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Blackjack mutations improve the on-target
activities of increased fidelity variants of SpCas9
with 5′G-extended sgRNAs
Péter István Kulcsár 1,2,3✉, András Tálas1,4, Eszter Tóth1, Antal Nyeste1, Zoltán Ligeti1,3,5, Zsombor Welker6 &

Ervin Welker 1,2✉

Increased fidelity mutants of the SpCas9 nuclease constitute the most promising approach to

mitigating its off-target effects. However, these variants are effective only in a restricted

target space, and many of them are reported to work less efficiently when applied in clinically

relevant, pre-assembled, ribonucleoprotein forms. The low tolerance to 5′-extended, 21G-
sgRNAs contributes, to a great extent, to their decreased performance. Here, we report the

generation of Blackjack SpCas9 variant that shows increased fidelity yet remain effective with

21G-sgRNAs. Introducing Blackjack mutations into previously reported increased fidelity

variants make them effective with 21G-sgRNAs and increases their fidelity. Two “Blackjack”

nucleases, eSpCas9-plus and SpCas9-HF1-plus are superior variants of eSpCas9 and SpCas9-

HF1, respectively, possessing matching on-target activity and fidelity but retaining activity

with 21G-sgRNAs. They facilitate the use of existing pooled sgRNA libraries with higher

specificity and show similar activities whether delivered as plasmids or as pre-assembled

ribonucleoproteins.
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The Streptococcus pyogenes Cas9 (SpCas9) nuclease, along
with other RNA-guided nucleases of the type II CRISPR
system, has proved its value for genome engineering

applications1–14. Intensive research has been focused at increasing
its potential by minimizing off-target activity, which restricts its
use in areas where high specificity is essential15–23. The most
promising approaches to decrease its off-target activity are
the generation of increased fidelity mutant variants, such as
eSpCas9, SpCas9-HF1, and HypaSpCas9, developed by rational
design24–26, evoSpCas9 developed by exploiting a selection
scheme27 or the HeFSpCas9 variants developed by combining the
mutations found in eSpCas9 and SpCas9-HF126,28. Limitations of
this approach include increased target selectivity, meaning that at
several target sites that are otherwise cleaved by the wild-type
(WT) SpCas9 these nucleases either do not cut or do so in only a
limited fashion. Another limitation of using increased fidelity
mutant variants is their reduced compatibility with 5′-altered
sgRNAs. Indeed, most of the increased fidelity nucleases can
routinely be used only with fully matching 20-nucleotide-long
spacers (20G-sgRNAs)24,25,27–30. It is plausible that they do not
work well with 5′ mismatching or truncated sgRNAs because, by
design, they are inherently characterized by a lower spacer-target
mismatch tolerance (i.e., they are sensitive to structural altera-
tions within the DNA-RNA hybrid helix, which is bundled up
inside the protein structure). However, it is less obvious why they
possess diminished activity with 5′-extended sgRNAs, given that
the extension is supposed to protrude from the structure of the
nuclease31,32. Some of the extensions were also shown to increase
the fidelity of the nuclease action, for which an explanation is still
missing20,33. An understanding of this effect may lead to a better
comprehension of the main factors that determine specificity and
effectivity of the action of increased fidelity SpCas9 nucleases.
This issue also has technical aspects: to comply with the sequence
requirement of the promoters commonly used to transcribe the
sgRNA (such as the human U6 promoter in mammalian cells34 or
the T7 promoter in vitro35–37), 5′ G-extended sgRNAs are fre-
quently used with the WT SpCas9 when appropriate 20G-N19-
NGG targets cannot be identified bioinformatically. Indeed, there
are 27 knockout pooled sgRNA libraries at Addgene (as of
24 June 2019; https://www.addgene.org/pooled-library/) and
none of them is restricted to 20G-N19-NGG target sequences.
Such a shortage of appropriate targets is also a general problem
with applications where there is little room to maneuver, for
example when a specific position needs to be targeted by
exploiting single strand oligos, when using either dCas9-FokI
nucleases or base editors or when tagging proteins. Although
some methods have been adapted, there is no general approach to
extend the target space available for increased fidelity SpCas9
variants beyond the 20G-N19-NGG target sequences38–41. The
use of chemically synthesized sgRNAs in pre-assembled ribonu-
cleoprotein (RNP) form circumvents this problem in certain
cases; however, RNPs are not suitable for use in pooled-library
screens and are prohibitively expensive for large-scale or high-
throughput studies. Furthermore, it is specifically reported that e-,
-HF1, Hypa-, and evoSpCas9 have strongly reduced activities
when they are applied by the RNP delivery method42. Other
approaches exploiting ribozyme- or tRNA-sgRNA fusions have
not been well characterized for the sequence dependence of
sgRNA-processing. These systems have not been applied to any
large-scale studies, and none of the pooled sgRNA libraries
included in the 45 activation, repression or knockout libraries
currently available at Addgene (https://www.addgene.org/pooled-
library/) is built on ribozyme- or tRNA-sgRNA fusion vectors.

Here we report a general solution to this problem, applicable to
all increased fidelity SpCas9 nucleases, that results in high spe-
cificity editing of a considerably wider target range, even when

applied as pre-assembled RNP complex, the form which can
further increase editing specificity.

Results
Blackjack-SpCas9-HF1 works with 21G-sgRNAs. A 5′ G-
extension of sgRNAs affects the activity of the increased fidelity
variants such as e-, -HF1, Hypa-, evo-, and HeFSpCas9 examined
here. We proposed that it might result from a capping of the 5′
end of the sgRNA by Glu1007 and Tyr1013, which are connected
via a surface loop as revealed by some X-ray structures of SpCas9
nuclease found by the Doudnas’ lab and Nishimasu et al.
(Fig. 1a)43,44. We anticipated that removing the cap by mutation
would make space for a 5′ G-extension of the sgRNA without
clashing with the polypeptide chain, and it could be achieved
without disrupting the structural features of the folded protein.
Such modification would allow the increased fidelity nucleases to
work with similar efficiency when charged with sgRNAs con-
taining either 20- or 21-nucleotide-long spacers (20G-sgRNA or
21G-sgRNA), thereby extending their target space to non-20G
targets without losing fidelity. Furthermore, it has been recently
reported that some 5′-extensions of the sgRNA increase the
fidelity of the WT protein20,33, which we suppose to occur mainly
via the perturbation of the cap-interaction. Thus, removing the
cap by mutations (i.e., perturbing the cap interaction by altering
the protein instead of the 5′ end of the RNA) may also increase
the fidelity of the nucleases and transform the WT protein to an
increased fidelity nuclease that tolerate a 5′ extension of the
sgRNA. This is a very similar rationale to that used to design
SpCas9-HF1 except that in that case the interactions to be dis-
rupted are mediated via the target DNA strand in the hetero-
duplex instead of the RNA strand.

