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Introduction 

 

Soil water erosion is a worldwide environmental problem which can 

negatively affect soil fertility (MORGAN, 2009), reducing the amount of valuable 

soil organic matter and nutrient content (LAL, 2003), reducing soil water retention 

ability, etc. These all contribute to a decline in soil productivity (LAL, 1999), while 

the soil is a non-renewable resource (LAL, 1998). Soil degradation processes may 

generate many on-site and off-site environmental problems (VERSTRAETEN and 

POESEN, 2000; SHARPLEY et al., 1994). 

Appropriate land use and land management have great importance for soil 

water erosion (FELIX-HEMINGSEN et al., 1997), greatly influencing soil quality. The 

most important factors in soil quality are the structural composition and fertility of 

the soil. These factors depend on the size and stability of soil aggregates, the 

organic carbon content of the soil and other agents. Conventional tillage itself 

greatly reduces the amount of soil organic carbon, increases soil compaction and 

destroys aggregates, so the use of conservation tillage methods is of increasing 

importance. On bare soil surfaces, the aggregates are broken down by raindrop 

impact during rainfall events and the smaller aggregates are washed away 

(RODRIGUEZ et al., 2002; SCHIETTECATTE et al., 2008). Soil erosion is a selective 

process, and soil organic matter (SZALAI et al., 2016) is usually the first to be 

removed by runoff, thus reducing soil resistance to degradation processes. 

Therefore, in erosion-prone areas, proper land use has a major role in managing soil 

functionality (RIMAL and LAL, 2009; JORDAN et al., 2005; PODMANICKY et al., 2011; 

CHEN et al., 2007; ERSKINE et al., 2002; MOHAMMAD et al., 2010; PETŐ et al., 2008; 

VACCA et al., 2000; PENGA ÉS WANG 2012; KERTÉSZ et al., 2010; KOULOURI et al., 

2007; SZILASSI et al., 2006).  

In Europe soil water erosion processes on agricultural areas have been widely 

studied (HILL and SCHÜTT, 2000; DEVENTE and POESEN, 2005; BOARDMANN and 

POESEN, 2006; CERDAN et al., 2010, etc.). 

Climate change has raised the number, intensity and duration of rainfall 

events. According to the IPCC (2013) report, the frequency and intensity of extreme 

rainfall events are expected to increase in future decades. Climate change and the 

more intense, more erosive short duration rainfall events have a direct effect on soil 
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erosion (LI and FANG, 2016; JONES et al., 2014; ROUTSCLUK et al., 2014), as they 

increase the vulnerability of soils to erosion (NEARING et al., 2004). A large amount 

of precipitation over a short period may cause more runoff and soil loss, especially 

in summer heat waves. Heavy rainstorms rapidly reduce the infiltration capacity of 

the soil and increase soil sealing and crusting processes.  

Rainfall simulation is a cost-effective, quick and well-known method to study 

and evaluate soil erosion processes. This method can be applied in situ under 

several land uses, such as arable land (CENTERI, 2006; FIENER et al., 2011; LE 

BISSONNAIS et al., 2005; LEYS et al., 2007; VOLF et al., 2007), grassland (JAKAB-

SZALAI, 2005; KATO et al., 2009; KOLER et al., 2008), forest (SHERIDAN, 2008), 

vineyard (ARNAEZ et al 2007; COMINO et al., 2015) and under laboratory 

circumstances (ISERLOH et al., 2012; WON et al., 2012). In addition, rainfall 

simulators can be adjusted to different slope gradients and utilize variable rainfall 

intensities (SHEN et al., 2016; RIBOLZI et al., 2011) 

In this study runoff and soil erosion data were collected for four high intensity 

rainfall simulation events on both arable land (AL) and grassland (GL). The main 

objectives were (1) to study the effects of different land use types on runoff and soil 

loss, (2) to compare the effects of different land uses on soil erosion.  

 

Materials and methods 

 
Experimental area 

The study area can be found in Gerézdpuszta in Koppány Valley, situated in 

the north-eastern part of the South-Transdanubian Region of Hungary (Figure 1), 

30 km to the south of Lake Balaton. It is a hilly landscape formed by loess 

deposited on a layer of Pannonian clay and sand sediments. The terraces of the 

stream are covered by hydromorphic soils, whereas the hill slopes are covered by 

Ramann-type brown forest soils and chernozems formed on loess, as published in 

the oldest soil maps. 

