so that ? 5 (. )l is the most favorable price at which l is available in . . Due to the de�nitions of � 5 and D5 , we have

� 5 (. ) =
{{(

l, ? 5 (. )l
)
| l ∈ Ψ

}
| Ψ ∈ D5

(
? 5 (. )

)}
for all �nite sets . ⊆ - . It follows that � 5 is fully substitutable (resp. increasing-price fully substitutable for sales,

decreasing-price fully substitutable for sales) whenever D5 is. Note also that

D5 (?) =
{
g (. ) | . ∈ � 5 ({(l, ?l ) | ?l ∈ R})

}
for all ? ∈ P. It follows that D5 is fully substitutable (resp. increasing-price fully substitutable for sales, decreasing-

price fully substitutable for sales) whenever � 5 is. �

Note that D5 is upper hemi-continuous by Berge’s Maximum Theorem. Considering perturbations shows that

extended demand is generically single-valued on P.

Claim C.1. The set {? ∈ P | |D5 (?) | = 1} is open and dense in P.

Proof. Let S = {? ∈ P | |D5 (?) | = 1}. The set S is open because D5 is upper hemi-continuous and P(Ω5 ) is

discrete. To see that S is dense, note that for all Ξ ≠ Ξ′ ⊆ Ω, the set

{? ∈ P | * 5 (Ξ|?) = * 5
(
Ξ′ |?

)
≠ −∞}

is nowhere dense. Indeed, if* 5 (Ξ|?) = * 5 (Ξ′ |?) ≠ −∞,we have* 5 (Ξ|? ′) ≠ * 5 (Ξ′ |? ′) for any ? ′ =
(
?Ωr{l }, ?l + n

)
and l ∈ (Ξr Ξ′) ∪ (Ξ′ r Ξ). �

C.2 Theorem B.1 in demand-language

The following technical result exploits the upper hemi-continuity of extended demand and uses perturbations to perform

certain selections from the extended demand correspondence.

Claim C.2. Let ? ∈ RΩ and letV ⊆ RΩ5 be open and dense in some neighborhood of 0.

(a) For all Ψ ∈ D5 (?), there exists n ∈ V such that D5 (? + n) = {Ψ′} ⊆ D5 (?) with Ψ′ ⊆ Ψ.

(b) Ifk ∈ Ψ ∈ D5 (?), then there exists n ∈ V such that D5 (? + n) = {Ψ′} ⊆ D5 (?) withk ∈ Ψ′.

Proof. By shrinkingV if necessary, we can assume that D5 (? +n) ⊆ D5 (?) for all n ∈ V (by upper hemi-continuity).

We begin by proving Part (a). First, we show that there exists n ∈ V such that Ψ′ ⊆ Ψ for all Ψ′ ∈ D5 (? + n). Take

n =

(
0Ψ, XΩ→5rΨ,−XΩ5→rΨ

)
, where X > 0 is such that n ∈ V. Note that* 5 (Ξ|? + n) ≤ * 5 (Ξ|?) for all Ξ ⊆ Ω with

equality if and only if Ξ ⊆ Ψ. It follows that Ψ′ ⊆ Ψ for all Ψ′ ∈ D5 (? + n).
To complete the proof of Part (a), we perturb n . More precisely, let V′ be an open neighborhood of 0 ∈ RΩ5 such

that D5 (? + n + n ′) ⊆ D5 (? + n) for all n ′ ∈ V′—such a V′ exists by upper hemi-continuity. By Claim C.1, there exists

n ′ ∈ V′ such that n + n ′ ∈ V and |D5 (? + n + n ′) | = 1.
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The proof of Part (b) is similar. Note that k is never demanded if |?k | = ∞. Hence, we must have ?k ∈ R. First,

we show that there exists n ∈ V such that k ∈ Ψ′ for all Ψ′ ∈ D5 (? + n). Without loss of generality, assume that

k ∈ Ω5→. Take n =

(
0Ω5r{k }, Xk

)
, where X > 0 is such that n ∈ V. Note that* 5 (Ξ|? + n) ≥ * 5 (Ξ|?) for all Ξ ⊆ Ω

with equality if and only ifk ∉ Ξ. It follows thatk ∈ Ψ′ for all Ψ′ ∈ D5 (? + n).
To complete the proof of Part (b), we perturb n as in the proof of Part (a). �

Using suitable selections, Claim C.2 implies a demand-language version of Theorem B.1.

Claim C.3. If D5 is fully substitutable, then D5 is increasing-price fully substitutable for sales.

Proof. Let ? ≤ ? ′ ∈ P, and let Ξ ∈ D5 (?). Let

V =

{
n ∈ RΩ5 | D5 (? ′ + n) ⊆ D5 (? ′) and |D5 (? ′ + n) | = 1

}
,

which is non-empty and dense in a neighborhood of 0 by Claim C.1 and upper hemi-continuity. By Claim C.2(a), there

exists n ∈ V such that D5 (? +n) = {Ψ} with Ψ ⊆ Ξ. Note that D5 (? ′ +n) = {Ξ′} for some Ξ′ ∈ D5 (? ′) by construction.

Because D5 is fully substitutable, we have

Ξ′ ∩ {l ∈ Ω5→ | ?l = ? ′l } ⊆ Ψ ⊆ Ξ.

It follows that D5 is increasing-price fully substitutable for sales. �

Claim C.4. If D5 is fully substitutable, then D5 is decreasing-price fully substitutable for sales.

Proof. Let ? ≥ ? ′ ∈ P, let Ξ ∈ D5 (?), and suppose thatk ∈ Ξ satis�es ?k = ? ′
k
. Let

V =

{
n ∈ RΩ5 | D5 (? ′ + n) ⊆ D5 (? ′) and |D5 (? ′ + n) | = 1

}
,

which is non-empty and dense in a neighborhood of 0 by Claim C.1 and upper hemi-continuity. By Claim C.2(b), there

exists n ∈ V such that D5 (? +n) = {Ψ} withk ∈ Ψ. Note that D5 (? ′ +n) = {Ξ′} for some Ξ′ ∈ D5 (? ′) by construction.