We chose SpCas9-HF1 from among the high-fidelity nucleases as
a starting platform and generated a mutant by replacing both
Glu1007 and Tyr1013 with glycine to eliminate the presence of
sidechains at these positions. In addition, we generated two deletion
mutants within the region from aa. 1004 through aa. 1014.
(positions where the remaining ends of the polypeptide chain
seemed to be connectable without causing major distortions to the
protein structure) either by completely removing this segment or by
replacing it with two adjacent glycine residues, in order to eliminate
the loop. Interestingly, both variants containing the deletions were
active with 21G-sgRNAs (Supplementary Fig. 1a) when tested in an
EGFP-disruption assay, but not the glycine-mutant. In conse-
quence, we decided to proceed further with deletion variants. At
first, we screened 13 target sites with the two deletion mutants
created, along with the WT and SpCas9-HF1 (Supplementary
Fig. 1b) and identified some targets that appeared suitable for easy
detection of possibly improved performance of further mutant
variants. Based on the same principle, we created 16 further deletion
mutant candidates in that region, specifically between aa. 1003 and
aa. 1017, by completely removing or exchanging segments of
various lengths harboring the loop, with one to up to four amino
acids with no or small side chains (Supplementary Fig. 1c). The
targets selected in the previous step were used to test all mutant
candidates in comparison to WT and SpCas9-HF1 (Supplementary
Fig. 1d–f). The best candidate was considered to be the one
exhibiting the highest on-target activity with 20G-sgRNAs and
demonstrating the highest improvement with 21G-sgRNAs. This
variant was named Blackjack-SpCas9-HF1 (B-SpCas9-HF1) con-
taining only two glycine residues between the amino acids L1004
and K1014 (Fig. 1b). The Blackjack name, designated by the “B-
“prefix refers to its compatibility with 21G-sgRNAs.

Blackjack mutations increase the fidelity of the variants. Next,
we introduced the Blackjack mutations into four additional
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increased fidelity variants (e-, Hypa-, evo- and HeFSpCas9) and
into the WT nuclease and compared the on-target activities of
these nucleases with 20G- and 21G-sgRNAs to see whether they
have increased activity with 21G-sgRNAs. The results obtained
with two sequences are presented in Fig. 1c, d. Blackjack muta-
tions increase the on-target activity of the variants with 21G-
sgRNAs up to 17-fold; however, in case of EGFP target 22 the
activity of B-evoSpCas9 decreases even with 20G-sgRNAs sug-
gesting that Blackjack mutations may affect the activity of these
nucleases on certain targets and calling for a more detailed
characterization. To assess more comprehensively the effect of
Blackjack mutations on the activity of increased fidelity variants
with both 20G- and 21G-sgRNAs, we choose 50 EGFP targets.
We found that the Blackjack mutations increase the target-
selectivity (i.e., decrease the activity on certain on-target sites) of
all SpCas9 variants except that of the WT (Fig. 2a, Supplementary
Fig. 2). For the 21G-sgRNA experiments, to asses specifically, the
effect under scrutiny, each variant pair is checked on those tar-
gets, out of the 50 where the corresponding variants with
Blackjack mutations retain their on-target activities with 20G-
sgRNAs. These experiments confirmed that Blackjack variants
exhibit greatly increased activities with 21G-sgRNAs (Fig. 2b,
Supplementary Fig. 3).

Earlier studies have shown that target selectivity and fidelity
frequently increase parallel24,25,28,45. We were curious to find out
whether the increased target selectivity caused by the Blackjack
mutation also increase fidelity. Therefore, we compared their
mismatch tolerance interrogating 16 out of the 50 target sequences
by 144 sgRNAs, each mismatched at one position. We found that
the introduction of the Blackjack mutations increases the fidelity
of all SpCas9 variants (Fig. 3a and Supplementary Fig. 4a, b).

To validate these conclusions and see whether the disruption of
the cap interaction increases the genome-wide fidelity of WT
SpCas9 we applied GUIDE-seq analyzes on six targets. Both a
5′ G-extension and the Blackjack mutations were found to
decrease the number of off-targets detected and increased the ratio
of on-target vs. off-target reads compared to the WT protein.
However, in case of B-SpCas9, where these capping interactions
are already interrupted, the fidelity-increasing effect of the 5′ G-
extension is reduced (Fig. 3b and Supplementary Fig. 5,
Supplementary Data 3).

To interpret these results, we argue that the Blackjack
mutations largely remove the cap from the 5′ end of the sgRNA
in the cleavage-competent conformation of the SpCas9-sgRNA-
DNA complex, making room for an extension and allowing the
effective use of 21G-sgRNAs with increased fidelity variants.
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Fig. 1 Structure-guided mutagenesis increases on-target activity of SpCas9-HF1 with 21G-sgRNAs. a X-ray crystallography derived structure of SpCas9-
sgRNA-DNA complex in the conformation closest to the cleavage-competent state (PDB ID: 5f9r)43. b Sequences of SpCas9-HF1 and the selected
Blackjack-SpCas9-HF1 at the region affected, between residues L1004 and D1017; deletions (−) and insertions (green) are indicated. See also
Supplementary Fig. 1. c, d Blackjack mutations increase on-target activities of increased fidelity variants with 21G-sgRNAs on different targets. Means are
shown, error bars represent the standard deviation (s.d.) for n= 3 biologically independent samples (overlaid as white circles).
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However, the mutations also increase the fidelity/target-selectivity
of the variants arguing for the fidelity-increasing effect of the
disruption of cap interactions.

Since the effects of being able to use 21G-sgRNAs and the
increased target-selectivity of Blackjack variants are confounded,
and because the fidelities of the six new Blackjack variants
are different from the pre-existing nuclease variants, the higher
specificity editing that the Blackjack variants offer is hard to discern.

The plus variants of e-SpCas9 and SpCas9-HF1. To have more
complete target coverage and to test our interpretation, we
decided to create Blackjack variants that have identical fidelity/
target-selectivity to those of eSpCas9 and SpCas9-HF1 based on
the following rationale. The Blackjack mutations have two effects:
The first is that the deletion potentiates cleavage with a 5′
extended 21G-sgRNA. The second is that it increases the fidelity
of SpCas9 when it acts with either 20G- or 21G-sgRNAs. We
proposed that by restoring some of the mutations of the Blackjack
variants that originate from their corresponding parent increased
fidelity nuclease to their WT residue, we can selectively com-
pensate for the second effect. The “parental” eSpCas9 possesses
three mutations (K848A, K1003A, R1060A), while SpCas9-HF1
possesses four (N497A, R661A, Q695A, Q926A). After examining
the data in the studies describing their development24,25, we
constructed four and seven candidates from Blackjack-eSpCas9
and Blackjack-SpCas9-HF1, respectively, lacking one or two

“original parental” mutations at a time (Fig. 4a, d). We selected
those residues for which we conjectured that their contributions
to increasing the fidelity of the respective nuclease would be
comparable to those of the Blackjack mutations.

