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Introduction

Symmetry in animal bilateral traits is a genetic indicator 
of aptitude, although it is frequently observed that organisms 
are not perfectly symmetrical (Sanseverino and Nessimian 
2008). Fluctuating asymmetry (FA) represents an efficient 
tool to measure developmental instability in both plants and 
animals and has been widely used for population monitoring 
(Beasley et al. 2013, Alves-Silva et al. 2018), as deviations 
from the axis of symmetry in bilateral characters usually oc-
cur due to the inability of the individual to correct minor de-
velopmental changes caused by environmental and/or genetic 
factors that act as a source of stress (Møller 1997, Wilsey et 
al. 1998, Cornelissen and Stiling 2011). 

As changes in the environment have been occurring 
rapidly in the last decades, biomonitoring studies are im-
portant to understand factors that interfere with population 
growth, community dynamics and ecosystem functioning. 
Populations in which many individuals experience develop-
mental instabilities due to any type of stress are more suscep-
tible to decline (Eterovick et al. 2016). FA has served as the 
basis for several ecological and evolutionary studies in an at-
tempt to demonstrate, efficiently and at low cost, that changes 
in morphometry are an indicator of environmental and/or 
genetic stress (review in Beasley et al. 2013). FA has been 

demonstrated to be a great tool to determine the stress level 
of natural and impacted populations of animals and plants, 
although its application at the community level has been rare 
(see Anciães and Marini 2000). We here suggest the use of 
FA as a biomonitoring tool for a whole community of tropical 
butterflies, an approach that has never been proposed.  

Environmental conditions influence the dynamics, distri-
bution and survival of organisms. Individuals with a higher 
sensitivity to habitat adequacy tend to respond negatively to 
the stress generated by environmental and/or genetic factors 
(Møller and Swaddle 1997, Vogel et al. 2012), showing in-
creased levels of FA under stressful or inadequate conditions. 
Increased FA has been found, for example, under intra- and 
interspecific competition, shortage of resources, climatic in-
stability, temperature variation and pollution, amongst others 
(e.g., Møller 1997, Sanseverino and Nessimian 2008, Leonard 
et al. 2018). Changes in abiotic conditions as well as changes 
in vegetation structure, habitat heterogeneity, and ecosystem 
productivity associated to changes in elevation (Hodkinson 
2005) are usually suggested as drivers of increased develop-
mental instability and consequently higher FA in organisms 
at higher altitudes.

Altitudinal gradients have been frequently used in eco-
logical studies to test the influence of climatic variation as-
sociated to increased elevation and its effects on animal and 
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plant communities (Hodkinson 2005, McCain and Grytnes 
2010, Fernandes et al. 2016), and previous studies have 
linked FA with environmental stress caused by elevation in 
animals (Jentzsch et al. 2003, Tembotova et al. 2018, Wells et 
al. 2018). However, studies involving FA as evidence of envi-
ronmental stress in butterflies, as well as its use as a biomoni-
toring tool, are still insufficient, and the few existing studies 
involve morphometric measurements in populations and not 
in ecological communities along gradients, except for a study 
with passerine birds (Anciães and Marini 2000) relating FA 
and habitat fragmentation. Besides the use of FA for a com-
munity as a surrogate of stress caused by altitude, we also 
advanced the idea of measuring different traits in butterfly 
wings that are important for movement, predator avoidance 
and foraging efficiency. By measuring wing length, width 
and area in several butterfly species we aimed to evaluate the 
effects of variation associated to an altitudinal gradient on 
the wing symmetry of butterflies, testing the hypothesis of 
increased FA for an entire butterfly community with increased 
altitude.   

Materials and methods

Study area

The butterflies were collected inside the Environmental 
Protection Area of Serra de São José mountain, in the south-
central of Minas Gerais, Brazil (21° 7’ 8.87’’ S, 44° 7’ 22.84’’ 
W, Fig. 1). Serra de São José has elevations ranging from 800 
m to 1,413 m above sea level, and exhibits phytophysiogno-
mies of the Cerrado and Atlantic domains, with semidecidu-

ous seasonal forest and cerrado at its lower elevations, and 
campos rupestres at the highest elevations. It spans 4.758 ha 
(Cirino and Lima 2008) and the climate is marked by mild 
summers and winter droughts (Köppen classification: Cwb). 
The average annual rainfall is about 1.500 mm; the average 
temperature ranges 19-20°C (Gonzaga et al. 2008).

