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Abstract. The motivation of considering positive additive functions on
trees was the characterization of extended Dynkin graphs (see I. Reiten [R])
and the application of additive functions in the representation theory (see
H. Lenzing and I. Reiten [LR] and T. Hübner [H]).

We consider graphs equipped with functions of integer values, i.e.valued
graphs (see also [DR]). Methods are given for the construction of additive
functions on valued trees (in particular on Euclidean graphs) and for the
characterization of their structure. We introduce the concept of almost ad-
ditive functions, which are additive on each vertex of a graph except for one
(called exceptional vertex). On (valued) trees (with fixed exceptional vertex)
the almost additive functions are unique up to rational multiples. For valued
trees a necessary and sufficient condition is given for the existence of positive
almost additive functions.

Introduction. The Dynkin diagrams and the associated extended
Dynkin diagrams occur in the representation theory of finite dimensional
algebras. These diagrams can be characterised using additive and subad-
ditive functions (see [R]). The concept of an additive function attached to
a finite dimensional algebra is homological in nature ( see [LR]). It is well
known that among the connected quivers exactly the extended Dynkin
quivers admit a positive additive function. The main motivation of this
paper was the characterization of extended Dynkin graphs given by Reiten
(see [R]) and some additive functions in the representation theory given by
Lenzing-Reiten ([LR])and Hübner ([H]). The main result (Theorem 1.6)
shows that for a valued tree there is a positive almost additive function
with an exceptional vertex if and only if the tree is an enlarged Dynkin.
This result answers for valued trees the Reiten’s question: which graphs
admot nontrivial additive functions. There are also given some inductive
constructions of almost additive functions.

1. Additive and almost additive functions on valued trees.
Throughout, ∆ will always be a finite graph without multiple edges and
without loops (which is a finite set I = {1, 2, . . . , n} of the vertices, to-
gether with a set of (unordered) pairs (i, j) ∈ I × I, i 6= j ∈ I, called the
edges of ∆).
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Let V = ZZn be a free abelian group of rank n and let V be equipped
with an - usually non - symmetric bilinear form:

〈−,−〉 : V × V →ZZ.

We also assume that 〈x,−〉 = 0 ⇐⇒ x = 0; i.e. 〈x, y〉 = xtCy, where C

is a non-singular integer matrix.
An automorphism C of V is called Coxeter transformation of V if

〈x, y〉 = −〈y, Cx〉 for all x, y ∈ V.

The matrix Φ of the Coxeter transformation is uniquely determined by the
matrix C, and also by Φ = −C−1Ct, since

〈x, y〉 = xtCy = ytCtx = −ytCC−1Ctx = −〈y,−C−1Ctx〉.

The characteristic polynomial of the matrix of a Coxeter transformation
C is called the Coxeter polynomial of C. The subgroup of ZZn is called a
radical if it is the set of the fixed points of the Coxeter transformation C,
i.e.

rad(C) =
{
x ∈ ZZ | Cx = x

}
.

The spectrum Spec(C) of C is the set of all eigenvalues of the matrix
Φ, the spectral radius of C is given by

ρ(C) = max{| λ |: λ ∈ Spec(C)}.

A valued graph (see [DR]) (∆,v) is a graph ∆ together with a valuation v
defined as follows:
For each edge ri rj , there exist two non-negative integers vi,j and vj,i:
ri (vi,j ,vj,i) rj such that

vi,jfj = vj,ifi

holds with some positive integers fi, fj (i, j ∈ I).
Furthermore, set vi,j = vj,i = 0 if there is no edge between i and j.

Any graph T can be considered as a valued graph (T,v) with a trivial
valuation (vi,j = vj,i = 0 if there is no edge between i and j vi,j = 1
otherwise).
In case vi,j = vj,i = 1 we write simply ri rj instead of ri (1,1) rj , (i.e.
we omit the label of valuation).

The matrix A∆ =
(
ai,j

)
, where ai,j = vi,j is called the adjacency

matrix of the valued graph (∆,v). By the definition of the valued graph
the matrix A = A∆ is symmetrizable, which means that DA is a symmetric
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matrix where D =
(
di,j

)
is a diagonal matrix defined by di,i = fi and

di,j = 0 otherwise.
Let Ω be an orientation of the graph (∆,v). Denote by Q = Q(∆,Ω)

this oriented graph. Suppose there are no oriented cycles in Q. The Cox-
eter transformation is defined only for a quiver, i.e. for a finite oriented
graph. Since, for a tree, our considerations will not depend on a particu-
lar orientation, (see [BLM]), we may speak about the Coxeter polynomial
and spectral radius of the Coxeter transformation of a valued tree and we
always choose the orientation such that for all i, j ∈ I we have ri - rj
if i < j . Consequently, we may speak about the Coxeter polynomial and
spectral radius of the Coxeter transformation of a valued tree.