For testing the residue-reverted variants in the case of SpCas9-
HF1 we picked five targets on which it has considerable activity
employing 20G-sgRNAs but on which B-SpCas9-HF1 exhibits
strongly decreased activity with 21G-sgRNAs due to its increased
target-selectivity. All new candidates exhibit increased on-target
activity with 20G-sgRNAs compared to B-SpCas9-HF1 except
that in which A497 was reverted and that, surprisingly, seems to
show decreased on-target activities (Fig. 4b). This suggests that
the target-selectivity obtained with revertants was successfully
reduced and their fidelity correspondingly lowered compared to
B-SpCas9-HF1 except for the A497N reversion. To find the
variant whose fidelity most closely matches that of SpCas9-HF1
we employed mismatching sgRNAs to two selected targets: one
for which SpCas9-HF1 exhibits close to optimal specificity and
another for which it demonstrates considerable but decreased off-
target activity compared to the WT nuclease. The reversion of
A497 increased the fidelity of B-SpCas9-HF1 consistent with
the on-target activity results. Five reversion variants lowered
the fidelity of these variants below that of SpCas9-HF1, while the
reversion of A661 resulted in a similar fidelity (Fig. 4c). We
named this Blackjack variant as SpCas9-HF1-plus and selected it
for a more detailed characterization.
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Fig. 2 The Blackjack mutations increase not only the activity of increased fidelity nucleases charged with 21G-sgRNAs, but their target-selectivity in
general. a Blackjack mutations increase the target-selectivity of their respective parent SpCas9 variants. EGFP-disruption activities with perfectly matching
20G-sgRNAs. Results are shown only for those target sites where the SpCas9 variant without Blackjack mutations exhibits higher than background level
cleavage. See also Supplementary Fig. 2. b On-target activities with 21G-sgRNAs on more target sites for which the SpCas9 variant with Blackjack
mutations using 20G-sgRNAs exhibits at least 70% on-target activity compared to WT SpCas9. No target corresponds to this condition in the case of
HeFSpCas9. See also Supplementary Fig. 3. a, b The median and the interquartile range are shown; data points are plotted as open circles representing the
mean of biologically independent triplicates. Spacers are schematically depicted beside the charts as combs: green color teeth indicate matching-, while a
red color tooth indicates the presence of an appended nucleotide within the spacer; numbering of tooth position corresponds to the distance of the
nucleotide from the PAM; the starting 20th nucleotide of the spacer is indicated by an uppercase letter and an appended 21st nucleotide by a red lowercase
letter. Statistical significance was assessed using two-sided Paired-samples Student’s t-test or two-sided Wilcoxon signed ranks test as appropriate; ns not
significant. A summary of data distributions and statistical details is reported in Supplementary Data 6.
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For B-eSpCas9, we proceeded as with B-SpCas9-HF1 to create
the revertants and picked five targets using a similar rationale.
Testing the residue-reverted candidate variants, all candidates
showed increased on-target activities with 20G-sgRNAs on these
targets (Fig. 4e). To find the variant that most closely matches the
fidelity of eSpCas9 we selected two targets for which eSpCas9
exhibits close to optimal specificity but on which the B-eSpCas9
demonstrated decreased on-target activity. We employed mis-
matching sgRNAs to these two targets and tested the variants: the
reversion of A1003 resulted in the closest fidelity match to that of
eSpCas9’s (Fig. 4f). We named this Blackjack variant eSpCas9-
plus and selected it for a more detailed characterization.

Western blotting indicated that Blackjack mutations do not
alter the expression level of SpCas9 variants and the amounts of
the plus variants expressed in the steady state are comparable to
those of their parent variants (Supplementary Fig. 6a). We
compared the selected plus variants’ on-target activities with 20G-
sgRNAs on 25 targets with their parental variants. Both eSpCas9-
plus and SpCas9-HF1-plus reached the on-target activities of their
original counterpart variant on this set of target sequences
(Fig. 5a and Supplementary Fig. 6b). To challenge the plus

variants when checking their activities with 21G-sgRNAs,
different sets of ten targets were assayed with the enhanced and
with the high-fidelity variants to exploit targets on which the
parent nucleases exhibited strongly decreased on-target activity
upon appending a 5′ 21st G. To assess specifically the effect under
scrutiny, the same ten sequences were targeted with both 20G-
and 21G-sgRNAs. With 21G-sgRNAs both eSpCas9-plus (Fig. 5b
and Supplementary Fig. 6c) and SpCas9-HF1-plus (Fig. 5c and
Supplementary Fig. 6d) demonstrated highly increased on-target
activities; reaching 90% of that with 20G-sgRNAs on the same
targets, in contrast to their parent variants demonstrating only 10
and 16%, respectively. To compare the fidelity of the plus variants
with their parents, 13 targets were selected on which both
eSpCas9 and SpCas9-HF1 had demonstrated reasonable on-target
activities and 117 mismatching sgRNAs were employed. At all of
the 39 positions examined the off-target activity of eSpCas9-plus
resulted in an identical off-target-cleavage pattern, matching the
fidelity of eSpCas9 (Supplementary Fig. 6e). The off-target activity
of SpCas9-HF1 and SpCas9-HF1-plus compared in a similar way
also gave rise to very similar patterns, closely matching each
other’s fidelities (Supplementary Fig. 6f). These data demonstrate
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Fig. 5 eSpCas9-plus and SpCas9-HF1-plus show greatly enhanced on-target activity with 21G-sgRNAs and identical fidelity/target-selectivity
compared to eSpCas9 and SpCas9-HF1, respectively, as assessed by EGFP disruption, indels measured by NGS and by GUIDE-seq. a–c EGFP-disruption
activity a with 20G-sgRNAs targeting 25 sites; b, c with either 20G- or 21G-sgRNA pairs targeting two alternative sets of 10 different sequences shown as
the ratio of variant activity to WT activity. d, e On-target activities of SpCas9 variants across 23 endogenous target sites within the human VEGFA or FANCF
loci targeted with d 20G- or e 21G-sgRNAs, measured by amplicon resequencing. f Bar chart of the total number of off-target sites detected by GUIDE-seq
for SpCas9 variants on seven sites targeted with 20G-sgRNAs. a–e Tukey-type boxplots by BoxPlotR60: center lines show the medians; box limits indicate
the 25th and 75th percentiles; whiskers extend to the “minimum” and “maximum” data situated within 1.5 times the interquartile range from the 25th and
75th percentiles, respectively; notches indicate the 95% confidence intervals for the medians; crosses represent sample means; data points are plotted as
open circles representing the mean of biologically independent triplicates. Spacers are schematically depicted beside the charts as combs: green color teeth
indicate matching-, while a red color tooth indicates the presence of an appended nucleotide within the spacer; numbering of tooth position corresponds to
the distance of the nucleotide from the PAM; the starting 20th nucleotide of the spacer is indicated by an uppercase letter and an appended 21st nucleotide
by a red lowercase letter. See also Supplementary Figs. 6 and 7.
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that the plus variants possess identical fidelity but strongly
increased on-target activity with 21G-sgRNAs, and thus can be
utilized on a much wider range of targets compared to their
parent variants.

NGS and GUIDE-seq characterization of the plus variants. We
further characterized the on-target activities of the plus variants in
HEK293 cells, monitoring their indel-inducing activities by NGS.
We selected 23 sequences from the human FANCF and VEGFA
loci. There was no prior cleavage information available for them
except for one (FANCF site 2). Sixteen of them can be targeted
with 21G-sgRNAs and seven with 20G-sgRNAs (Supplementary
Data 1: Target sites). The on-target activities of the plus variants
with 20G-sgRNAs match those of their corresponding original
counterparts (Fig. 5d). However, with 21G-sgRNAs they show
much higher on-target activity (Fig. 5e). Since the target-
selectivity of eSpCas9 and SpCas9-HF1 is higher than that of
WT SpCas924,25,28, they are not expected to reach the 21G-
sgRNAs WT-level activity. The original counterparts, eSpCas9
and SpCas9-HF1, exhibit slightly decreased on-target activities
with 20G-sgRNAs, 93 and 82% on average, respectively, relative
to WT SpCas9. This relative activity level must be reached by the
plus variants with 21G-sgRNAs to allow us to say that they work
with the same efficiency using either 20G- or 21G-sgRNAs. What
we found was that with 21G-sgRNAs eSpCas9-plus demonstrates
88%, while SpCas9-HF1-plus exhibits 82% of the value of WT
SpCas9 with 21G-sgRNA, respectively (Fig. 5e and Supplemen-
tary Fig. 6g, Supplementary Data 2) so we can say they worked
with nearly identical efficiency.

