ON CONSTRUCTIONS OF SOME CLASSES OF QUASI-HEREDITARY ALGEBRAS

Piroska Lakatos
Institute of Mathematics and Informatics,
Lajos Kossuth University
P.O.Box 12, 4010 Debrecen, Hungary

Abstract. Inspired by the work of Mirollo and Vilonen [MV] describing the categories of perverse sheaves as module categories over certain finite dimensional algebras, Dlab and Ringel introduced [DR2] an explicit recursive construction of these algebras in terms of the algebras $A(\gamma)$. In particular, they characterized the quasi-hereditary algebras of Cline-Parshall-Scott [PS] and constructed them in this way. The present paper provides a characterization of lean algebras and some other special classes of algebras in terms of this recursive process.

1. Basics and Notation

The aim of this paper is to clarify the structure of particular types of quasi-hereditary algebras which appear in the applications to the theory of Lie algebras. Our method is based on the construction described in [DR2], taking into account some characteristic properties of the bimodules and maps which define the recursive process to build up quasi-hereditary algebras of certain type.

Let A be a basic finite dimensional K-algebra and $e = e_A = (e_1, e_2, e_3, \ldots, e_n)$ a complete sequence of primitive orthogonal idempotents of the algebra A so that $\sum_{i=1}^{n} e_i = 1 : A_A = \bigoplus_{i=1}^{n} e_i A$. Write $\varepsilon_i = e_i + e_{i+1} + \ldots + e_n$ for $1 \leq i \leq n$ and $\varepsilon_{n+1} = 0$. Let us recall the definition of the right and left standard modules of A: $\Delta(i) = \Delta_A(i) = e_i A/e_i A\varepsilon_{i+1} A$ and $\Delta^o(i) = \Delta^o_A(i) = Ae_i/A\varepsilon_{i+1} Ae_i$.

Research partially supported by Hungarian NFSR grant No. TO16432.
respectively. A standard module is said to be Schurian if its endomorphism algebra is a division algebra. In general, write $d_i = \dim_K \text{End} S(i)$. In what follows, $S(i)$ denote the simple right A-modules, $P(i) \simeq e_iA$ their projective covers and $V(i)$ the kernels of the canonical epimorphisms $P(i) \to \Delta(i)$ (see [D1] for the basic definitions and notation). Thus, for every $1 \leq i \leq n$ we have short exact sequences

$$0 \to V(i) \to P(i) \to \Delta(i) \to 0$$

and

$$0 \to U(i) \to \Delta(i) \to S(i) \to 0.$$

Of course, for the left modules there are similar canonical short exact sequences

$$0 \to V^\alpha(i) \to P^\alpha(i) \to \Delta^\alpha(i) \to 0$$

and

$$0 \to U^\alpha(i) \to \Delta^\alpha(i) \to S^\alpha(i) \to 0.$$

Given a (right) A-module X, define its trace filtration (with respect to e) by

$$X = X^{(1)} \supseteq X^{(2)} \supseteq \ldots \supseteq X^{(i)} \supseteq \ldots \supseteq X^{(n)} = 0,$$

where $X^{(i)}$ is the submodule of X generated by the homomorphic images of the module e_iA for $1 \leq i \leq n$. Considering the trace filtration of the algebra A

$$A = Ae_1A \supseteq Ae_1A \supseteq \ldots \supseteq Ae_iA \supseteq \ldots \supseteq Ae_nA \supseteq Ae_{n+1}A = 0,$$

we obtain its filtration by the idempotent ideals $A^{(i)} = Ae_iA$.

An algebra (A, \mathbf{e}) is said to be quasi-hereditary if, for all $1 \leq i \leq n$, the modules $\Delta(i)$ are Schurian and $(Ae_iA)/(Ae_{i+1}A) \simeq \oplus \Delta(i)$ (cf. the original definition of Cline-Parshall-Scott; see also [DR1]) .

Equivalently, the algebra (A, \mathbf{e}) is quasi-hereditary if

$$\dim_K A = \sum_{i=1}^{n} \frac{1}{d_i} \dim_K \Delta(i) \dim_K \Delta^\alpha(i)$$

(1)

The equality (1) is equivalent to the fact that $\text{End} \Delta(i) \simeq \text{End} S(i)$ for all $1 \leq i \leq n$ and the regular representation A_A has a Δ-filtration i.e there is a chain of submodules

$$A_A = X^{(0)} \supset X^{(1)} \supset X^{(t)} \supset X^{(t+1)} \supset \ldots \supset X^{(l-1)} \supset X^{(l)} = 0$$
such that $X(t)/X(t+1) = \Delta(i_t)$ for all $0 \leq t \leq l-1$. Indeed, using an induction argument, this follows from the following statements (A) – (C) (cf. [D2])

(A) For every (right) A-module X, $[X : S(i)] = (1/d_i) \dim_K X e_i$; thus

$$[A_A : S(n)] = (1/d_n) \dim_K A e_n = (1/d_n) \dim_K \Delta^o(n).$$

(B) Always, $\dim_K A e_n A \leq (1/d_n) \dim_K \Delta(n) \dim_K \Delta^o(n)$.