 

 

Figure 1 

Location of Koppány Valley, Hungary 
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On steep hillsides with intensive crop production, tillage may reach the parent 

material, so there is significant erosion on the hills (SZABÓ et al, 2015), as can be 

seen on Figure 1. Almost half of the agricultural areas are situated on slopes steeper 

than 12% and the famers use no soil protection methods. In addition the main crops 

on slopes covered with soils formed on loess are sunflower and maize. 

 

Soil parameters 

The soil texture on the studied arable and grassland areas was silty loam 

(Table 1), the main differences being in chemical properties, with higher pH, 

CaCO3 and phosphorus content on the arable land, while the humus was near to the 

original state on the grassland.  

  
Table 1 

Physical and chemical soil properties 

 

  Physical soil properties  

  Clay % Silt % Fine sand % Coarse sand % Texture 

Arable land 4.5 56.8 38.6 0.2 
Silty loam 

Grassland 3.1 57.3 39.1 0.5 

 Chemical soil properties  

 pH (KCl) CaCO3 % Humus % AL-P (mg kg-1) AL-K (mg kg-1) 

Arable land 7.6 13.3 1 9.6 6.29 

Grassland 7.3 9.9 3.5 3.72 9.84 

 

Rainfall simulation 

The study was carried out with a Shower Power-02 rainfall simulator, 

constructed at the Geographical Institute, Research Centre for Astronomy and Earth 

Sciences, Hungarian Academy of Sciences. Four rainfall events were simulated on 

both arable land (AL) and grassland (GL), involving 90 mm h
-1

 rainfall intensity on 

the arable land, and intensities of 90, 110 and 130 mm h
-1

 on the grassland area. The 

intensities effectively reached were below those planned (Table 2).  

The plots were on fenced ground with a plot size of 6 m
2
 (3×2 m). The device 

is equipped with two 80100 Veejet alternating nozzles. The rainfall intensity can be 

adjusted by changing the number of nozzle-swings during a given time. The runoff 

was collected by two metal triangles with a drain-pipe at the bottom of the plot. The 

runoff volume was registered through these triangles, and both the time and the 

amount of runoff were read when one of the two measuring barrels reached the  

2-litre limit. 
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Table 2 

Rainfall intensities and slope sections during the rainfall events 

 

Planned intensity (mm h
-1

) Measured intensity (mm h
-1

) Slope (%) 

Grassland 

130 96.73 8.33 

130 93.22 8.33 

110 96.48 8.33 

90 78.4 8.33 

Arable land 

90 80.44 7.7 

90 86.12 8 

90 84.68 6.7 

90 70.19 8 

 

Results  
 

When rainfall simulation was performed under similar circumstances but 

different land use types no great differences in runoff were observed (Table 3). On 

average 4.32 mm and 5.53 mm runoff was measured for GL and AL, respectively. 

The GL results showed higher standard deviation and error (Figure 5). A lower 

amount (ml) of runoff was recorded for GL than for AL (GLavg 25922 ml; 

ALavg 33207 ml).  

 
Table 3 

Summary of results obtained for different land uses 

 

Land use 
Basic 

statistic 

Runoff 

(mm) 

Runoff 

(ml) 

Runoff 

coefficient  

Infiltration 

(mm) 

Soil 

loss 

(t ha
-1

) 

Suspended 

sediment 

load (g l
-1

) 

Grassland 

AVG 4.32 25921.75 0.33 10.47 0.04 1.09 

SD 2.15 12870.55 0.20 5.70 0.01 0.62 

SE 1.07 6435.28 0.10 2.85 0.01 0.31 

Arable 

land 

AVG 5.53 33207.50 0.48 6.20 0.58 10.61 

SD 0.65 3909.89 0.08 1.78 0.14 1.60 

SE 0.33 1954.94 0.04 0.89 0.07 0.80 

 

The runoff coefficient characterizes the relationship between rainfall and 

runoff during a rainfall event. The higher this value, the greater is the flow rate and 

the lower the infiltration rate. On average, higher values were obtained for AL than 
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for GL (GLavg 33 %; ALavg 48 %). The measurements revealed a high correlation 

between rainfall intensity and runoff for AL (r
2
=0.9108) and a moderate correlation 

for GL (r
2
=0.5457), where the rainfall intensity negatively affected the runoff rate 

and increased the infiltration (r
2
=0.4919) (Figures 2-3).  