We also wanted to compare the fidelity of these nucleases by
GUIDE-seq. In HEK293.EGFP cells, we selected seven target sites
that can be targeted by 20G-sgRNAs to make sure that not just
the nuclease variants containing Blackjack mutations are able to
cleave the on-target sequences. Among these targets, three
(VEGFA site 2, HEK site 4, FANCF site 2) were used to
characterize the off-target activities of the increased fidelity
variants in earlier studies25–27,45. As expected, we found that all
four increased fidelity variants demonstrate greatly increased
fidelity compared to the WT protein and that the corresponding
parent—plus “variant pairs” behave similarly to each other,
eSpCas9-plus cleaving slightly less, while SpCas9-HF1-plus
slightly more off-target sites on some targets compared to their
parental variants (Fig. 5f and Supplementary Fig. 7, Supplemen-
tary Data 3). These results are consistent with the contention that
the fidelity of these plus variants closely matches that of their
parental (non-Blackjack) counterparts.

The plus variants work effectively in RNP form. The develop-
ment of two new increased fidelity variants, Sniper and HiFi
SpCas9 has been reported more recently, claiming they work
effectively in RNP form, and Sniper SpCas9 is able to work even
with 5′-modified sgRNAs, unlike former increased fidelity
variants42,45. Sniper SpCas9 being less “attenuated”45 has lower
target selectivity and fidelity (Supplementary Fig. 8a, b) that may
offer an explanation for its ability to work with 5′-modified
sgRNAs. However, it is not clear why they possess high activity in
RNP form, while the former increased fidelity variants have
reported to possess a strongly reduced activity in RNP form42.
RNPs are the method of choice for prospective clinical applica-
tions, and we wondered if Blackjack variants are able to provide
optimal high-fidelity editing for the majority of the targets on
which one of the other increased fidelity nucleases provide better
specificity editing compared to Sniper or HiFi SpCas9. Thus, we
selected 31 sequences to assay for EGFP disruption by eSpCas9
and SpCas9-HF1 and by their plus variants delivered in RNP

form. Since it seems that there is no consensus about the
requirement of the T7 polymerase for the preferred starting
sequences of the transcript, we selected sequences that start with
non-G, G or GG nucleotides and we targeted them systematically
with in vitro transcribed, 5′ G- or GG-extended or fully matching
20G-sgRNAs, as depicted in Fig. 6a–c. Surprisingly, in contrast to
what was reported by Vakulskas et al.42, all variants show similarly
high activity with 20G-sgRNAs to that of the WT protein
(Fig. 6b). There are several differences between the two experi-
ments that could be responsible for this disagreement. The
Vakulskas et al. performed several of their tests on endogenous
gene targets, including on HPRT, which may behave differently
than the targets in an EGFP-disruption assay, due to the chro-
matin context. Furthermore, here we used targets on which the
activity of eSpCas9 and SpCas9-HF1 had been confirmed when
introduced as plasmids, which might also account for the dis-
crepancies with the Vakulskas study. In contrast, only the plus
variants demonstrate high activities with 21G-sgRNAs in pre-
assembled RNP form too, reaching up to 23-fold higher activities
than their parental variants (Fig. 6a–c, Supplementary Fig. 8c–e).
Thus, we conclude that plus variants are effective in the RNP form,
provide high-fidelity editing with both 20G- and 21G-sgRNAs and
allow the effective use of in vitro transcribed 21G-sgRNAs.

We were also curious to compare the on-target activities of the
plus variant with sgRNA-processing approaches to see whether
the plus variant offers advantages in those applications where
the sgRNA-processing approach can also be applied. Testing on 19
targets, the plus variant showed higher activities than either
the tRNA46 or ribozyme processing approaches29,47 (Supplemen-
tary Fig. 8f). Using both approaches, some target sequences were
cleaved with reduced efficiency by the WT protein, suggesting that
the understanding of the sequence dependencies of the tRNA or
ribozyme processing needs a more comprehensive investigation.

We wanted to test the usefulness of Blackjack variants in a
practical application by investigating the expression of the prion
protein family-member Shadoo protein after inserting the EGFP
sequences downstream of the mouse Shadoo promoter exploiting
NHEJ repair48. Five NGG PAM sequences are available at
relevant positions but none of them are targetable with 20G-
sgRNAs, presenting a good example of where Blackjack variants
can offer a specific advantage for a project. We pre-screened the
available five targets with several increased fidelity nucleases by
integrating an EGFP cassette into the targeted site. Pre-screening
identified the optimal targets and nuclease variants (Fig. 7a) for
the generation of the desired transgenic lines by increased fidelity
nucleases (Fig. 7b). The results confirmed the advantage of the
Blackjack variants for this practical application and we predict
that comparable results will be obtained from a wide range of
practical applications.

Finally, to demonstrate that the plus variants are compatible
with pooled sgRNA library screens where the sgRNAs are
inherently expressed at low levels, we generated three cell lines
each expressing one 21G-sgRNA from an integrated lentivirus
copy. Each of the three cell lines were interrogated by eSpCas9-
plus in parallel to WT and eSpCas9 (Fig. 7c). In contrast to
eSpCas9, eSpCas9-plus demonstrated activities approaching
nearing that of the WT protein. These results confirm that the
activity of eSpCas9-plus renders the nuclease compatible with
pooled sgRNA libraries where the sgRNAs are naturally expressed
from an integrated single copy of a lentivirus and even when 21G-
sgRNAs are used.

Discussion
Among the Blackjack nucleases developed here, three variants are
likely to gain general application, replacing the corresponding
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Fig. 6 The plus variants are effective when transfected in pre-assembled RNP form. a–c EGFP-disruption assays. Target sequences start with 5′ non-G-,
G- or GG-nucleotides. Data from the individual samples are detailed in Supplementary Fig. 8c–e. Tukey-type boxplots by BoxPlotR60: center lines show the
medians; box limits indicate the 25th and 75th percentiles; whiskers extend to the “minimum” and “maximum” data situated within 1.5 times the
interquartile range from the 25th and 75th percentiles, respectively; notches indicate the 95% confidence intervals for the medians; crosses represent
sample means; data points are plotted as open circles representing the mean of biologically independent triplicates. Spacers are schematically depicted
beside the charts as combs: green color teeth indicate matching-, while a red color tooth indicates the presence of an appended nucleotide within the
spacer; numbering of tooth position corresponds to the distance of the nucleotide from the PAM; the starting 20th nucleotide or dinucleotide of the spacer
is indicated by an uppercase letter and an appended 21st and 22nd nucleotides by red lowercase letters. See also Supplementary Fig. 8.
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non-Blackjack nucleases: eSpCas9-plus, SpCas9-HF1-plus, and B-
SpCas9 are superior variants of eSpCas9, SpCas-HF1, and WT
SpCas9, respectively. The Blackjack (WT) SpCas9 provides higher
fidelity editing than the WT without any detectable decrease in its
on-target activity (Supplementary Fig. 2) and can be considered
as an attractive general-purpose alternative to the WT enzyme for
almost all applications. eSpCas9-plus and SpCas9-HF1-plus var-
iants show identical fidelity and on-target activity to their original