(C) The equality $\dim_K A e_n A = (1/d_n) \dim_K \Delta(n) \dim_K \Delta^o(n)$ holds if and only if $\operatorname{End}_A \Delta(n) = \operatorname{End}_A S(n)$ and $A e_n A \simeq \bigoplus_{\text{finite}} \Delta(n)$.

2. The construction of $A(\gamma)$

Recall the (recursive) construction of quasi-hereditary algebra introduced in [DR2]. We shall modify it to describe a construction of particular classes of quasi-hereditary algebras.

Let D be a division K-algebra, C a basic K-algebra, DST and C^T finite-dimensional bimodules with K acting centrally. Let $\gamma : C^T \otimes_D S \to cC$ be a bimodule homomorphism whose image lies in rad C. Let

$$B = D_K(DST \otimes_C T)$$

the "split" K-algebra with the coordinate-wise addition and multiplication given by

$$(d_1, s_1 \otimes t_1)(d_2, s_2 \otimes t_2) = (d_1d_2, d_1s_2 \otimes t_2 + s_1 \otimes t_1d_2 + s_1\gamma(t_1 \otimes s_2) \otimes t_2).$$

Clearly, B is a local K-algebra with rad $B = S \otimes_C T$. It follows that S has the structure of a B-C-bimodule by $(d, s \otimes t) \cdot s' = ds' + s\gamma(t \otimes s')$ and T the structure of a C-B-bimodule by $t' \cdot (d, s \otimes t) = t'd + \gamma(t' \otimes s)t$. In [DR2], the 2×2 matrix $A = \begin{pmatrix} B & S \\ T & C \end{pmatrix}$ with multiplication given by

$$\begin{pmatrix} b & s \\ t & c \end{pmatrix} \begin{pmatrix} b' & s' \\ t' & c' \end{pmatrix} = \begin{pmatrix} bb' + (0, s \otimes t') & b \cdot s' + sc' \\ t \cdot b' + ct' & \gamma(t \otimes s') + cc' \end{pmatrix}$$

is shown to be a $A(\gamma)$ ring, viz. the quotient of the tensor algebra over the $(C \times D)$-$(C \times D)$-bimodule $T \otimes S$ by the ideal

$$I(\gamma) = \langle t \otimes s - \gamma(t \otimes s) \mid t \in T, s \in S \rangle.$$
Note that $e_1 = \begin{pmatrix} (1,0) & 0 \\ 0 & 0 \end{pmatrix}$ and $e_C = (e_2, e_3, \ldots, e_n)$ is a complete sequence of primitive orthogonal idempotents of C. Dlab and Ringel have shown in [DR2] that (A, e) is quasi-hereditary if and only if (C, e_C) is quasi-hereditary and S_C and C_T have Δ_C-filtration and Δ_C^p-filtration, respectively; in fact, they have shown that all basic quasi-hereditary algebras over a perfect field K can be obtained by iterating this construction, starting with a division K-algebra C.

Here, we are going to characterize lean algebras, as well as some special classes of quasi-hereditary algebras A in terms of properties of C, DS_C, CT_D and the homomorphism γ.

Consider a quasi-hereditary algebra (A, e) and the centralizer (quasi-hereditary) algebra (C, e_C), where $C = e_2 A e_2$, together with the C-modules $S_C = e_1 A e_2$, and $C_T = e_2 A e_1$. There is a close relationship between A and C given by the following pair of functors:

$$\Phi : \text{mod} - A \rightarrow \text{mod} - C \quad \text{and} \quad \Psi : \text{mod} - C \rightarrow \text{mod} - A$$

defined by $\Phi(X_A) = X e_2$ and $\Psi(Y_C) = Y \otimes C e_2 A$. Recall that, for a Δ-filtered A-module X, the multiplication map

$$X e_2 \otimes e_2 A \longrightarrow X e_2 A$$

is bijective (see [D1]).