Data sampling

Butterfly sampling was performed over a 1-year period 
(March 2016 to March 2017), over four seasons (Season 
1: March and April 2016, Season 2: June and July 2016, 
Season 3: November and December 2016, Season 4: January, 
February, and March 2017) along seven altitudinal bands be-
tween 800 m and 1,413 m, with sampling at every 100 m 
of altitude. Due to the intrinsic characteristics of the campos 
rupestres in most part of Serra de São José, few places ex-
hibited tall trees and/or forest fragments that would allow the 
placement and use of traps and, for this reason, all butter-
fly sampling was conducted actively, using insect nets. Net 
sampling was performed at each altitudinal band when the 
butterflies are most active, i.e., in the mornings and early af-
ternoons (9 a.m. to 3 p.m., Santos et al. 2011). At each altitu-
dinal band, net sampling was carried out for nearly five hours 
per day, totaling 140 effective hours in 28 sampling periods 
and all butterflies were sampled only at the campos rupestres 
areas of the mountain (Fig. 1). Butterflies were placed in en-
tomological envelopes with descriptions of altitude, date and 
time of collection. They were then sacrificed, mounted, and 
later identified with the aid of field guides and/or specialists. 
Butterflies were deposited at the Entomological Collection of 

Figure 1. Map of the location of Serra de São José mountain in Minas Gerais state, Brazil, and the location of the sampling sites along 
the altitudinal gradient, at every 100 meters of altitude.
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the Department of Natural Sciences of the Federal University 
of São João del-Rei (DCNat/UFSJ).

Asymmetry analysis

To measure butterfly wing traits, two criteria had to be 
met to be included in our FA measurements: 1) There had to 
be at least three individuals of each species to be selected for 
asymmetry measurements and 2) both the right and left wings 
had to be undamaged to properly measure wing length, width 
and area. Although almost 650 butterflies belonging to 112 
species were sampled during the course of our study in the 
entire elevational gradient (see Henriques et al. 2019), only 
about half of the individuals sampled meet these two criteria 
and could be included in our FA analyses. 

We measured wings of a total of 366 butterflies, belong-
ing to 30 species (Supplementary Material) of the families 
Nymphalidae (S = 15, N = 165), Hesperiidae (S = 6, N = 
92), Pieridae (S = 5, N = 80), Lycaenidae (S = 2, N = 19) 
and Papilionidae (S = 2, N = 10). The butterflies from each 
altitudinal band were considered to belong to an independ-
ent community. Although there was great variation of species 
composition along the altitudinal gradient, many of the spe-
cies selected for the asymmetry measurement were found in 
more than a single altitudinal band.

The dorsal face of both right and left forewings of each 
individual included in this study were digitized and later 
measured. Wing traits were selected according to Windig et 
al. (2000) and Adamski and Witkowski (2002), and we se-
lected traits that could be measured for the entire commu-
nity, regardless of species-specific characteristics. Length 
was measured from the wing insertion on thorax to the largest 
diagonal measurement of the forewing (Fig. 2, trait A), cross-
ing the discal cell to the apex. Width was measured from the 
same original point to the largest horizontal measurement of 
the forewing, considering an angle of 180° (Fig. 2, trait B), 
crossing the cubital cell, following the first anal vein to the 

marginal area. Total wing area was measured as the entire 
extent of the forewing (Fig. 2, trait C). 

To evaluate the effects of altitude on wing asymmetry, 
forewings were carefully detached, scanned, and the images 
were captured with ImageJ (Schneider et al. 2012) and meas-
urement unit was set to millimeters. Asymmetry for the three 
wing traits was calculated as the average difference between 
the left and right sides of the wings, based on modified in-
dexes (Palmer and Strobeck 1986, Anciães and Marini 2000):

where: FA = Fluctuating Asymmetry, V = Sample Variance, 
WR = Right Wing trait (length, width or area), L = Left Wing 
trait (length, width or area). FA was calculated separately for 
length, width and area.