Since D5 is fully substitutable, we must havek ∈ Ξ′ ∈ D5 (?). Thus, D5 is decreasing-price fully substitutable for

sales. �

C.3 Proof of Theorem B.1

Clearly SFS implies FS. It remains to prove the converse. Suppose that� 5 is fully substitutable. Lemma C.1 and Claim C.3

imply that � 5 is increasing-price fully substitutable for sales. Lemma C.1 and Claim C.4 imply that � 5 is decreasing-

price fully substitutable for sales. Similarly, � 5 must be decreasing-price and increasing-price fully substitutable for

purchases. Thus, � 5 is strongly fully substitutable.

D PROOF OF THEOREM ??

The strategy of the proof is to reduce Theorem 1 to a di�erent existence result, Theorem D.1.

Theorem D.1. Under FS and BWP, competitive equilibria exist.

We �rst modify utility functions so that BWP is satis�ed (Lemma D.1), ensuring that our modi�cation preserves FS

(Lemma D.2). We then show that any competitive equilibrium in the modi�ed economy yields a competitive equilibrium

in the original economy (Lemma D.4). We conclude the proof of Theorem 1 by applying Theorem D.1, which guarantees

that competitive equilibria exist in the modi�ed economy. We then prove Theorem D.1.
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We note that the modi�cation and the lemmata discussed in this section are also used in the proof of Theorem 3.

D.1 The modified economy

For 5 ∈ �, let

K 5 = − inf

D 5 (Ξ,C ) ≥D 5 (∅,0)

∑
l ∈Ω5

Cl ,

which is �nite by BCV. Let Π ≥ 1 +∑
5 ∈� K 5 be arbitrary.

We modify the economy by giving agents to option to make any trade for a cost of Π.
41

Formally, for 5 ∈ �, de�ne

D̂ 5 : P(Ω5 ) × RΩ5 → R by

D̂ 5 (Ξ, C) = max

Ξ⊆Ψ⊆Ω5
D 5

(
Ψ,

(
CΩ5rΨ∪Ξ, (C − Π)ΨrΞ

))
.

The function D̂ 5 is clearly continuous and strictly increasing in the RΩ5 factor. Consider a modi�ed economy in which

utility functions are given by D̂ 5 for 5 ∈ � . The remainder of this subsection veri�es that the modi�ed economy satis�es

BWP and FS.

We �rst show that the modi�ed economy satis�es BWP. Intuitively, note that this property is precisely what giving

�rms the option to make any trade for a cost of Π achieves.

Lemma D.1. Under BCV, the modi�ed economy satis�es BWP.

Proof. We claim that BWP is satis�ed with " = Π + 1. Let 5 ∈ �, let l ∈ Ω5 r Ξ, let Ξ ⊆ Ω5 , and let C ∈ RΩ5 be

such that Cl = 0. Note that, for all l ∈ Ψ ⊆ Ω5 , we have

D 5
(
Ψ,

(
CΩ5rΨ∪Ξ,−"l , (C − Π)ΨrΞr{l }

))
< D 5

(
Ψ,

(
CΩ5rΨ∪Ξ, (C − Π)ΨrΞ

))
whenever D 5

(
Ψ,

(
CΩ5rΨ∪Ξ, (C − Π)ΨrΞ

))
∈ R, because " > Π = Π − Cl . Hence, we have

D̂ 5
(
Ξ ∪ {l},

(
CΩ5r{l },−"l

))
= max

Ξ∪{l }⊆Ψ⊆Ω5
D 5

(
Ψ,

(
CΩ5rΨ∪Ξ,−"l , (C − Π)ΨrΞr{l }

))
< max

Ξ∪{l }⊆Ψ⊆Ω5
D 5

(
Ψ,

(
CΩ5rΨ∪Ξ, (C − Π)ΨrΞr{l }

))
≤ max

Ξ⊆Ψ⊆Ω5
D 5

(
Ψ,

(
CΩ5rΨ∪Ξ, (C − Π)ΨrΞr{l }

))
= D̂ 5 (Ξ, C) .

Therefore, �rm 5 will never choose a contract (l, ?l ) with ?l > " (resp. ?l < −") if l ∈ Ω→5 (resp. l ∈ Ω→5 ).

Since 5 , l, Ξ, and C were arbitrary, the claim follows. �

The following claim, which asserts that giving a �rm the option to make one trade for a cost of Π preserves full

substitutability, will be used to prove that FS holds in the modi�ed economy.

Claim D.1. Let Π be a positive real number. Given a utility function D 5 and i ∈ Ω5 , de�ne D̂
5
i : P(Ω5 ) → RΩ5 → R by

D̂
5
i (Ξ, C) = max

{
D 5 (Ξ, C), D 5

(
Ξ ∪ {i},

(
CΩ5r{i }, (C − Π)i

))}
.

41
Hat�eld et al. [2019] show that such trade endowments preserve full substitutability when preferences are quasilinear (see Theorem 2 in Hat�eld et al.,

2019).
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If D 5 is fully substitutable, then so is D̂ 5i .

Proof. The proof of this claim is similar to the proof of Lemma A.2 in Hat�eld et al. [2013] and uses the notation of

Appendix C.1. Lemma C.1 guarantees that D5 is fully substitutable. Let D̂5 denote the extended demand correspondence

for the utility function D̂
5
i . Without loss of generality, assume that i ∈ Ω→5 .