It follows that, for $i \geq 2$, $V_A(i) e_2 = V_C(i)$ and $V_C(i) e_2 \otimes e_2 A = V_A(i)$, $P_A(i) e_2 = P_C(i)$, $P_C(i) \otimes e_2 A = P_A(i)$, $\Delta_A(i) e_2 = \Delta_C(i)$, and $\Delta_A(i)$ is a quotient of $\Delta_C(i) \otimes e_2 A$. In particular, $V(i)$ is a projective A-module if and only if $V(i) e_2$ is a projective C-module. Furthermore, since $e_2 A =_C (T \oplus C)_A$, $V_A(1) = S_C \otimes (C T \otimes C)_A$ is a projective A-module if and only if S_C is a projective C-module.

Let us remark that all precedings statements apply also to the left C-modules $V_C^p(i)$, $P_C^p(i)$, $\Delta_C^p(i)$ and the left A-modules $V_A^p(i)$, $P_A^p(i)$, $\Delta_A^p(i)$.
3. Lean Algebras

An algebra algebra \((A, e)\) is said to be lean with respect to the order \(e\) (see [ADL] or [D1]) if

\[
e_i(rad A)^2 e_j = e_i(rad A) e_m(rad A) e_j \quad \text{for all } 1 \leq i, j \leq n, \ m = \min\{i, j\}. \tag{2}
\]

Equivalently, \((A, e)\) is lean if the standard modules are Schurian and, for all \(1 \leq i \leq n\), both \(V_i\) and \(V^\circ(i)\) are top submodules of \(rad P(i)\) and \(rad P^\circ(i)\) respectively (see [ADL]). Recall that a submodule \(X\) is a top submodule of \(Y\) if \(rad X = X \cap rad Y\). Furthermore, top filtration of a module \(Z\) is a filtration whose members are top submodules of \(Z\).

Proposition 1. \((A, e)\) is lean if and only if \((C, e_C)\) is a lean algebra and \(\text{Im} \gamma \subseteq (rad C)^2\).

Proof. Let \(\text{Im} \gamma \subseteq (rad C)^2\) and \((C, e_C)\) be lean. We are going to show (2).

The equality (2) is trivially true if \(i = 1\) or \(j = 1\); for, in this case \(m = 1\) and \(e_1 = 1\). Thus, let both \(i \geq 2\), \(j \geq 2\). Then

\[
e_i(rad A)^2 e_j = e_i(rad A) \sum_{t=1}^{n} e_t(rad A) e_j =
\]

\[= \sum_{t \geq 2} e_i(rad A) e_t(rad A) e_j + e_i(rad A) e_1(rad A) e_j.
\]

The second summand \(e_i(rad A) e_1(rad A) e_j = e_i A e_1 A e_j\) satisfies

\[
e_i A e_1 A e_j = e_i(e_i A e_1)(e_1 A e_j) e_j \subseteq e_i(\text{Im} \gamma) e_j \subseteq e_i(rad C)^2 e_j.
\]

Moreover, the first summand can be rewritten as

\[
\sum_{t \geq 2} e_i(rad A) e_t(rad A) e_j =
\]

\[= \sum_{t \geq 2} e_i(e_2(rad A) e_2) e_t(rad A) e_j + \sum_{t \geq 2} e_i(rad C) e_t(rad C) e_j = e_i(rad C)^2 e_j.
\]

Thus, since \(C\) is lean and \(m = \min\{i, j\} \geq 2\),

\[
e_i(rad C)^2 e_j = e_i(rad C) e_m(rad C) e_j = e_i(rad A) e_m(rad A) e_j,
\]
as required.

Conversely, if A is lean, then C is obviously lean. Moreover

$$\text{Im } \gamma = (e_2 Ae_1)(e_1 Ae_2) \subseteq e_2(\text{rad } A)e_1(\text{rad } A)e_2 \subseteq e_2(\text{rad } A)^2e_2 = (\text{rad } C)^2.$$

The proof is completed.

Recall that the quasi-hereditary algebra (A, e) is said to be replete if all $V(i) = e_i Ae_{i+1} A$ are projective top submodules of $\text{rad } P(i) = e_i(\text{rad } A)$, and all $V^c(i) = A e_{i+1} Ae_i$ are projective top submodules of $\text{rad } P^c(i) = (\text{rad } A)e_i$ (see [ADL]). If (A, e) is a replete quasi-hereditary algebra, then (C, e_C) is a replete quasi-hereditary algebra and both S_C and cT are projective C-modules. The following simple example shows that these conditions alone do not imply that (A, e) is replete.

Example 1.