counterparts (eSpCas9 and SpCas9-HF1, respectively). Therefore,
they would be excellent substitutes for eSpCas9 and SpCas9-HF1
in all types of applications for which the latter two have been
preferentially used but with the added advantage of providing
20G-level editing with 21G-sgRNAs as well. This advantage is
manifested when the sgRNA is transcribed from a DNA template
(e.g., using a U6 or T7 promoter) and when the possibility of
finding suitable sequences that can be targeted with 20G-sgRNAs
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Fig. 7 Blackjack variants facilitate modification of the endogenous Sprn gene at the 5′ coding region and are effective with sgRNAs expressed from a
single-copy lentivirus. a Pre-screening targets with increased fidelity nucleases for efficiency by the integration of a donor EGFP cassette. b Based on a the
SpCas9-plus variants were selected to generate transgenic lines using the ‘self-cleaving’ EGFP-expression plasmid, which must integrate in-frame for Sprn
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of lentiviruses measured by TIDE. a–c Means are shown, error bars represent the standard deviation (s.d.) for n= 3 biologically independent samples
(overlaid as white circles). In the case of VEGFA site 8 targeted with WT and eSpCas9-plus on c one sample point is missing due to sample loss. Spacers
are schematically depicted beside the charts as combs: green color teeth indicate matching-, while a red color tooth indicates the presence of an appended
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is limited. For example, if a specific position needs to be targeted
by exploiting single-stranded oligonucleotides, such as when
either dCas9-FokI nucleases or base editors are used or when
tagging proteins. One of the most advantageous applications of
the plus variants is the use of pooled sgRNA knockout libraries to
decrease false-positive hits that frequently plague CRISPR
screens. SpCas9-HF1-plus offers higher fidelity editing compared
to B-SpCas9 or eSpCas9-plus, however, its activity on targets on
average is decreased to 82% of that of the WT (Fig. 5c, e)25,28.
Thus, its use would be profitable for applying to knockout
libraries where a few sgRNAs are targeted to each gene, and the
failure to cleave one out of every five target sites would be unlikely
to spoil the experiment.

A 5′-GG extension of the sgRNA has been reported to increase
the fidelity of WT SpCas9 and a similar effect is proposed for
21G-sgRNAs28 as we show here (Fig. 3b). Since the use of 21G-
sgRNAs does not alter much the target selectivity/on-target
activity of WT SpCas9 (Supplementary Fig. 3a), 21G-sgRNAs
could generally be employed instead of 20G-sgRNAs for almost
all targets to provide higher specificity editing with WT SpCas9.

In conclusion, the incorporation of Blackjack mutations into an
increased fidelity variant of SpCas9 that is not fully compatible
with 5′ modified sgRNAs and using it either alone or in combi-
nation with a genome- or epigenome-editor would considerable
increase its available target space by making them compatible
with 21G-sgRNAs. Furthermore, Blackjack mutations may be
combined with any SpCas9 or dSpCas9 editor or epigenome
editor to increase editing specificity.

Methods
Materials. Restriction enzymes, T4 ligase, Dulbecco’s modified Eagle Medium
DMEM (Gibco), fetal bovine serum (Gibco), Turbofect, Lipofectamine 2000,
TranscriptAid T7 High Yield Transcription Kit, Qubit dsDNA HS Assay Kit,
Shrimp Alkaline Phosphatase (SAP), Taq DNA polymerase (recombinant), Plati-
num Taq DNA polymerase, KnockOut Serum Replacement (Gibco), 0.45 µm
sterile filters and penicillin/streptomycin were purchased from Thermo Fischer
Scientific, protease inhibitor cocktail was purchased from Roche Diagnostics. DNA
oligonucleotides, trimethoprim (TMP), chloroquine, polybrene, puromycin,
calcium-phosphate and GenElute HP Plasmid Miniprep kit were acquired from
Sigma-Aldrich. ZymoPure Plasmid Midiprep kit and RNA Clean & Concentrator
kit were purchased from Zymo Research. NEBuilder HiFi DNA Assembly Master
Mix and Q5 High-Fidelity DNA Polymerase were obtained from New England
Biolabs Inc. NucleoSpin Gel and PCR Clean-up kit was purchased from Macherey-
Nagel. Two millimeter electroporation cuvettes were acquired from Cell Projects
Ltd, Bioruptor 0.5 ml Microtubes for DNA Shearing from Diagenode. Agencourt
AMPure XP beads were purchased from Beckman Coulter. T4 DNA ligase (for
GUIDE-seq) and end-repair mix were acquired from Enzymatics. KAPA universal
qPCR Master Mix was purchased from KAPA Biosystems.

Plasmid construction. Vectors were constructed using standard molecular biology
techniques including the one-pot cloning method49–51, E. coli DH5α-mediated
DNA assembly method52, NEBuilder HiFi DNA Assembly and Body Double
cloning method53. Plasmids were transformed into NEB Stable competent cells. For
detailed cloning and sequence information see Supplementary Information. sgRNA
target sites and mismatching sgRNAs sequences are available in Supplementary
Data 1. The sequences of all plasmid constructs were confirmed by Sanger
sequencing (Microsynth AG).

Plasmids acquired from the non-profit plasmid distribution service Addgene
(http://www.addgene.org/) are the following:

pX330-U6-Chimeric_BB-CBh-hSpCas9 (Addgene #42230)5, eSpCas9(1.1)
(Addgene #71814)24, VP12 (Addgene #72247)25, sgRNA(MS2) cloning backbone
(Plasmid #61424)54, pMJ806 (#39312)1, pBMN DHFR(DD)-YFP (#29325)55 and
p3s-Sniper-Cas9 (#113912)45, LentiGuide-Puro (#52963)56. psPAX2 (#12260) and
VSV-G envelope expressing plasmid (# 12259) are gifts from Didier Trono.

Plasmids developed by us and deposited at Addgene are the following:
pX330-Flag-dSpCas9 (Addgene #92113), pX330-Flag-WT_SpCas9 (without

sgRNA; with silent mutations) (Addgene #126753), pX330-Flag-eSpCas9 (without
sgRNA; with silent mutations) (Addgene #126754), pX330-Flag-SpCas9-HF1
(without sgRNA; with silent mutations) (Addgene #126755), pX330-Flag-
HypaSpCas9 (without sgRNA; with silent mutations) (Addgene #126756),pX330-
Flag-evoSpCas9 (without sgRNA; with silent mutations) (Addgene #126758),
pX330-Flag-HeFSpCas9 (without sgRNA; with silent mutations) (Addgene
#126759), pX330-Flag-Sniper SpCas9 (without sgRNA; with silent mutations)

(Addgene #126777), pX330-Flag-HiFi SpCas9 (without sgRNA; with silent
mutations) (Addgene #126778),

B-SpCas9 (Addgene #126760), B-eSpCas9 (Addgene #126761), B-SpCas9-HF1
(Addgene #126762), B-HypaSpCas9 (Addgene #126763), B-evoSpCas9 (Addgene
#126765), B-HeFSpCas9 (Addgene #126766)

eSpCas9-plus (Addgene #126767), SpCas9-HF1-plus (Addgene #126768)
pET-FLAG-eSpCas9 (Addgene #126769), pET-FLAG-SpCas9-HF1 (Addgene

#126770), pET-FLAG-B-eSpCas9 (Addgene #126772), pET-FLAG-eSpCas9-plus
(Addgene #126774), pET-FLAG-SpCas9-HF1-plus (Addgene #126775)

pmCherry_sgRNA-ver2 (Addgene #126776), pmCherry_gRNA (Addgene:
#80457)