We �rst show that D̂5 is fully substitutable. Let ? ≤ ? ′ ∈ P be such that

���D̂5 (?)��� = ���D̂5 (? ′)��� = 1. Let D̂5 (?) = {Ξ}
and let D̂5 (? ′) = {Ξ′}. De�ne @ ∈ P by

@ =

(
?Ω5r{l },min {Π, ?l }l

)
.

and de�ne @′ ∈ P similarly. Note that @ ≤ @′ always holds. We divide into cases based on the order between ?i , ?
′
i , and

Π to show that

Ξ′ ∩ {l ∈ Ω5→ | ?l = ? ′l } ⊆ Ξ

Ξ ∩ {l ∈ Ω→5 | ?l = ? ′l } ⊆ Ξ′.
(D.1)

Case 1: ?i ≤ ? ′i ≤ Π. In this case, we have ? = @, ? ′ = @′, D̂5 (?) = D5 (@) and D̂5 (? ′) = D5 (@′), and so (D.1)

follows from the full substitutability of D5 .
Case 2: ?i ≤ Π < ? ′i . In this case, we have ? = @ and D̂5 (?) = D5 (@). Let l ∈ Ω5→ r Ξ satisfy ?l = ? ′l—note

that l ≠ i by construction. By IFSS, there exists Ψ′ ∈ D5 (@′) with l ∉ Ψ′. Since Ξ′ = Ψ′ r {i}, we have

l ∉ Ξ′. Similarly, if l ∈ Ξ→5 satis�es ?l = ? ′l , IFSP implies that there exists Ψ′ ∈ D5 (@′) with l ∈ Ψ′. Since

Ξ′ = Ψ′ r {i}, we have l ∈ Ξ′. (D.1) follows.

Case 3: Π < ?i ≤ ? ′i . Let Ψ ∈ D5 (@) be arbitrary, and note that Ξ = Ψr {i}. Let l ∈ Ω5→rΨ satisfy ?l = ? ′l .

By IFSS, there exists Ψ′ ∈ D5 (@′) with l ∉ Ψ′. Since Ξ′ = Ψ′ r {i}, we have l ∉ Ξ′. Similarly, if l ∈ Ψ→5
satis�es ?l = ? ′l , IFSP implies that there exists Ψ′ ∈ D5 (@′) with l ∈ Ψ′. Since Ξ′ = Ψ′ r {i}, we have l ∈ Ξ′.
(D.1) follows.

The cases exhaust all possibilities, completing the proof that D̂5 is fully substitutable. By Lemma C.1, D̂
5
i must be fully

substitutable as well. �

Claim D.1 and a straightforward inductive argument imply that FS holds in the modi�ed economy.

Lemma D.2. Under FS, the modi�ed economy satis�es FS.

D.2 Outcomes in the modified economy

This subsection shows that competitive equilibria in the modi�ed economy give rise to competitive equilibria in the

original economy (Lemma D.4). The following lemma, which is also used in the proof of Theorem 3, shows that agent 5

can only produce K 5 units of surplus in the modi�ed economy and that trade endowments can only be used at social

cost Π. As will be seen in the proof of Lemma D.4, it follows that trade endowments cannot be used in any competitive

equilibrium.

Lemma D.3. Let Ξ ⊆ Ω5 and let C ∈ RΩ5 . Suppose D̂ 5 (Ξ, C) ≥ D̂ 5 (∅, 0). Under BCV:

(a) We have
∑
l ∈Ω5 Cl ≥ −K

5 .

(b) If we have D 5 (Ξ, C) < D̂ 5 (Ξ, C), then we have
∑
l ∈Ω5 Cl ≥ Π − K 5 .
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Proof. Note that D̂ 5 (∅, 0) ≥ D 5 (∅, 0) and thus we have D̂ 5 (Ξ, C) ≥ D 5 (∅, 0) . Let Ξ ⊆ Ψ ⊆ Ω5 be such that

D̂ 5 (Ξ, C) = D 5
(
Ψ,

(
CΩ5rΨ∪Ξ, (C − Π)ΨrΞ

))
.

The de�nition of K 5 implies that

−K 5 ≤
∑

l ∈Ω5rΨ∪Ξ
Cl +

∑
l ∈ΨrΞ

(Cl − Π) = −Π · |Ψ r Ξ| +
∑
l ∈Ω5

Cl

so that

|Π | · |Ψ r Ξ| − K 5 ≤
∑
l ∈Ω5

Cl . (D.2)

As |Ψ r Ξ| ≥ 0 always holds, Part (a) follows from (D.2). If D 5 (Ξ, C) < D̂ 5 (Ξ, C), then we must have Ψ ≠ Ξ. As

|Ψ r Ξ| ≥ 1 in this case, Part (b) follows from (D.2) as well. �

We now show that competitive equilibria in the modi�ed economy give rise to competitive equilibria in the original

economy.

Lemma D.4. Under BCV, any competitive equilibrium in the modi�ed economy is a competitive equilibrium in the original

economy.

Proof. Let [Ξ;?] be a competitive equilibrium in the modi�ed economy. For 5 ∈ �, let C 5 =

(
?Ξ5→ , (−?)Ξ→5 , 0Ω5rΞ

)
.

Since [Ξ;?] is a competitive equilibrium in the modi�ed economy, we have D̂ 5 (Ξ5 , C 5 ) ≥ D̂ 5 (∅, 0) for all 5 ∈ � . Note

that ∑
5 ∈�

∑
l ∈Ω5

C
5
l =

∑
5 ∈�

∑
l ∈Ξ5

C
5
l =

∑
l ∈Ξ
(?l − ?l ) = 0.

In light of the fact that Π >
∑
5 ∈� K 5 , it follows from Lemma D.3 that D 5 (Ξ5 , C 5 ) ≥ D̂ 5 (Ξ5 , C 5 ) for all 5 ∈ � .

Let 5 ∈ � be arbitrary. For any Ψ ⊆ Ω5 , we have

D 5 (Ξ5 , C 5 ) ≥ D̂ 5 (Ξ5 , C 5 ) ≥ D̂ 5
(
Ψ,

(
?Ψ5→ , (−?)Ψ→5 , 0Ω5rΨ

))
≥ D 5

(
Ψ,

(
?Ψ5→ , (−?)Ψ→5 , 0Ω5rΨ

))
,

where the second inequality is because [Ξ;?] is a competitive equilibrium in the modi�ed economy and the third

inequality follows from the de�nition of D̂ 5 . It follows that Ξ5 ∈ � 5 (?). Since 5 was arbitrary, [Ξ; ?] is a competitive

equilibrium in the original economy. �

D.3 Completion of the proof of Theorem 1

Theorem D.1 and Lemmata D.1 and D.2 imply the modi�ed economy has a competitive equilibrium [Ξ;?], which is a

competitive equilibrium in the original economy by Lemma D.4.