Let (A, e) be the path algebra of the quiver $2 \rightarrow 1 \rightarrow 3$; then (A, e) is quasi-hereditary (in fact, hereditary); the regular representations are as follows:

$$AA = \begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}, \quad A^2 = \begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}.$$

Here, (C, e_C) is replete and both S_C and cT are (simple) projective C-modules, but (A, e) is not replete. Notice that $e_2(\text{rad } A)^2e_3 \neq 0$ and $e_2(\text{rad } A)e_3(\text{rad } A)e_3 = 0$. Indeed, the missing property is leanness.

Proposition 2. The algebra (A, e) is a replete quasi-hereditary algebra if and only if (C, e_C) is a replete quasi-hereditary algebra, S_C and cT are projective C-modules and $\text{Im } \gamma \subseteq (\text{rad } C)^2$.

Proof. If (A, e) is replete (and thus lean), one can see immediately that (C, e_C) is replete, S_C and cT projective and, in view of Proposition 1, $\text{Im } \gamma \subseteq (\text{rad } C)^2$. Indeed, since $V_A(i)$ is a top submodule of $\text{rad } P_A(i)$, for all $i \geq 2$, $V_C(i) = V_A(i)e_2$ is a projective top submodule of $\text{rad } P_C(i) = \text{rad } P_A(i)e_2$.

In order to prove that the conditions are sufficient, we need to show that $V_A(i)$ is a projective top submodule of $\text{rad } P_A(i)$ for $1 \geq i \geq n$. First, consider
\[i \geq 2.\] Since \(V_C(i) = e_i(\text{rad } A)e_{i+1}Ae_2\) is a projective top \(C\)-submodule of the \(C\)-module \(P_C(i) = e_i(\text{rad } A)e_2,\) \(V(i) = V_C(i) \otimes C e_2A\) is a projective \(A\)-module.

Moreover, since by Proposition 1; \(A\) is lean, we have the equality

\[e_i(\text{rad } A)^2e_{i+1} = e_i(\text{rad } A)e_2(\text{rad } A)e_{i+1},\]

and thus one can identify the top of \(V_A(i)\) in the top of \(\text{rad } P_A(i)\) with the top of \(V_C(i)\). This yields a top embedding of \(V_A(i)\) in \(\text{rad } P_A(i)\).

For \(i = 1, V_A(1) = \text{rad } P_A(1) = S_C \otimes C e_2A\) is a projective \(A\)-module since \(S_C\) is a projective \(C\)-module; furthermore, \(V_A(1)\) is obviously embedded in \(\text{rad } P_A(1)\) as a top submodule. One can use similar arguments to deal with the left \(A\)-modules \(V^o_A(i)\) which completes the proof.

Recall that the quasi-hereditary algebra \((A, e)\) is called shallow if all \(\text{rad } \Delta(i)\) and \(\text{rad } \Delta^o(i)\) are semi-simple, \(1 \leq i \leq n.\) This is equivalent to the fact (see [ADL]) that

\[e_i(\text{rad } A)^2e_j = e_i(\text{rad } A)e_M(\text{rad } A)e_j\text{ for all } 1 \leq i, j \leq n, M = \max\{i, j\}. \tag{3}\]

As a consequence, both \(\Delta_C\)-filtration of \(S_C\) and \(\Delta^o_C\)-filtration of \(cT\) are in this case top filtrations (see [ADL]), and \((C, e)\) is shallow. The above Example 1 shows that these properties are not sufficient for \((A, e)\) to be shallow. In order to obtain a characterization of shallow algebras we need again to guarantee leaness of \(A.\)

Proposition 3. \((A, e)\) is a shallow quasi-hereditary algebra if and only if \((C, e_C)\) is a shallow quasi-hereditary algebra, \(S_C\) has a top \(\Delta_C\)-filtration, \(cT\) has a top \(\Delta^o_C\)-filtration and \(\text{Im } \gamma \subseteq (\text{rad } C)^2.\)

Proof. We need only to show that the conditions for \(C, S_C, cT\) and \(\gamma\) are sufficient to imply (3).

For \(i = j = 1,\) there is nothing to prove. If \(i = 1, j \geq 2,\) then the \(\Delta\)-filtration of \(\text{rad } P(1)\) induced by the top \(\Delta_C\)-filtration of \(S_C\) (which exists by [DR2]), is a
top filtration. Consequently,
\[e_1(\text{rad } A)^2 e_j \subseteq e_1(\text{rad } A) e_j(\text{rad } A) e_j. \]
A similar argument works for \(i \geq 2, j = 1 \).