Cell culturing. Cells employed in the studies are N2a (neuro-2a mouse neuro-
blastoma cells, ATCC—CCL-131), HEK293 (Gibco 293-H cells), HEK293T
(293T cells, ATCC—CRL-3216), N2a.dd-EGFP (a cell line developed by us con-
taining a single integrated copy of an EGFP-DHFR[DD] [EGFP-folA dihydrofolate
reductase destabilization domain] fusion protein coding cassette originating from a
donor plasmid with 1000 bp-long homology arms to the Prnp gene driven by the
Prnp promoter {Prnp.HA-EGFP-DHFR[DD]}) as well as N2a.EGFP and HEK-293.
EGFP (both cell lines containing a single integrated copy of an EGFP cassette
driven by the Prnp promoter)28 cells. Cell lines were not authenticated as they were
obtained directly from a certified repository or clone from those cell lines. Cells
were grown at 37 °C in a humidified atmosphere of 5% CO2 in high glucose
Dulbecco’s Modified Eagle medium (DMEM) supplemented with 10% heat inac-
tivated fetal bovine serum, 4 mM L-glutamine (Gibco), 100 units/ml penicillin and
100 μg/ml streptomycin. Cells were passaged up to 20 times (washed with PBS,
detached from the plate with 0.05% Trypsin-EDTA and replated). After 20 pas-
sages, cells were discarded.

Flow cytometry. Flow cytometry analyses were carried out on an Attune NxT
Acoustic Focusing Cytometer (Applied Biosystems). For data collection and ana-
lysis Attune NxT Software v.2.7.0 was used. Viable single cells were gated based on
side and forward light-scatter parameters and a total of 5000–10,000 viable single
cell events were acquired in all experiments. The GFP fluorescence signal was
detected using the 488 nm diode laser for excitation and the 530/30 nm filter for
emission, the mCherry fluorescent signal was detected using the 488 nm diode laser
for excitation and a 640LP filter for emission or using the 561 nm diode laser for
excitation and a 620/15 nm filter for emission.

EGFP-disruption assay. All EGFP-disruption experiments were conducted on the
N2a.dd-EGFP cell line except the on-target screen, which was conducted on N2a.
EGFP cells (see details below). Cells were plated one day prior to transfection in 48-
well plates at a density of approximately 25,000–30,000 cells/well. Cells were co-
transfected with two types of plasmids: SpCas9 variant expression plasmid (137 ng)
and sgRNA and mCherry coding plasmid (97 ng) using 1 µl TurboFect reagent per
well in 48-well plates. TMP (trimethoprim; 1 µM final concentration) was added to
the media ∼48 h before FACS analysis in case of N2a.dd-EGFP cells. Transfected
cells were analyzed ∼96 h post-transfection by flow cytometry. Transfection effi-
cacy was calculated via mCherry expressing cells. Transfections were performed in
triplicate. Replicates not measured due to sample loss are indicated in the raw data
(less than 1% in all experiments altogether).

Background EGFP loss for each experiment was determined using co-
transfection of dead SpCas9 expression plasmid and different targeting sgRNA and
mCherry coding plasmids. EGFP-disruption values were calculated as follows: the
average EGFP background loss from dead SpCas9 control transfections made in the
same experiment was subtracted from each individual treatment in that experiment
and the mean values and the standard deviation (s.d.) were calculated from it. In
the case of normalization, the results were normalized to the WT SpCas9 data from
the same experiment.

On-target activity was measured on N2a.EGFP cell line 4 days post-transfection
by flow cytometry. In this cell line the EGFP-disruption level is not saturated, this
way this assay is a more sensitive reporter of the intrinsic activities of these
nucleases compared to N2a.dd-EGFP cell line.

In the case of mismatch screens and 21G-sgRNA screens N2a.dd-EGFP cells
were co-transfected with two types of plasmids: with SpCas9 variant expression
plasmid (137 ng) and a mix of 3 sgRNAs in which one nucleotide position was
mismatched to the target using all 3 possible bases and mCherry coding plasmid
(3 ×∼33.3 ng= 97 ng) using 1 µl TurboFect reagent per well in 48-well plates.
TMP (trimethoprim; 1 µM final concentration) was added to the media ∼48 h
before FACS analysis. Transfected cells were analyzed ∼96 h post-transfection by
flow cytometry. The 4-day post-transfection results with this cell line show a close
to saturated level, this way it is a good reporter system for seeing the full spectrum
of off-target activities.

Western blot. N2a.dd-EGFP cells were cultured on 48-well plates and were
transfected as described above in the EGFP-disruption assay section. Four days
post-transfection, nine parallel samples corresponding to each type of SpCas9
variant transfected were washed with PBS, then trypsinized and mixed, and were
analyzed for transfection efficiency via mCherry fluorescence level by using flow
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cytometry. The cells from the mixtures were centrifuged at 200 rcf for 5 min at
4 °C. Pellets were resuspended in ice cold Harlow buffer (50 mM Hepes pH 7.5;
0.2 mM EDTA; 10 mM NaF; 0.5% NP40; 250 mM NaCl; Protease Inhibitor
Cocktail 1:100; Calpain inhibitor 1:100; 1 mM DTT) and lysed for 20–30 min on
ice. The cell lysates were centrifuged at 19,000 rcf for 10 min. The supernatants
were transferred into new tubes and total protein concentrations were measured by
the Bradford protein assay. Before SDS gel loading, samples were boiled in Protein
Loading Dye for 10 min at 95 °C. Proteins were separated by SDS-PAGE using
7.5% polyacrylamide gels and were transferred to a PVDF membrane, using a wet
blotting system (Bio-Rad). Membranes were blocked by 5% non-fat milk in Tris
buffered saline with Tween20 (TBST) (blocking buffer) for 2 h. Blots were incu-
bated with primary antibodies [anti-FLAG (F1804, Sigma) at 1:1000 dilution; anti-
β-actin (A1978, Sigma) at 1:4000 dilution in blocking buffer] overnight at 4 °C. The
next day after washing steps in TBST the membranes were incubated for 1 h with
HRP-conjugated secondary anti-mouse antibody 1:20,000 (715-035-151, Jackson
ImmunoResearch) in blocking buffer. The signal from detected proteins was
visualized by ECL (Pierce ECL Western Blotting Substrate, Thermo Scientific)
using a CCD camera (Bio-Rad ChemiDoc MP, Image Lab 4.1 Software).