Let us remark that the Coxeter transformation C for Q = Q(∆,v) is
defined by the matrix C = D−DA+, where DA+ is the upper triangular
part of the symmetric matrix DA.

The following statement was proved for bipartite finite oriented graph
without oriented cycle and it determines the relationship between the spec-
tra of a valued tree and the spectra of its Coxeter transformation.

Lemma 1.1. [BLM] Let T = (T,v) be a valued tree.
a ) If any λ 6= 0 then λ + λ−1 ∈ Spec(T ) if and only if λ2 ∈ Spec(CT ).
b ) If T is not Dynkin, then there exists a real number λ ≥ 1 such that

ρ(T ) = λ + λ−1 and ρ(CT ) = λ2. Moreover, ∆ is Euclidean if and only if
λ = 1.

A function ϕ : I→ZZ with integer values is said to be a subadditive
function on an (arbitrary) graph ∆ with adjacency matrix A and set of
vertices I if ∑

j∈I

ai,jϕ(j) ≤ 2ϕ(i) for all i ∈ I,

and it is said to be an additive function on ∆ if

∑

j∈I

ai,jϕ(j) = 2ϕ(i) for all i ∈ I. (1)

It is known that the existence of a positive subadditive non-additive func-
tion on a finite connected graph implies the existence of a positive definite
associated quadratic form and the existence of a positive additive function
implies the existence of a positive semidefinite associated quadratic form
(see [R]). In the first case the graph is Dynkin and in the second it is
Euclidean.

A function ϕ : I→ZZ with integer values is said to be an almost
additive function with the exceptional vertex k on an (arbitrary) graph ∆
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with set of vertices I and with adjacency matrix A if

∑

j∈I

ai,jϕ(j) = 2ϕ(i) for every i 6= k.

An additive function ϕ is called positive, if ϕ(i) > 0 for each i ∈ I. Also we
call ϕ nonnegative if ϕ is nonzero and ϕ(i) ≥ 0 for each i, and call negative
if −ϕ is positive.

Let (∆, ϕ) be a graph ∆ together with an (almost) additive function
ϕ. Removing all vertices x ∈ I with ϕ(x) = 0 and all edges containing
such vertices x, we get a subgraph of ∆ with an (almost) additive function
without zero values. Since this removing process does not change the ad-
ditive property we may suppose that all of our (almost) additive functions
are without zero values.

The additive functions are uniquely determined up to integer multi-
ples. To avoid misunderstandings, we always consider so called normal-
ized (almost) additive functions with minimal integer values, i.e. the least
common divisor of their values is 1. For the characterization of (almost)
additive functions ϕ sometimes we need these functions with rational val-
ues, i.e. the rational multiples of the (almost) additive functions. To make
our calculation easier we shall, sometimes, fix the value of the function ϕ

at the exceptional vertex k to be 1. Such a function will be called a reduced
(almost) additive function.

For a quiver Q without oriented cycle the elements of the radical of
the corresponding Coxeter transformation determine an additive function
on the underlying valued graph.

Lemma 1.2. Let Q be a finite oriented graph without oriented cycles and
with underlying graph (∆,v) and I the set of its vertices. The following
statements are equivalent for the additive function ϕ : I→ZZ:
a) ϕ̂ =

(
ϕ(1), . . . , ϕ(n)

) ∈ rad(C)
b) ϕ̂ is the eigenvector of the Coxeter matrix Φ of Q with eigenvalue 1.

c) ϕ̂ is the eigenvector of the adjacency matrix (∆,v) with eigenvalue 2.

d) ϕ is additive on the graph (∆,v).

Proof. The statements a) ⇐⇒ b) and d) ⇐⇒ c) follow from the
definitions of the additive function and the radical of the Coxeter trans-
formation. The equivalence of b) and c) follows from Lemma 1.1.

The Dynkin graphs have no additive functions since for their adjacency
matrix A the matrix 2I − A is non-singular. It is known (see [R]) that a
connected graph has a positive additive function ϕ if and only if the graph
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is extended Dynkin (Euclidean). In this case ϕ is uniquely determined. We
remark that normalized subadditive functions on a graph are, in general,
not uniquely determined.

Example 1.1. Let us write the values of the functions at the corre-
sponding vertices. On the Dynkin graph A3 the functions r1 r2 r1
and r1 r2 r3 are different almost additive and subadditive func-
tions. The exceptional vertex of the almost additive function is in the first
case the middle vertex and in the second case it is the right one.