Hence, let \(i \geq 2, j \geq 2 \). Then, in view of the fact that \((C, e_C)\) is shallow,
\[e_i(\text{rad } A) e_j = e_i(\text{rad } C) e_j = e_i(\text{rad } C)^2 e_j, \]
which, in turn equals to \(e_i(\text{rad } A) e_2(\text{rad } A) e_j \). By Proposition 1, \((A, e)\) is lean, and thus, for \(m = \min \{i, j\} \),
\[e_i(\text{rad } A)^2 e_j = e_i(\text{rad } A) e_m(\text{rad } A) e_j \subseteq e_i(\text{rad } A) e_2(\text{rad } A) e_j, \]
as required.

The following two classes of lean algebras introduced in [ADL] (see also [D1]) fall in between the shallow and replete algebras. A quasi-hereditary algebra \((A, e)\) is called right medial if for every \(1 \leq i \leq n \), \(V(i) \) is a top submodule of \(\text{rad } P(i) \) and both \(\text{rad } \Delta(i) \) and \(V(i) \) have top \(\Delta \)-filtrations. Equivalently, \((A, e)\) is right medial, if for every \(1 \leq i \leq n \), \(V(i) \) is a top submodule of \(\text{rad } P(i) \) which has a top \(\Delta \)-filtration and \(V^o(i) \) is a projective top submodule of \(\text{rad } P^o(i) \). The algebra \((A, e)\) is called left medial if its opposite \((A^\text{op}, e)\) is right medial. Thus \((A, e)\) is left medial if, for every \(1 \leq i \leq n \), \(\text{rad } \Delta(i) \) is semi-simple and \(V(i) \) is a projective top submodule of \(P(i) \) (see [ADL]). As a result, a characterization of right and left medial algebras, can be obtained by combining the conditions of Proposition 2 and 3.

Proposition 4. The algebra \((A, e)\) is a right medial quasi-hereditary algebra if and only if \((C, e_C)\) is a right medial quasi-hereditary algebra, \(S_C \) has a top \(\Delta_C \)-filtration, \(C T \) is a projective \(C \)-module and \(\text{Im } \gamma \subseteq (\text{rad } C)^2 \).

Proof. If \((A, e)\) is right medial, then for \(i \geq 2 \), both \(\text{rad } \Delta_C(i) = [\text{rad } \Delta_A(i)] e_2 \) and \(V_C(i) = V_A(i) e_2 \) have top \(\Delta_C \)-filtrations. Thus \((C, e_C)\) is right medial.
Moreover, $S_C = V_A(1)\varepsilon_2$ has a top Δ_C-filtration and $CT = \varepsilon_2V_A(1)$ is projective. Finally, since (A, e) is lean, $\text{Im} \gamma \subseteq (\text{rad } C)^2$ by Proposition 1.

Conversely, if the conditions for C, S_C, CT and γ are satisfied, the algebra (A, e) is, by Proposition 1, a lean quasi-hereditary algebra. Thus, we can conclude that $V(1) = S_C \otimes_{C} \varepsilon_2A$ has a top Δ-filtration and, for every $i \geq 2$, $V_A(i) = V_C(i) \otimes_{C} \varepsilon_2A$ is a top submodule of $\text{rad} P_A(i)$ with a top Δ-filtration. Furthermore, $V_A'(1) = A\varepsilon_2 \otimes_{C} T$ is a projective top submodule of $\text{rad} P_A'(1)$ and, for every $i \geq 2$, $V_A'(i) = A\varepsilon_2 \otimes V_C'(i)$ is a projective top submodule of $\text{rad} P_A'(i)$. Consequently, (A, e) is right medial.

Using the definition of left medial algebras, we get immediately the following characterization.

Proposition 4. The algebra (A, e) is a left medial quasi-hereditary algebra if and only if (C, e_C) is a left medial quasi-hereditary algebra, S_C is a projective C-module, CT has a top Δ_C-filtration, and $\text{Im} \gamma \subseteq (\text{rad } C)^2$.

The following example illustrates the situation.

Example 2.

Let A be the path algebra whose regular representations are as follows:

$$A_A = \begin{array}{ccc}
1 & 2 & 1 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array} \oplus \begin{array}{ccc}
2 & 3 & 1 \\
3 & 1 & 2 \\
1 & 2 & 3
\end{array}, \quad AA = \begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array} \oplus \begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}.$$

Clearly, A is a right medial algebra which is not left medial. Here, the centralizer algebra is both right and left medial (in fact, shallow and replete), S_C has a top Δ_C-filtration, while T_C is a projective C-module (with a top Δ-filtration).

References