The frequency of distribution of values of the traits eval-
uated on both sides (left and right) of each individual was 
tested with Liliefors and one-sample t-tests, and mean values 
with associated variance were used to generate an index of 
FA for the butterfly community belonging to each altitudi-
nal band (see Anciães and Marini 2000). The mean values 
of each species were used as replicates at each altitude. A 
generalized linear model (GLM) was calculated relating the 
FA indexes for the butterfly communities and altitude. All the 
statistical analyses were performed using the R software (R 
Development Core Team 2017).

To circumvent the possibility of measurement errors, af-
ter measuring length, width and area traits of the 366 but-
terflies, 103 individuals (approximately 30% of the sample) 
were chosen at random and their measurement procedures 
were repeated as a double-blind test. In order to discard meas-
urement errors a mixed model ANOVA was calculated using 
length, width and area measured twice as dependent variables 
and both FA measurements as factors (Palmer and Strobeck 
1986).

Results

The butterfly community revealed true patterns of fluc-
tuating asymmetry, demonstrated by the normal distribution 
of the traits measured on the left and right wings. Mean 
values   did not deviate significantly from zero (length: t = 
–1.326, df = 351, P = 0.186; width: t = 1.751, df = 354, P = 
0.081; area: t = –0.295, df = 364, P = 0.768). The absolute 
deviations of the wings (Right wing trait – Left wing trait) 
varied between 0 and 2.29 mm for length, between 0 and 
1.3 mm for width and between 0.003 and 31.15 mm² for 
area, considering all the sampled butterflies. Mixed-model 
ANOVAs for the three traits indicated that measurements 
taken repeatedly at each wing (Length: F1,204 = 0.123, P = 
0.726; Width: F1,204 = 0.243, P = 0.622 and Area: F1,204 = 
2.712, P = 0.101) did not differ, indicating that FA measure-
ments were accurate and discarding the possibility of values   
that reflect measurement errors. 
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Figure 2. Schematic representation of bilateral traits measured 
on the forewings of a butterfly model (Phoebis sennae, Pieridae), 
where: A = Wing length, B = Wing width and C = Wing area. A, 
B and C were measured for both right and left forewings.
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Of the 366 butterflies sampled, only 12 individuals ex-
hibited wings that were perfectly symmetric in length (right 
length minus left length equals zero) and only 8 had perfectly 
symmetric wings considering wing width (right width minus 
left width equals zero), but no butterfly presented both traits 
symmetric simultaneously. No wing exhibited perfect sym-
metry in area (right area minus left area different form zero). 
In combination, this high frequency of asymmetric wings 
(96% of the wings measured showed some degree of FA) 
indicates that wings for these butterflies studied did in fact 
present asymmetry.

Although all three traits measured for the butterfly com-
munity exhibited true patterns of FA at each altitudinal band, 
only wing FA area increased with increased altitude (R2 = 
0.57, P = 0.04, Fig. 3). For wing length and width, there 
was no significant change in FA with altitude (length: R2 = 
0.009, P = 0.83; width: R2 = 0.1, P = 0.48; Supplementary 
Material).

Discussion

The butterfly community of Serra de São José moun-
tain exhibited morphological variation in traits expressed 
as asymmetry, showing true patterns of fluctuating asym-
metry for the three evaluated traits. This implies that FA is 
detectable for butterflies and can be used as a quick, cheap 
and efficient biomonitoring tool, especially when the focus 
of the study is to evaluate community responses to variation 
in abiotic factors along environmental gradients. FA has been 
widely evaluated for animal and plant populations, but our 
novel approach to a community level has been able to show 
its efficiency to evaluate the health of the environment, func-
tioning as a biomonitoring index (Anciães and Marini 2000, 
Beasley et al. 2013, Yuto et al. 2016).

Altitude has been long pointed as a source of environ-
mental stress due to the impacts of changes in abiotic factors 
with increasing elevation (e.g., Hodkinson 2005, Fernandes 
et al. 2016 and references therein), potentially affecting but-
terfly flight, resource acquisition, activity, reproduction and 