Let (∆,v) be a valued tree, k ∈ I and ϕ be an almost additive function
on I with an exceptional vertex k ∈ I with ϕ(k) 6= 0. Define the deviation
dk ∈ QI of ϕ at the vertex k by the equation

ϕ(k)(2− dk) =
∑

j∈I

ak,j ϕ(j). (2)

Clearly, dk is uniquely determined and dk = 0 if and only if ϕ is additive
at the vertex k, i.e.

∑
j∈I ak,jϕ(j) = 2ϕ(k).

In Example 1.1 the deviation of ϕ̂1 = (1, 2, 1) at the middle vertex
is 1 and the deviation of ϕ̂2 = (1, 2, 3) at the right vertex is 4

3 , i.e. on a
tree we can define different almost additive functions by choosing differ-
ent exceptional vertices. The following theorem gives the answer to the
question about the uniqueness of an almost additive function with fixed
exceptional vertex.
We denote by T \ {k} the tree obtained from T by deleting the vertex k

and all adjacent edges.

Theorem 1.3. Let (T,v) be a valued tree. Let k ∈ I be an exceptional
vertex of an almost additive function ϕ on T without zero values. Then ϕ

is uniquely determined up to a rational multiple.

Proof. We prove by induction on the number n of vertices of T. For n = 1
the statement is obvious. If n > 1 then remove the exceptional vertex
k and all adjacent edges from T. By the induction hypothesis we have
unique almost additive functions on the connected components of T \ {k}.
The exceptional vertices of these almost additive functions are the vertices
which were connected to k. This implies the uniqueness of our additive
functions on T with exceptional vertex k and our statement follows.

Remark that if the underlying graph is not a tree then, as the next coun-
terexample shows, the uniqueness does not hold.
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Example 1.2. Consider the following graph where the labels of the
vertices are the values of a function ϕ on the graph. If a and b are arbi-
trary relative prime numbers then, as one can easily check, ϕ is an almost
additive function with exceptional vertex labeled by 2b.
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2b b −a −a

−a

a −b

•

•

• • •

•

• •

• •

•

•......................................................................... ........ ......................................................................... ........

.................................................................................

......................................................................... ........

......................................................................... ........

........

........

........

........

........

........

........

........

.................

........

........

........

........

........

........

........

........

.................

........

........

........

........

........

........

........

........

.................

........

........

........

........

........

........

........

........

.................

......................................................................... ................................................................................. ........

...................................................................................................................

...................................................................................................................

...................................................................................................................

It is easy to see that if a graph with a strictly positive almost additive
function has positive deviation then it can be extended to a positive almost
additive function. This is possible by connecting a new vertex to the
exceptional vertex.

Theorem 1.4. Let ϕ be an almost additive function on the valued tree
(T,v) with exceptional vertex k. Suppose ϕ(k) 6= 0. Denote by χT (x) the
Coxeter polynomial of T . Then the deviation of the almost additive func-
tion ϕ at k is

dk =
χT (1)

χT\{k}(1)
, (3)

thus dk is uniquely determined.

Proof. Denote by A the adjacency matrix of T and let ek be the kth row
vector of the n×n identity matrix. We may suppose that ϕ is reduced i.e.
ϕ(k) = 1. For the almost additive function ϕ and the deviation dk of the
exceptional vertex k we have

(2I −A− dket
kek)ϕ̂t = 0 (4)

where ϕ̂ is the vector introduced in Lemma 1.2.
If | 2I − A |= 0 then ϕ is additive on T which implies by Lemma 1.2
the equalities χT (1) = 0 and dk = 0. By ϕ(k) 6= 0 the restriction of ϕ is
not additive on T \ {k} and χT\{k}(1) 6= 0. Thus, the statement in case
| 2I −A |= 0 follows.
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Assume that | 2I − A |6= 0. Suppose that the almost additive function ϕ

is reduced i.e. ϕ(k) = 1. This implies that (2I − A)ϕ̂t = dket
kekϕ̂t hence

ϕ̂t = dk(2I − A)−1et
kekϕ̂t and 1

dk
ϕ̂t = (2I − A)−1et

k. Moreover, since
ϕ(k) = 1 we have ϕ̂−1 = ek and 1

dk
= ek(2I − A)−1et

k which is the entry
of the (k, k)’s position of the inverse of the non-singular matrix 2I − A.
Thus, we have 1

dk
= fT\{k}(2)/fT (2), where fΓ(x) is the characteristic

polynomial of the graph Γ and fT (2) 6= 0 since ϕ is not additive.
From the uniqueness of (2I − A)−1 the uniqueness of dk follows. In

view of the correspondence between the spectrum of the graph and the
spectrum of the corresponding Coxeter transformation by Lemma 1.1. we
have

fT\{k}(2)/fT (2) = χT/{k}(1)/χT (1).