 

 
 

Figures 2-3 

Effect of rainfall intensity on runoff coefficient and infiltration 

 

 

Figure 4 

Runoff-infiltration ratios for different rainfall simulations 

 

Besides the runoff coefficient, the runoff-infiltration ratio was also evaluated 

(Figure 4). Generally, a higher infiltration ratio was measured for GL, while for AL 
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the runoff rate exceeded the infiltration rate in most cases, resulting in higher soil 

loss and suspended sediment load (Figure 6) 

The most striking results were found for the suspended sediment load (Figures 

5-6), where there was an almost 10-fold difference between GL and AL. 
 

 
 

Figures 5-6 

Runoff and suspended sediment load results between two land use intensities 

 

Conclusions 

 

It can be concluded from the results that the runoff and soil loss rate were 

higher on arable land (even at slightly lower rainfall intensities), leading to more 

concentrated suspended sediment loads. Similar rainfall intensities resulted in 

almost tenfold differences in suspended sediment load on AL, with greatly reduced 

infiltration. 

In most cases infiltration was exceeded by runoff on AL. The results 

confirmed expectations that grassland would generate less runoff thanks to the 

better porosity, thick surface cover and greater surface roughness.  

On AL rainfall intensity and runoff coefficient were in positive correlation, 

while in the case of GL increasing rainfall intensity decreased the runoff rate and 

moderately increased infiltration. Similar observations were made by NASSIF and 

WILSON (1975), BOWYER-BOWER (1993), JAKAB and SZALAI (2005) and SZABÓ et 

al. (2017), who found that soil permeability increases proportionally with higher 

rainfall intensity, partly due to the increasing pressure of the water. Based on the 

suspended sediment load the two land use intensities were unambiguously 

distinguishable. 

It is obvious that while the runoff values of GL overlapped those of AL to 

some extent, the suspended sediment load differed greatly, with no overlap between 

the values of the two land use intensities. The suspended sediment load values 

clearly formed two distinctive groups. This is in agreement with the findings of 

RIMAL and LAL (2009), JORDAN et al. (2005), PODMANICKY et al. (2011),  
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CHEN et al. (2007), ERSKINE et al. (2002), MOHAMMAD et al. (2010), PETŐ et al. 

(2008), VACCA et al. (2000), PENGA and WANG (2012), KERTÉSZ et al. (2010), 

KOULOURI et al. (2007) and SZILASSI et al. (2006),who stated that proper land use 

has a major role in managing soil functionality. As arable farming is of increasing 

importance for the expanding world population, it would be important to find a 

balance by producing crops that provide enough soil cover to reduce the suspended 

sediment load to a sustainable limit. Our prime interest is for less soil to be lost than 

is formed under the given circumstances. 

The present results suggest that there must be other important factors, besides 

chemical soil properties, such as biological soil activity and the water stored in 

plants, which are rarely considered in field experiments. Earthworms and other soil-

dwelling animals, the plant leaf area, and plant remnants (both roots and the holes 

they leave after decay) have a tremendous effect on the infiltration rate and 

permeability, thus greatly influencing both runoff and, more importantly, the 

suspended sediment load. 

The results emphasise the importance of adequate land use, which has a major 

role in climate resilience, SOC conservation and retention, and a reduction in soil 

loss. 

 

Summary 

 

Adaptation is the most important strategy to reduce the effect of climate 

change and soil erosion. During this process adequate, rational land use is necessary 

to ensure climate resilience. Therefore, the main objective in this study was to 

evaluate the susceptibility of different land use intensities (arable land and 

grassland) to soil erosion. The rainfall simulation method is a good tool to measure 

and estimate soil erosion in situ. The comparative measurements were carried out in 

the field with a Shower Power-02 simulator on 6 m
2
 plots in Gerézdpuszta, where 

the slope angles were ~8% and the simulated rainfall events had high intensities 

(~70-96 mm h
-1

). The runoff and soil loss were significantly higher from arable 

land. The runoff-infiltration ratio and runoff coefficient showed lower infiltration 

capacity in the case of arable land. On average, the suspended sediment loads were 

tenfold higher under intensive land use. In the case of grassland a moderate increase 

in infiltration was observed due to higher rainfall intensity, as also reported in the 

literature. The rainfall simulation method provides good data for soil loss 

estimations.  

 

Keywords: soil erosion, different land uses, soil loss, runoff 
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