performance (Despland et al. 2012 and references therein). In 
our study, variation in elevation explained almost 60 percent 
of the variation in symmetry of wing area and butterflies at 
the higher-most altitude exhibited more than doubled values 
of asymmetry compared to butterflies at the bottom of the al-
titudinal gradient. One of the beauties of the mountain studied 
is that vegetation types are completely replaced by others with 
the rise in elevation and this replacement is mainly caused by 
changes in abiotic factors. Although there is not a plant list for 
each altitudinal band for this mountain, in a previous study 
at a similar mountain within the same chain (Serra do Cipó - 
Fernandes et al. 2016) it is shown that vegetation associated 
to high radiation and lower temperature (campos rupestres) 
prevail in higher altitudes whereas vegetation associated to 
lower radiation and higher temperature (cerrado) prevail on 
the lower altitudes. Therefore, we believe the effects of habi-
tat do not have to be separated from the effects of climate, 
but they can be combined into a climatic-vegetation axis that 
influences species distribution. With our sampling design, 
however, we cannot detect which factor(s) that change with 
altitude are causing fluctuating asymmetry in butterfly com-
munities at each altitudinal band. 

Previous studies with butterflies along elevation gradients 
suggest that a complex combination of variables that change 
as altitude changes might be responsible for the variation ob-
served in butterfly lifecycle, development, life history, host 
plant use, and fitness along mountains (Despland et al. 2012). 
Any or a combination of these factors might influence the 
patterns of wing asymmetry for butterflies found along eleva-
tion. For similar mountain ranges in Brazil, Fernandes et al. 
(2016a) have shown an inverse relationship between butterfly 
species richness and altitude, indicating that changes in plant 
species composition and climatic factors (such as tempera-
ture, wind speed and UV-radiation) combined into a climatic-
vegetation axis might be responsible for the patterns found. 
We believe variation in plant species composition – that act 
as food resources for both nectarivorous and frugivorous but-
terflies – along the mountain gradient here studied, together 
with increased wind, decreased temperature and increased 

19 
 

 425 

 426 

 427 

 428 

Fig. 3 429 

Figure 3. Relationship between fluc-
tuating asymmetry (FA) in wing area 
of the butterfly community and the al-
titudinal gradient of Serra de São José 
mountain, Brazil.
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UV-radiation might act as sources of stress at the highest al-
titude, causing greater values of FA for this community of 
butterflies. Our study is a first step towards the understanding 
of variation of FA with altitude for an entire community of 
butterflies and we believe FA might also be important as a 
biomonitoring tool in scenarios of global climatic change. If 
increased temperature, as expected for the next century (Pecl 
et al. 2017), for example, accelerates developmental rates of 
butterflies, one might expect reduction or impairment in the 
chances of correction in developmental error, causing there-
fore higher developmental instability that can be measured 
and quantified as higher levels of FA under climate change. 

Wing size and wing morphology have many ecological 
and genetic implications for butterflies (Thomas et al. 1998, 
Talloen et al. 2009 and references therein). Amongst several 
wing traits that can be measured to evaluate their effects on 
butterfly performance, wing area and wing size - as well as 
its symmetry - have been suggested as important functional 
traits (Aguirre-Gutiérrez et al. 2017, Graça et al. 2017 and 
references therein), influencing butterfly flight, efficient re-
source acquisition and predator avoidance. The other two 
traits measured in our study (wing length and width) are also 
important functional traits for butterflies and other insects 
(butterflies in Adamski and Witkowski 2002, beetles in Javal 
et al. 2017, dragonflies in Modiba et al. 2017, hemipteran in 
Lashkari et al. 2015), but they did not vary with elevation. 
Other studies with butterflies (González-Esquivel et al. 2015) 
and plants (Kozlov et al. 2017) have shown that not all traits 
evaluated are able to detect stress factors acting at organisms 
and communities, even when there are real patterns of asym-
metry. In our study, wing area, compared to wing length and 
width, might be a more reliable indicator of asymmetry as 
measuring the entire wing may permit the detection of varia-
tion in symmetry of wing regions that are not detectable when 
measured as single linear traits, such as forewing length and 
width (Fig. 2, traits A and B).

There is a clear shortage of information about fluctuating 
asymmetry in animal communities. This was the first study 
to evaluate FA for a community of butterflies in tropical and 
environmental gradients and our data show that FA can be 
used as a reliable monitor of environmental stress caused by 
increased elevation. 
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Supplementary material

Table S1. Occurrence of butterfly species along the eleva-
tion gradient of the Serra de São José mountain, Minas Gerais 
state, Brazil.
Figure S1. Relationship between fluctuating asymmetry (FA) 
in length (superior panel) and width (inferior panel) of wings 
of the butterfly community along the altitudinal gradient of 
Serra de São José mountain, Brazil.
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