Corollary 1.5. The deviation of each almost additive function on a
Dynkin graph is strictly positive and on an Euclidean graph it is zero.

Proof. Let T be a Dynkin graph. With the notation of Theorem 1.4 we
have

dk =
χT (1)

χT\{k}(1)
.

It is known that the Coxeter polynomial of Dynkin graphs has only cyclo-
tomic polynomials as its irreducible factors. The sum of the coefficients
of products of cyclotomic polynomials is positive and 1 is a root of the
Coxeter polynomial of an Euclidean graph. The Coxeter polynomials of a
Dynkin graph can be decomposed into irreducible cyclotomic factors (see
[BLM]), at 1 they have positive value. T is Dynkin therefore T \ {k} is
also Dynkin. It follows that dk is positive.

The question about the sign of the deviation in case of wild graphs
is much more complicated. One graph T is said to be enlarged Dynkin if
it can be decomposed into Dynkin graphs by removing exactly one vertex
and all edges adjacent to it in T . Clearly, the Dynkin graphs with n > 2
vertices are also enlarged Dynkin’s.

Theorem 1.6. Let T be a valued tree. Then there exists a positive almost
additive function ϕ with any exceptional vertex k ∈ I if and only if T is an
enlarged Dynkin graph. Fixing a vertex k ∈ I, the almost additive function
ϕ with exceptional vertex k is unique.

Proof. The existence of almost additive function is clear. Let ϕ be a
positive almost additive function on T with exceptional vertex k. Suppose
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ϕ is reduced i.e. ϕ(k) = 1. By (4) ϕ is the eigenvector of the matrix
A − dket

kek corresponding to the eigenvalue 2. We may assume that |
2I −A |6= 0, otherwise by Lemma 1.2 ϕ is additive on T and by Corollary
1.5 T is Euclidean which is enlarged Dynkin and the statement for such a
graph holds.
By the Perron Frobenius Theorem the positive eigenvector ϕ̂ corresponds
to the maximal eigenvalue 2 of the matrix A− dket

kek. By the interlacing
property the maximal eigenvalue of the adjacency matrix of T \ {k} is
less than 2. Thus, by Lemma 1.1 the maximum of the absolut value of
the eigenvalue of the Coxeter transformation is less than 1 and the tree
T \ {k} is Dynkin, i.e. T is an enlarged Dynkin graph.
Conversely, suppose T is an enlarged Dynkin graph i.e. it can be decom-
posed into Dynkin graphs by removing the vertex k and the corresponding
edges. It is easy to check that to every Dynkin graph and for each of its
vertex k ∈ I there exists at least one positive almost additive function
ϕ with the exceptional vertex k. Let dk be the deviation of the almost
additive function with the exceptional vertex k.
The uniqueness follows from the Perron-Frobenius Theory since ϕ is (strict-
ly) positive, thus ϕ̂ is the only eigenvector of the matrix A − dket

kek cor-
responding to the unique maximal eigenvalue 2.

2. Inductive constructions of almost additive functions. Since
the vertices of Dynkin graphs are well characterized by the deviation of
uniquely determined positive almost additive functions corresponding to
the vertices, on the next picture we show the list of these graphs labeling
the vertices with the deviation values.

n+1
n•

n+1
2(n−1)

•
n+1

3(n−2)

•
n+1

i(n−i+1)

•
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(i+1)(n−i)
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•
n+1

n•.................................................................... ........ .................................................................... ........ . . . .................................................................... ........ . . . .................................................................... ........ An, n ≥ 1

2
n•

1
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1
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•

1
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2• 1•.................................................................... ........
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.................................................................... ........ . . . .................................................................... ........ . . . .................................................................... ........ Bn, n ≥ 2

2
n•

1
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•

1
n−i
•

1
2• 1•.................................................................... ........
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.................................................................... ........ . . . .................................................................... ........ . . . .................................................................... ........ Cn, n ≥ 3
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G2

The connection between the existence of an additive function on a graph
and existence of positive almost additive functions on its subgraphs seems
to be an interesting problem. The following statement characterizes the
almost additive functions on trees which consist of trees (with almost ad-
ditive functions at their exceptional vertices) hanging on a new vertex at
their exceptional vertices. We shall call such trees one-point extension of
the original trees.
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Theorem 2.1. Let T1 = (T1,v1), T2 = (T2,v2), . . . , Ts = (Ts,vs)
be valued trees with Let ϕ1, ϕ2, . . . , ϕs be almost additive functions on
T1,T2, . . . , Ts with exceptional vertices k1 ∈ (T1)0, k2 ∈ (T2)0, . . . , ks ∈
(Ts)0 and with deviations dk1 , dk2 , . . . , dks

. Let T be a graph obtained from
T1, T2, . . . Ts with one-point (k) extension at the vertices k1, k2, . . . , ks.