D.4 Proof of Theorem D.1

Let " be as in BWP. Intuitively, we consider a grid of size n in [−2", 2"]Ω, chosen so that there are no indi�erences.

We then use the Gale-Shapley operator of Hat�eld and Kominers [2012] and Fleiner et al. [2018b] to produce an

n-equilibrium. Sending n → 0, we obtain a competitive equilibrium.
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Formally, a vector X ∈ (−n, n)Ω is n-regular if � 5 is single-valued on [−2", 2"]Ω5 ∩
(
nZΩ5 + XΩ5

)
for all 5 ∈ � .

The following claim asserts that there are many regular vectors.

Claim D.2. For any n > 0, the set of n-regular vectors is dense in (−n, n)Ω .

Proof. For a �rm 5 ∈ �, let

S5 =

{
? ∈ RΩ |

���� 5 (
?Ω5

)��� = 1

}
,

which is open and dense in RΩ5 by Claim C.1. Let = =
⌊

2"
n

⌋
+ 1 and let ) = ( [−=, =] ∩ Z)Ω .

Note that X is n-regular if X + n) ⊆ S5 . For any t ∈ ) , the set of vectors X such that X + nt ∈ S5 is open and dense in

(−n, n)Ω since S5 is open and dense in RΩ5 . As ) is �nite, it follows that the set of n-regular vectors contains an open

and dense subset of (−n, n)Ω . �

An arrangement [Ξ;?] is an n-equilibrium if every agent 5 demands Ξ5 when given access to all sales, as well as

purchases in Ξ, at prices ? , and other purchases at prices ? + n .

De�nition D.1. An arrangement [Ξ;?] is an n-equilibrium if ? ∈ [−2", 2"]Ω5 and Ξ ∈ � 5
(
?̂ 5 ,Ξ,n

)
for all 5 , where

?̂
5 ,Ξ,n
l =


?l if l ∈ Ξ or 5 = s(l)

?l + n if l ∉ Ξ and 5 = b(l)
.

The following claim shows that n-equilibria exist.

Claim D.3. For all 0 < n < ", under FS and BWP, there exists an n-equilibrium.

Proof. Let X be an n-regular vector, which exists by Claim D.2. Let Pl = [−2", 2"] ∩ (nZ + Xl ) , and let

-̂ =
⋃
l ∈Ω
({l} × Pl ) ⊆ - .

Note that � 5 is single-valued on P
(
-̂5

)
by n-regularity, and so write � 5 (. ) = {C5 (. )} for . ⊆ -̂5 .

Following Hat�eld and Kominers [2012], de�ne Φ : P
(
-̂

)
2

→ P
(
-̂

)
2

by

Φ(-�, -( ) =
(
Φ� (-�, -( ),Φ( (-�, -( )

)
Φ� (-�, -( ) = (-̂ r -( ) ∪

⋃
5 ∈�

C5
(
-�→5 ∪ -

(
5→

)
5→

Φ( (-�, -( ) = (-̂ r -�) ∪
⋃
5 ∈�

C5
(
-�→5 ∪ -

(
5→

)
→5

.

As in Fleiner [2003], Hat�eld and Milgrom [2005], Hat�eld and Kominers [2012], and Fleiner et al. [2018b], order P
(
-̂

)
2

by letting (-�, -( ) v (-̄�, -̄( ) if -� ⊇ -̄� and -( ⊆ -̄( . As Hat�eld and Kominers [2012] and Fleiner et al. [2018b]

have shown, Φ is isotone (with respect to v) under FS. The Tarski [1955] �xed point theorem guarantees that Φ has a

�xed point (-�, -( ).
Given 5 ∈ �, since (-�, -( ) is a �xed-point of Φ, we have

-�
5→ = (-̂5→ r -(

5→) ∪ C
5
(
-�→5 ∪ -

(
5→

)
5→

. (D.3)
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Since C5
(
-�→5 ∪ -

(
5→

)
5→
⊆ -(

5→, it follows that -�
5→ ∪ -

(
5→ = -̂5→. Taking unions over 5 , we have

-̂ =
⋃
5 ∈�

-5→ =
⋃
5 ∈�

(
-�
5→ ∪ -

(
5→

)
= -� ∪ -( . (D.4)

(D.3) also implies that

-�
5→ ∩ -

(
5→ = C5

(
-�→5 ∪ -

(
5→

)
5→

.

Similarly, we have

-�→5 ∩ -
(
→5 = C5

(
-�→5 ∪ -

(
5→

)
→5

,

and it follows that

(-� ∩ -( )5 = C5
(
-�→5 ∪ -

(
5→

)
. (D.5)

Letl ∈ Ω be arbitrary. Since n < " , we have max Pl > " and min Pl < −". Thus, we have (l,max Pl ), (l,min Pl ) ∉
-� ∩ -( by BWP and (D.5). If (l,maxPl ) ∉ -�, then adding (l,maxPl ) to -� and removing it from -( preserves

(D.4) and (D.5) by BWP for 5 = s(l). Thus, we can assume that (l,max Pl ) ∈ -� r-( . Similarly, we can assume that

(l,minPl ) ∈ -( r -� . De�ne

?l = max

{
? ′l | (l, ? ′l ) ∈ -(

}
,

which exists as Pl is �nite and (l,minPl ) ∈ -( .
We claim that [Ξ;?] is an n-equilibrium, where Ξ = g (-� ∩ -( ) . Note that since (l,maxPl ) ∉ -( for all l ∈ Ω,

we have ?̂
5 ,Ξ,n
l ∈ Pl for all l ∈ Ω and 5 ∈ � . The de�nition of ?l also ensures that

(
l, ?̂

b(l),Ξ,n
l

)
∈ -� and(

l, ?̂
s(l),Ξ,n
l

)
= (l, ?l ) ∈ -( for all l ∈ Ω. It follows that

(
-� ∩ -(

)
5
⊆ ^

( [
Ω5 ; ?̂ 5 ,Ξ,n

] )
⊆ -�→5 ∪ -

(
5→ for all

5 ∈ � . Hence, (D.5) implies that Ξ5 ∈ � 5
(
?̂ 5 ,Ξ,n

)
for all 5 ∈ �, so that [Ξ; ?] is an n-equilibrium. �

As [−2", 2"] is sequentially compact, Claim D.3 implies that there exists an arrangement [Ξ;?], a sequence

=1 < =2 < · · · of positive integers, and a sequence ?1, ?2, . . . ∈ [−2", 2"]Ω such that [Ξ;?: ] is a
1

=:
-equilibrium for

all : and ?: → ?. Note that ?̂
5 ,Ξ, 1

=:

:
→ ?Ω5 for all 5 ∈ � because

1

=:
→ 0. Because Ξ5 ∈ � 5

(
?̂
5 ,Ξ, 1

=:

:

)
for all : and

� 5 is upper hemi-continuous, it follows that Ξ5 ∈ � 5
(
?Ω5

)
for all 5 ∈ � . Thus, [Ξ;?] is a competitive equilibrium.