Indel analysis by next-generation sequencing (NGS). HEK293 cells were seeded
onto 48-well plates a day before transfection at a density of 1.2 × 104 cells/well. The
next day, at around 25% confluence, cells were transfected with plasmid constructs
using Jetfect reagent (Biospiral-2006. Ltd.), briefly as follows: 234 ng total plasmid
DNA (97 ng sgRNA and mCherry expression plasmid, and 137 ng nuclease
expression plasmid) and 1 μl Jetfect reagent were mixed in 50 μl serum-free DMEM
and the mixture was incubated for 30 min at room temperature prior adding to
cells. Three parallel transfections were made from each sample. Replicates not
measured due to sample loss are indicated in the raw data (less than 1%; Sup-
plementary Data 2). Transfection efficiency was analyzed by flow cytometry 5 days
post transfection via mCherry fluorescence after which cells were centrifuged at
1000 rcf for 10 min and genomic DNA was purified according to the Puregene
DNA Purification protocol (Gentra systems). Amplicons for deep sequencing were
generated using two rounds of PCR by Q5 high-fidelity polymerase to attach
Illumina handles. The 1st step PCR primers used to amplify target genomic
sequences are listed in Supplementary Data 1: PCR primers. After the 2nd step
PCR the samples were quantified with Qubit dsDNA HS Assay kit and PCR
products were pooled for deep sequencing. Sequencing on an Illumina Miseq
instrument was performed by ATGandCo Ltd. Indels were counted computa-
tionally among reads that matched at least 75% to the first 20 bp of the reference
amplicon. Indels without mismatches were searched at ±40 bp around the cut site.
For each sample, the indel frequency was determined as (number of reads with an
indel)/(number of total reads). Average reads per sample was 18,801 (see additional
details in Supplementary Data 2). The following software were used: BBMap 38.08,
samtools 1.8, BioPython 1.71, PySam 0.13. SRA accession PRJNA593843.

In vitro transcription. sgRNAs were in vitro transcribed using TranscriptAid T7
High Yield Transcription Kit and PCR-generated double-stranded DNA templates
carrying a T7 promoter sequence. Primers used for the preparation of the DNA
templates are listed in Supplementary Data 1: PCR primers. sgRNAs were
dephosphorylated with SAP, purified with the RNA Clean & Concentrator kit, and
reannealed (95 °C for 5 min, ramp to 4 °C at 0.3 °C/s). sgRNAs were quality
checked using 10% denaturing polyacrylamide gels and ethidium bromide staining.

Protein purification. All SpCas9 variants were subcloned from pMJ806 (Addgene
#39312)1 (for detailed cloning information and sequence information see Methods:
Plasmid construction section and Supplementary Information). The resulting
fusion constructs contained an N-terminal hexahistidine (His6), a Maltose binding
protein (MBP) tag and a Tobacco etch virus (TEV) protease site.

The expression constructs of the SpCas9 variants were transformed into E. coli
BL21 Rosetta 2 (DE3) cells, grown in Luria-Bertani (LB) medium at 37 °C for 16 h.
10 ml from this culture was inoculated into 1 l of growth media (12 g/l Tripton,
24 g/l Yeast, 10 g/l NaCl, 883 mg/l NaH2PO4 H2O, 4.77 g/l Na2HPO4, pH 7.5) and
cells were grown at 37 °C to a final cell density of 0.6 OD600, and then were chilled
at 18 °C. The protein was expressed at 18 °C for 16 h following induction with
0.2 mM IPTG. The protein was purified by a combination of chromatographic
steps by NGC Scout Medium-Pressure Chromatography Systems (Bio-Rad). The
bacterial cells were centrifuged at 6,000 rcf for 15 min at 4 °C. The cells were
resuspended in 30 ml of Lysis Buffer (40 mM Tris pH 8.0, 500 mM NaCl, 20 mM
imidazole, 1 mM TCEP) supplemented with Protease Inhibitor Cocktail (1 tablet/
30 ml; complete, EDTA-free, Roche) and sonicated on ice. Lysate was cleared by
centrifugation at 48,000 rcf for 40 min at 4 °C. Clarified lysate was bound to a 5 ml
Mini Nuvia IMAC Ni-Charged column (Bio-Rad). The resin was washed
extensively with a solution of 40 mM Tris pH 8.0, 500 mM NaCl, 20 mM imidazole,
and the bound protein was eluted by a solution of 40 mM Tris pH 8.0, 250 mM
imidazole, 150 mM NaCl, 1 mM TCEP. 10% glycerol was added to the eluted
sample and the His6-MBP fusion protein was cleaved by TEV protease (3 h at
25 °C). The volume of the protein solution was made up to 100 ml with buffer
(20 mM HEPES pH 7.5, 100 mM KCl, 1 mM DTT). The cleaved protein was
purified on a 5 ml HiTrap SP HP cation exchange column (GE Healthcare) and

eluted with 1M KCl, 20 mM HEPES pH 7.5, 1 mM DTT. The protein was further
purified by size exclusion chromatography on a Superdex 200 10/300 GL column
(GE Healthcare) in 20 mM HEPES pH 7.5, 200 mM KCl, 1 mM DTT and 10%
glycerol. The eluted protein was confirmed by SDS-PAGE and Coomassie brilliant
blue R-250 staining. The protein was stored at −20 °C.

EGFP-disruption assay with RNP. N2a.dd-EGFP cells cultured on 48-well plates,
were seeded a day before transfection at a density of 3 × 104 cells/well, in 250 μl
complete DMEM. 13.75 pmol SpCas9 and 16.5 pmol sgRNA was complexed in
Cas9 storage buffer (20 mM HEPES pH 7.5, 200 mM KCl, 1 mM DTT and 10%
glycerol) for 15 min at RT. 25 μl serum-free DMEM and 0.8 μl Lipofectamine 2000
was added to the complexed RNP and incubated for 20 min prior adding to the
cells. TMP (trimethoprim; 1 µM final concentration) was added to the media ∼48 h
before FACS analysis. Transfected cells were analyzed ∼96 h post-transfection by
flow cytometry. Transfections were performed in triplicate. Background EGFP loss
for each experiment was determined using co-transfection of WT SpCas9
expression plasmid and non-targeted sgRNA and mCherry coding plasmids.
EGFP-disruption values were calculated as follows: the average EGFP background
loss from control transfections made in the same experiment was subtracted from
each individual treatment in that experiment and the mean values and the standard
deviation (s.d.) were calculated from it.

GUIDE-seq. GUIDE-seq experiments were performed with WT SpCas9, B-SpCas9,
eSpCas9, eSpCas9-plus, SpCas9-HF1, SpCas9-HF1-plus and B-eSpCas9 on thirteen
different target sites. Briefly, 2 × 106 HEK293.EGFP cells were transfected with 3 µg
of SpCas9 variant expressing plasmid, 1.5 µg of mCherry and sgRNA coding
plasmid. 100 pmol of the dsODN containing phosphorothioate bonds at both ends
(according to the original GUIDE-seq protocol23) was mixed together with 100 µl
home-made nucleofection solution to the plasmid and electroporated as described
in Vriend et al.57 using Nucleofector (Lonza) with A23 program and 2mm elec-
troporation cuvettes.

Transfected cells were analyzed 3 days post-transfection by flow cytometry.
Cells were then centrifuged at 1000 rcf for 10 min and genomic DNA was purified
according to Puregene DNA Purification protocol (Gentra systems). Genomic
DNA was sheared with BioraptorPlus (Diagenode) to 550 bp in average. Sample
libraries were assembled as previously described23 and sequenced on an Illumina
MiSeq instrument by ATGandCo Ltd. Data were analyzed using open-source
guideseq software (version 1.1)58. Consolidated reads were mapped to the human
reference genome GrCh37 supplemented with the integrated EGFP sequence.
Upon identification of the genomic regions integrating double-stranded
oligodeoxynucleotide (dsODNs) in aligned data, off-target sites were retained if at
most seven mismatches against the target were present and if absent in the
background controls. Visualization of aligned off-target sites are provided as a
color-coded sequence grid. Further details can be found in Supplementary Data 3
and GUIDE-seq sequencing data are deposited at NCBI Sequence Read Archive:
PRJNA593843.