E OTHER PROOFS OMITTED FROM THE TEXT

E.1 Proof of Theorem 2

Competitive equilibrium outcomes are clearly individually rational. It remains to show that no trail locally blocks a

competitive equilibrium outcome. Let [Ξ;?] be a competitive equilibrium and let � = ^ ( [Ξ;?]). Suppose for the sake

of deriving a contradiction that there is a locally blocking trail (I1, . . . , I=).
Let I8 = (l8 , ? ′8 ). Let 58 = s(G8 ) and let 5=+1 = b(G=). As�51 ∉ � 51 (�51 ∪{G1}) and [Ξ;?] is a competitive equilibrium,

we must have ? ′
1
> ?l1

. Similarly, we must have ? ′
2
> ?l2

. A simple inductive argument shows that ? ′= > ?l= . But we

must have ? ′= < ?l= since �5=+1 ∉ � 5=+1 (�5=+1 ∪ {G=}) . Thus, there are no locally blocking trails.
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E.2 Proof of Proposition 1

We adapt the proof of Lemma 5(ii) in Fleiner et al. [2018b] to our setting. Inspired by Fleiner et al. [2018b], we say that

a circuit (I1, . . . , I=) is locally blocking if every pair of adjacent contracts is demanded by their common agent in every

choice set.

De�nition E.1. Let . be an outcome. A sequence of contracts (I1, . . . , I=) is a locally blocking circuit if:

• for all 1 ≤ 8 ≤ =, we have {I8−1, I8 } ⊆, for all, ∈ � 58
(
.58 ∪ {I8−1, I8 }

)
, where 58 = s(I8 ) = b(I8−1).

Here, we write I0 = I= .

To prove Proposition 1, we show (as in Fleiner et al., 2018b) that every shortest locally blocking circuit or locally

blocking trail gives rise to a blocking set.

Claim E.1. Let . be an individually rational outcome. Under FS, if (I1, . . . , I=) is shortest among all locally blocking

circuits and locally blocking trails for ., then the set {I1, . . . , I=} blocks . .

Proof. We prove the contrapositive of the claim. Suppose that (I1, . . . , I=) is a locally blocking circuit or locally

blocking trail. If (I1, . . . , I=) is a locally blocking trail and there exists , ∈ � 58+1 ({I8 , I8+1}) with I8 ∉ ,, then

(I8+1, . . . , I=) is a locally blocking trail. Similarly, if (I1, . . . , I=) is a locally blocking trail and there exists , ∈
� 58+1 ({I8 , I8+1}) with I8+1 ∉,, then (I1, . . . , I8 ) is a locally blocking trail.

Now, suppose that / = {I1, . . . , I=} does not block . . Then, there is a �rm 5 , a contract I 9 ∈ / 5 , and a set

, ∈ � 5
(
.5 ∪ / 5

)
with I 9 ∉, . Without loss of generality, we can assume that 5 = s(I 9 ), so that 5 = 59 . We show that

there is a locally blocking circuit or locally blocking trail that is shorter than (I1, . . . , I=). By the logic of the previous

paragraph, we can assume that {I8 , I8+1} ⊆, for all, ∈ � 58+1 ({I8 , I8+1}) if (I1, . . . , I=) is a locally blocking trail, as

otherwise there is a shorter locally blocking trail.

By Theorem B.1, SFS must be satis�ed. We divide into cases based on whether 9 = 1 and whether we have a trail or a

circuit to complete the proof of the claim.

Case 1: 9 = 1 and (I1, . . . , I=) is a locally blocking trail. By IFSS, there exists, ′ ∈ � 5 (.5 ∪ / 5→) with I1 ∉, ′.

Among all such, ′, take, to minimize |, ′ r .5 |. As .5 ∉ � 5 (.5 ∪ {I1}), we have .5 ∉ � 5 (.5 ∪ / 5→), and

hence, ′ * .5 .

Let I: ∈ , r .5 be arbitrary. By IFSS, we must have .5 ∉ � 5 (.5 ∪ {I: }), so that (I: , . . . , I=) is a shorter

locally blocking trail.

Case 2: 9 ≠ 1 or (I1, . . . , I=) is a locally blocking circuit. In either case, I 9−1 is well-de�ned. By IFSS, there exists

, ′ ∈ � 5 (.5 ∪ {I 9−1} ∪/ 5→) with I 9 ∉,
′. Among all such, ′, take, to minimize |, ′r.5 |. As {I 9−1, I 9 } ⊆ �

for all � ∈ � 5 (.5 ∪ {I 9−1, I 9 }), we have I 9−1 ∈, by DFSP.

Let I: ∈ , r .5 be arbitrary. By IFSS, we must have I: ∈ � for all � ∈ � 5 (.5 ∪ {I 9−1, I: }). If : < 9, then

(I: , . . . , I 9−1) is a shorter locally blocking circuit. If : > 9, then (I1, . . . , I 9−1, I: , . . . , I=) is a shorter locally blocking

circuit or locally blocking trail.

The cases exhaust all possibilities, completing the proof of the claim. �

Claim E.1 implies Proposition 1.
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E.3 Proof of Theorem 3

Let � be any stable outcome, and let Ξ = g (�). For l ∈ g (�), let ?l be the unique price such that (l, ?l ) ∈ �.
For 5 ∈ �, let

K 5 = − inf

D 5 (Ξ,C ) ≥D 5 (∅,0)

∑
l ∈Ω5

Cl ,

which is �nite by BCV. Let

Π = 1 +
∑
5 ∈�
K 5 + 2

∑
l ∈Ξ
|?l |.

Recall the de�nition of D̂ 5 : P(Ω5 ) × RΩ5 → R from the proof of Theorem 1, which is

D̂ 5 (Ξ, C) = max

Ξ⊆Ψ⊆Ω5
D 5

(
Ψ,

(
CΩ5rΨ∪Ξ, (C − Π)ΨrΞ

))
.

Consider a modi�ed economy in which utility functions are given by D̂ 5 for 5 ∈ � .

Claim E.2. The outcome � is stable in the modi�ed economy.

Proof. The outcome � is clearly individually rational in the modi�ed economy. It remains to prove that � is not

blocked in the modi�ed economy. Suppose for the sake of deriving a contradiction that there is a blocking set / in the

modi�ed economy.

Let �̂ 5 denote the choice function of 5 in the modi�ed economy. For 5 ∈ � and . 5 ∈ �̂ 5 (�5 ∪ / 5 ), note that

* 5
(
. 5

)
≥ * 5 (∅) and thus

−K 5 ≤
∑

(l,?′l ) ∈.
5

5→

? ′l −
∑

(l,?′l ) ∈.
5

→5

? ′l ≤
∑

(l,?′l ) ∈/5→
? ′l −

∑
(l,?′l ) ∈/→5

? ′l +
∑
l ∈Ξ5

|?l |,

where the �rst inequality is due to Lemma D.3(a), so that∑
(l,?′l ) ∈/5→

? ′l −
∑

(l,?′l ) ∈/→5
? ′l +

∑
l ∈Ξ5

|?l | + K 5 ≥ 0.

But note that ∑
5 ∈�

©­«
∑

(l,?′l ) ∈/5→
? ′l −

∑
(l,?′l ) ∈/→5

? ′l +
∑
l ∈Ξ5

|?l | + K 5
ª®¬ = 2

∑
l ∈Ξ
|?l | +

∑
5 ∈�
K 5 = Π − 1.

It follows that ∑
(l,?′l ) ∈/5→

? ′l −
∑

(l,?′l ) ∈/→5
? ′l +

∑
l ∈Ξ5

|?l | + K 5 ≤ Π − 1 < Π

for all 5 ∈ �, so that ∑
(l,?′l ) ∈.

5

5→

? ′l −
∑

(l,?′l ) ∈.
5

→5

? ′l ≤ −K 5 + Π − 1 < −K 5 + Π.

Hence, Lemma D.3(b) implies that *̂
5
(
. 5

)
= * 5

(
. 5

)
for all 5 ∈ � .

Let, ∈ � 5 (�5 ∪ / 5 ) be arbitrary. In light of the previous paragraph and the fact that* 5 (, ) ≤ *̂ 5 (, ), we must

have, ∈ �̂ 5 (�5 ∪ / 5 ). Since / blocks � in the modi�ed economy, we must have / 5 ⊆, . Hence, / blocks � in the

original economy, which contradicts the hypothesis that � is stable in the original economy. �
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Claim E.2 guarantees that � is stable in the modi�ed economy. By Proposition 1, � is trail-stable in the modi�ed

economy. Lemmata D.1 and D.2 ensure that FS and BCV are satis�ed in the modi�ed economy. Hence, there exists a com-

petitive equilibrium [Ξ;?] in the modi�ed economy with ^ ( [Ξ;?]) = � by Theorem 4 (which is proved independently).

Lemma D.4 guarantees that [Ξ;?] is a competitive equilibrium in the modi�ed economy.

E.4 Proof of Theorem 4

We set prices for unrealized trades that are as high as possible while remaining (weakly) undesirable to sellers. Call a

trail (I1, . . . , I=) locally semi-blocking if the seller of I8 wants to propose I8 when given access to I8−1 for all 8 > 1, and

the seller of I1 wants to propose I1. We consider a contract desirable to a seller if it appears in a locally semi-blocking

trail.

De�nition E.2. A trail (I1, . . . , I=) locally semi-blocks an outcome � if:

• �51 ∉ � 51 (�51 ∪ {I1}), where 51 = s(I1);
• {I8 , I8+1} ⊆ . for all . ∈ � 58+1 (�58+1 ∪ {I8 , I8+1}) for 1 ≤ 8 ≤ = − 1, where 58+1 = b(I8 ) = s(I8+1) .

Formally, let � be an outcome and let Ξ = g (�). Let " be as in BWP. Let -� be the set of contracts that appear

in some locally semi-blocking trail. Thus, -� consists of all contracts that are strictly desirable to their sellers.
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For

l ∈ Ω, de�ne

?l = min

{
", inf

(l,?′l ) ∈-�
? ′l

}
, (E.1)

so that ?l is the minimum of " and the highest price at which l is weakly undesirable to its seller. We prove that

^ ( [Ξ;?]) = � and that [Ξ;?] is a competitive equilibrium.

Claim E.3. Under BWP, if � is individually rational, then we have ^ ( [Ξ;?]) = �.

Proof. Suppose that (l, ? ′l ) ∈ �. BWP implies that ? ′l < " . As Ds(l) is strictly increasing in transfers and � is

individually rational, we have (l, ? ′′l ) ∈ -� if and only if ? ′′l > ? ′l . It follows that ?l = ? ′l . Since l ∈ Ξ was arbitrary,

the claim follows. �

Claim E.4. Under FS and BWP, if � is trail-stable, then [Ξ;?] is a competitive equilibrium.

Proof. Suppose for the sake of deriving a contradiction that Ξ5 ∉ � 5
(
?Ω5

)
. As� is individually rational, it follows

from Claim E.3 that Ξ′ ∉ � 5
(
?Ω5

)
for all Ξ′ ⊆ Ξ5 .

We perturb prices slightly to ensure that sellers have strict incentives to propose contracts. Due to the upper

hemi-continuity of demand, we can ensure that a su�ciently small perturbation does not a�ect the property that 5

demands no subset of Ξ5 . Formally, de�ne

O = {? ′ ∈ RΩ5 | � 5 (? ′) ∩ P(Ξ5 ) = ∅}.