TIDE. Tracking of Indels by DEcomposition (TIDE) method59 was applied for
analyzing mutations and determining their frequency in a cell population using
different sgRNAs and SpCas9 proteins. From the isolated genomic DNA PCR was
conducted with Q5 High-Fidelity DNA Polymerase in triplicates (for PCR primer
details, see Supplementary Data 1). Genomic PCR products were gel excised via
NucleoSpin Gel and PCR Clean-up kit and were Sanger sequenced. Indel effi-
ciencies were analyzed by TIDE webtool (https://tide.nki.nl/) by comparing SpCas9
treated and control samples.

HR mediated pre-screening of the Shadoo gene target sites. N2a cells were
seeded into 48-well plates a day before transfection at a density of 2.5 × 104 cells/
well. Next day cells were co-transfected with three types of plasmids: an expression
plasmid for EGFP flanked by 1000 bp-long homology arms to the Shadoo (Sprn)
gene (Sprn.HA-CMV-EGFP plasmid) (166 ng), SpCas9 expressing plasmid (42 ng)
and an sgRNA/mCherry coding plasmid (42 ng), giving 250 ng total plasmid DNA,
using 1 µl TurboFect reagent per well. Transfected cells were analyzed 4- and 18-
days post-transfection by flow cytometry. Transfection efficiency was calculated via
mCherry expressing cells measured 4 days post-transfection. EGFP positive cells
were counted 18 days post-transfection. Transfections were performed in triplicate.

NHEJ-mediated integration using a ‘self-cleaving’ plasmid48. N2a cells were
seeded into 12-well plates a day before transfection at a density of 8 × 104 cells/well.
Next day cells were co-transfected with three types of plasmids: a ‘self-cleaving’
EGFP-expression plasmid48 (which has to integrate in-frame for Sprn promoter
driven EGFP expression; for sequence details see Supplementary Information)
(1 µg), SpCas9 expressing plasmid (590 ng) and an sgRNA/mCherry coding plas-
mid (410 ng), giving 2 µg total plasmid DNA, using 4 µl TurboFect reagent per well.
Transfections were performed in triplicate. Transfection efficiency was calculated
via mCherry expressing cells measured 4 days post-transfection. EGFP positive
cells were counted 14 days post-transfection.
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Lentivirus production and transduction. For the lentiviral approach we cloned the
DNA oligos into the lentiGuide-puro 3rd generation lentiviral transfer vector
between BsmBI restriction sites. sgRNA target sites are available in Supplementary
Data 1. The lentiGuide-puro transfer vectors were co-transfected with a 2nd gen-
eration lentiviral packaging plasmid (psPAX2) and a VSV-G envelope expressing
plasmid (pMD2.G) using calcium-phosphate transfection method in
HEK293T cells, briefly: HEK293T cells were seeded onto 6-well plates in 5.7 × 105

cell/well density. Twenty-four hours after seeding the medium volume on cells was
reduced to 1ml and cells were treated with chloroquine (25 μM final concentration).
Transfection mixtures were prepared as follows: 1.35 μg psPAX2, 0.75 μg pMD2.G,
25 μg sgRNA expressing transfer vector, 8.055 μl 2.5M CaCl2 were mixed in 705 μl
sterile distillated water. After 5 min RT incubation 705 μl 2× HEBS buffer (50mM
HEPES, 280mM NaCl, 1.5 mM, Na2HPO4, pH adjusted to 7.0, sterile filtered) was
added drop-wise while the solution was mixed vigorously and then the whole
mixture was added slowly to the cells. Transfection medium was changed to virus-
gathering medium (DMEM complemented with KnockOut Serum Replacement)
18 h post-transfection. Lentivirus was collected 48 h post-transfection, filtered
through 0.45 µm sterile filters to remove debris, aliquoted and stored at −80 °C.

Lentivirus titer was calculated in HEK293T cells after 72 h of puromycin
(2 ug/ml) selection. Cells were trypsinized and the viable cells were counted after
trypan blue staining using TC20 Automated Cell Counter (BioRad). Virustiter was
calculated using the following formula: 60,000/Vvirus × cell%, where Vvirus is the
volume of the virus used for transduction in ml, cell% is the percentage of the
surviving cells (number of surviving cells after puromycin treatment/number of
surviving cells without puromycin treatment × 100%).

To generate stable sgRNA expressing cell cultures HEK293T cells were
transduced with the sgRNA encoding lentiviruses in the MOI range 0.1–0.5, in the
presence of 6 µg/ml polybrene. Forty-eight hours post-transduction cells were
passaged and were treated with puromycin (2 µg/ml) for 6 days before the surviving
populations were expanded and used to test the SpCas9 variants’ activities.

All sgRNA expressing cell lines were plated one day prior to transfection in 48-
well plates at a density of approximately 30,000 cells/well. Cells were co-transfected
with two types of plasmids: SpCas9 variant expression plasmid (137 ng) and
mCherry coding plasmid (97 ng) using 1 µl TurboFect reagent per well in 48-well
plates. Transfected cells were analyzed 5 days post-transfection by flow cytometry.
Transfection efficacy was calculated via mCherry expressing cells. Transfections
were performed in triplicate. TIDE method was applied for analyzing mutations
and determining their frequency.

Statistics. Differences between SpCas9 variants were tested by using either Paired-
samples Student’s t-test (Fig. 2a: WT SpCas9/B-SpCas9, eSpCas9/B-eSpCas9;
Fig. 2b: evoSpCas9/B-evoSpCas9; Fig. 3a: evoSpCas9/B-evoSpCas9, HeFSpCas9/B-
HeFSpCas9; Supplementary Fig. 8f: eSpCas9-ribosyme/eSpCas9-tRNA) or by using
Wilcoxon Signed Ranks test(Fig. 2a: SpCas9-HF1/B- SpCas9-HF1, HypaSpCas9/B-
HypaSpCas9, evoSpCas9/B-evoSpCas9, HeFSpCas9/B-HeFSpCas9; Fig. 2b: eSp-
Cas9/B-eSpCas9, SpCas9-HF1/B- SpCas9-HF1, HypaSpCas9/B-HypaSpCas9;
Fig. 3a: eSpCas9/B-eSpCas9, SpCas9-HF1/B- SpCas9-HF1, HypaSpCas9/B-
HypaSpCas9; Supplementary Fig. 4b: WT SpCas9/B-SpCas9; Supplementary
Fig. 8f: eSpCas9/eSpCas9-plus, eSpCas9/eSpCas9-ribosyme, eSpCas9/eSpCas9-
tRNA, eSpCas9-plus/eSpCas9-ribosyme, eSpCas9-plus/eSpCas9-tRNA) in cases
where differences did not meet the assumptions of Paired t-test. Normality of data
and of differences were tested by Shapiro-Wilk normality test. Statistical tests were
performed using IBM SPSS ver. 20 on data including all parallel sample points. Test
results are shown in Supplementary Data 6.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Important plasmids used in this study are available at Addgene (details in Plasmid
Construction section). Sequences of the constructs are listed in Supplementary
information. All associated raw data are available in Supplementary Data 4 and 5 for
Figs. 1–7 and Supplementary Fig. 1–8, respectively; Supplementary Data 3 for Figs. 3b, 5f
and Supplementary Figs. 5 and 7. The data that support the findings of this study are
available from the corresponding authors upon request as well. The deep-sequencing
data (targeted deep-sequencing and GUIDE-seq) from this study have been submitted to
the NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra/) under
accession number: PRJNA593843.
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