Since � 5 is upper hemi-continuous, the set O contains an open neighborhood of ?Ω5 . By (E.1), there exists @ ∈ O
such that @Ξ5 ∪Ω5→ = ?Ξ5 ∪Ω5→ , we have @l = ?l whenever ?l = ", and (l, ?l ) ∈ -� whenever l ∈ Ω→5 r Ξ and

?l < ". We consider the prices @ instead of the prices ? .

By Theorem B.1, SFS must be satis�ed. To produce a contradiction, we consider the set of trades that 5 could demand

at price vector @ that contains fewest trades outside Ξ5 . Formally, let Ψ ∈ � 5 (@) minimize |Ψ′rΞ| over all Ψ′ ∈ � 5 (@) .
42

In the �xed-point interpretation of trail-stable outcomes [Adachi, 2017, Fleiner et al., 2018b],-� is the set of contracts that are available to their buyers.
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Consider the corresponding set of contracts, = ^ ( [Ψ;@]). Note that, * � and,→5 r� ⊆ -� by construction and

BWP. We divide into cases based on whether, r� contains any contracts that are sold by 5 to produce a contradiction.

Case 1: , r� * -→5 . In this case, we either produce a locally blocking trail or show that any sale in, r�

must appear in some locally semi-blocking trail. Formally, let I ∈,5→ r�5→ be arbitrary and let l = g (I). By

IFSS, we have I ∈, ′ for all, ′ ∈ � 5 (� ∪ {I} ∪,→5 ). Let, 0 ∈ � 5 (� ∪ {I} ∪,→5 ) minimize |, ′ r�| over all

, ′ ∈ � 5 (� ∪ {I} ∪,→5 ) .
As @l = ?l , the trail ((l, ? ′l )) cannot be locally semi-blocking for any ? ′l < @l by (E.1). Hence, we have

that �5 ∈ � 5 (�5 ∪ {I}) by the upper hemi-continuity of demand. It follows that , 0

→5 r �→5 ≠ ∅. Since

,→5 r � ⊆ -�, there must exist a locally semi-blocking trail (I1, . . . , I=) with I= ∈ , 0

→5 . By DFSP, we have

I= ∈, ′ for all, ′ ∈ � 5 (�5 ∪ {I=, I}). We divide into cases based on whether there exists, ′′ ∈ � 5 (�5 ∪ {I=, I})
with I ∉, ′′ to derive contradictions.

Subcase 1.1: There exists, ′′ ∈ � 5 (�5 ∪{I=, I}) with I ∉, ′′. Then, the trail (I1, . . . , I=) is locally blocking,

contradicting the assumption that � is trail-stable.

Subcase 1.2: I ∈ , ′′ for all, ′′ ∈ � 5 (�5 ∪ {I=, I}) . Then, (I1, . . . , I=, I) is a locally semi-blocking trail.

Since D 5 is continuous, there exists ? ′l < ?l such that (I1, . . . , I=, (l, ? ′l )) is a locally semi-blocking

trail, contradicting (E.1).

Case 2: , r � ⊆ -→5 . Let I ∈ , r � be arbitrary, and let (I1, . . . , I=) be a locally semi-blocking trail with

I= = I. By DFSP, we have �5 ∉ � 5 (�5 ∪ {I}). Thus, (I1, . . . , I=) is a locally blocking trail, contradicting the

assumption that � is trail-stable.

The cases exhaust all possibilities. We have produced contradictions in all cases, completing the proof of the claim. �

Claims E.3 and E.4 together imply the theorem.

E.5 Proof of Corollary 2

Competitive equilibria exist by Theorem D.1. Competitive equilibrium outcomes are trail-stable by Theorem 2. Trail-

stable outcomes lift to competitive equilibria by Theorem 4.

E.6 Proof of Theorem 5

We prove the contrapositive. Let [Ξ;?] be an arrangement and suppose that � = ^ ( [Ξ;?]) is not strongly group stable.

If � is not individually rational, then clearly [Ξ;?] is not a competitive equilibrium. Thus, we can assume that � is not

strongly unblocked—that is, that there exists a non-empty set of contracts / ⊆ - r� and, for each 5 ∈ � with / 5 ≠ ∅,

a set of contracts . 5 ⊆ / 5 ∪�5 with . 5 ⊇ / 5 and* 5
(
. 5

)
> * 5

(
�5

)
(see De�nition 6).

Let � ′ = {5 ∈ � | / 5 ≠ ∅}. For each 5 ∈ � ′, let

M 5 = sup

@
�������D 5 ©­­«g (. 5 ),

∑
l ∈g (. 5 )5→

?l −
∑

l ∈g (. 5 )→5

?l − @
ª®®¬ ≥ * 5

(
�5

) 
denote the negative of the compensating variation for 5 from the change from g (�5 ) to g (. 5 ) at price vector ? . For

l ∈ g (/ ), let ?̃l be the unique price such that (l, ?̃l ) ∈ / . De�ne ?̃l = ?l for l ∈ Ω r g (/ ). The de�nition of . 5
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ensures that

D 5
©­­«g (. 5 ),

∑
l ∈g (. 5 )5→

?̃l −
∑

l ∈g (. 5 )→5

?̃l
ª®®¬ > * 5

(
�5

)
for all 5 ∈ � ′. It follows that

M 5 >
∑

l ∈g (. 5 )5→

?l −
∑

l ∈g (. 5 )→5

?l −
∑

l ∈g (. 5 )5→

?̃l +
∑

l ∈g (. 5 )→5

?̃l

=
∑

l ∈g (. 5 )5→

(?l − ?̃l ) +
∑

l ∈g (. 5 )→5

(?̃l − ?l ).

Because ?l = ?̃l for l ∉ / and / 5 ⊆ . 5 , we have

M 5 >
∑

l ∈g (/5 )5→
(?l − ?̃l ) +

∑
l ∈g (/5 )→5

(?̃l − ?l ).

Summing over 5 ∈ � ′, we have

∑
5 ∈� ′M 5 > 0. Thus, there exists 5 ∈ � ′ withM 5 > 0. For such 5 , we have

D 5
(
g (. 5 ),

(
?g (. 5 )5→ , (−?)g (. 5 )→5 , 0Ω5rg (. 5 )

))
> * 5

(
�5

)
= D 5

(
Ξ5 ,

(
?Ξ5→ , (−?)Ξ→5 , 0Ω5rΞ

))
,

so that Ξ5 ∉ � 5
(
?Ω5

)
. Therefore, [Ξ;?] is not a competitive equilibrium.

E.7 Proof of Corollary 3

Competitive equilibrium outcomes exist and coincide with trail-stable outcomes by Corollary 2, and are strongly group

stable by Theorem 5. Strongly group stable outcomes are always stable. Stable outcomes are trail-stable by Proposition 1.

E.8 Proof of Corollary 4

Competitive equilibria exist by Theorem 1. Competitive equilibrium outcomes are strongly group stable by Theorem 5.

Strongly group stable outcomes are always stable. Stable outcomes lift to competitive equilibria by Theorem 3.

E.9 Proof of Lemma A.1

The proof is similar to the proof of Theorem 7 in Hat�eld and Kominers [2012]. By Theorem B.1 in Appendix B, we can

assume that SFS is satis�ed.

We prove the contrapositive. Let � be outcome that is not stable. If � is not individually rational, then clearly � is

not trail-stable. Thus, we can assume that � is blocked by a non-empty blocking set / .

Since / is non-empty and the network is assumed to be acyclic, there is a �rm 51 with /→51 = ∅ and / 51→ ≠ ∅. Let

I1 ∈ / 51→ be arbitrary. By IFSS, we have �51 ∉ � 51 (�51 ∪ {I1}). Let 52 = b(I1).
If �52 ∉ � 52 (�52 ∪ {I1}), then (I1) is a locally blocking trail. Thus, we can assume that �52 ∈ � 52

(
�52 ∪ {I1}

)
. DFSP

implies that I1 ∈, ′ for all, ′ ∈ � 52 (�52 ∪{I1}∪/ 52→) . Let, ∈ � 52 (�52 ∪{I1}∪/ 52→) minimize |, ′r�| among all

, ′ ∈ � 52 (�52∪{I1}∪/ 52→) . By IFSS, we must have, = {I1, I2} for some I2 ∈ / 52→. Note that�52 ∉ � 52 (�52∪{I1, I2})
by construction.
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A similar argument to the previous paragraph shows that (I1, I2) is a locally blocking trail or there exists I3 ∈ /
with s(I3) = b(I2) such that �52 ∉ � 52 (�52 ∪ {I2, I3}) . By induction and due to acyclicity, we obtain a locally blocking

trail. Thus, � is not trail-stable.

F EXAMPLES OMITTED FROM THE TEXT

The following two examples remove the frictions from Examples 1 and 2, respectively, showing that competitive

equilibrium cannot be Pareto-comparable and that adding an outside option that is not used cannot shut down trade.

Thus, distortionary frictions are crucial to the conclusions of Examples 1 and 2.

Example 3 continued (Cyclic economy with transferable utility). In Example 3, the competitive equilibria are [{Z ,k };?] ,
where

��?Z − ?k �� ≤ 10. All competitive equilibria are Pareto-e�cient, as guaranteed by the First Welfare Theorem (see,

e.g., Hat�eld et al. [2013]), and trade occurs in every competitive equilibrium.

Example F.1 (Cyclic economy with transferable utility and an outside trade—Hat�eld and Kominers, 2012). As depicted

in Figure 2(b), consider the economy of Example 3 with an additional �rm 53, which interacts with 51 via trade l ′. Firm

58 has utility function

D 58 (Ξ, C) = E 58 (Ξ) +
∑
l ∈Ω5

Cl ,

where valuations E 51 , E 52 , and E 53 are as in Example 2.

Trade Z ′ cannot be realized in equilibrium due to the technological constraints of 51 and 52 . Hence, we must have

?Z ′ ≥ 300 in any competitive equilibrium, since 53 must weakly prefer ∅ over {Z ′} in equilibrium. In order for trade to

occur, 51 must prefer Z over Z ′, and so we must have ?Z ≥ ?Z ′ . Hence, the competitive equilibria are [{Z ,k }; ?] , where

|?Z − ?k | ≤ 10 and ?Z ≥ ?Z ′ ≥ 300. Essentially, adding an outside option simply forces ?Z to be at least $300 without

shutting down trade between 51 and 52 .

The next example shows that a regularity condition, such as BCV, is needed in addition to FS to ensure that

competitive equilibria exist.

Example F.2 (Competitive equilibria need not exist under FS alone). Consider two �rms, 1 and B, and one trade l

between them with s(l) = B and b(l) = 1. Suppose that B is not willing to sell l at any (�nite) price, but 1 would buy l

at any (�nite) price. Note that the market does not clear at any price—1 always demands l and B never demands l. The

issue is that the variation needed to exactly compensate 1 for going from autarky to trade is −∞. If 1’s compensating

variation were −?, then autarky could be sustained in equilibrium at any price above ? .

The last example shows that FS needed for stable outcomes to be trail-stable.

Example F.3 (Stable outcomes may not be trail-stable without FS). As depicted in Figure 2(a), there are two �rms, 51

and 52, which interact via two trades, Z andk . Firm 58 has utility function

D 58 (Ξ, C) = E 58 (Ξ) +
∑
l ∈Ω5

Cl ,
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where

E 51 (∅) = E 52 (∅) = 0

E 51 ({Z }) = E 51 ({k }) = 1

E 51 ({Z ,k }) = −∞

E 52 ({Z }) = E 52 ({k }) = −∞

E 52 ({Z ,k }) = 1.

Note that trades Z andk are not complementary for �rm 51,which implies that 51’s preferences are not fully substitutable.

The no-trade outcome ∅ is stable, as no non-empty set of contracts is individually rational for both 51 and 52 .

However, the trail ((Z , 0), (k, 0)) locally blocks the outcome ∅. Thus, the no-trade outcome is stable but not trail-stable.