Then the extended almost additive function on T with the exceptional ver-
tex k has the deviation 2− ( 1

dk1
+ 1

dk2
+ . . . + 1

dks
).

Proof. We may suppose without restricting the generalization that ϕ1, . . . ,

ϕs are reduced almost additive functions, i.e. ϕ(kl) = 1 for all 1 ≤ l ≤ s.
Let Skl

=
∑

j∼kl
ϕkl

(j), where kl ∼ j means that the vertices j ∈ (Tl)0
are connected to the vertex kl. By definition of the deviation 2−Skl

= dkl

holds. At the graph T the extension of the almost additive functions
ϕ2, . . . , ϕs will be almost additive at the vertex kl if (preserving the values
except for the values on the corresponding exceptional vertices) there exists
rl ∈ ZZ such that ϕ(k) + rlSkl

= 2rlϕ(kl) = 2rl for 1 ≤ kl ≤ s. Thus

ϕ(k)
rl

= 2− Skl
= dkl

.

For the deviation dk at the vertex k we have

dk = 2− r1 + r2 + . . . + rs

ϕ(k)
= 2− (

1
dk1

+ . . . +
1

dks

).

Theorem 2.1 explains how can we construct Dynkin and Euclidean
(in other words extended Dynkin) graphs from Dynkin‘s by using almost
additive functions. Extending the Dynkin graph by one vertex at any
vertex with deviation 1

2 we get an Euclidean graph since the deviation of
A1 (a simple graph with one vertex) is equal to 2. Taking a Dynkin graph
and any of its vertices k with dk > 0.5 we may enlarge our graph with a
new vertex connected to k such that the enlarged graph remains Dynkin.
For example E6 and E7 can be enlarged ( to E7 and E8 respectively) by
connecting a new vertex to the vertices with deviations 3

4 and 2
3 . Also

Bn, Cn, Dn can be enlarged by a new vertex at the vertices with deviation
1.

In this way we have a new method to find the complete list of the
Euclidean graphs.

The following statement presents the solution of the problem of de-
termining additive functions on a tree in a special case.
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Theorem 2.2. Let T1 = (T1,v1) and T2 = (T2,v2) be valued trees with
i ∈ (T1)0 and j ∈ (T2)0. Let ϕ1 and ϕ2 be almost additive functions with
exceptional vertices i and j with ϕ(i), ϕ(j) 6= 0 and with corresponding de-
viations di and dj . Let T be a graph obtained from T1 and T2 by connecting
them by an edge with ri rj . Then there exists a uniquely determined
additive function on T if and only if didj = 1.

Proof. We require the almost additivity with the exceptional vertices i and
j. Therefore we should find the integers l1 and l2 such that

l1di = l2ϕ2(i) and l2dj = l1ϕ1(j). (5)

Since ϕ2(i) = 1 and ϕ2(j) = 1 the system of equations (5) has a solution
if and only if didj = 1.

The following example shows how to construct an additive function
from two suitable almost additive functions with deviations di and dj (by
Theorem 2.2).

Example 2.1.

9 18 15 2 12 18 12 6
•

12 10 1 8 12

6 5 4 6

• •

•

•© ©
di = −6

dj = − 1
6

• • • •

•

•

•

•

• •

• •

•

............................................................ ........
........
........
........
........
........
........
....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

............................................................ ........ ............................................................ ........

........

........

........

........

........

........

....................

............................................................ ........ ............................................................ ........ ............................................................ ........

−9 −18 −15 −2 12 18 12 6
•

−12 −10 −1 8 12

−6 −5 4 6

• •

•

• • • • •

•

•

•

•

• •

• •

•

............................................................ ........
........
........
........
........
........
........
....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

........

........

........

........

........

........

....................

............................................................ ........ ............................................................ ........ ............................................................ ........ ............................................................ ........ ............................................................ ........ ............................................................ ........

Acknowledgment

The partial support of a German-Hungarian cooperation project is
gratefully acknowledged. The author is indebted to Prof. H. Lenzing for
discussions and helpful suggestions in preparation of this paper.



12 P. Lakatos

References

[BLM] Berman, S., Lee, Y. S., Moody, R., V., The spectrum of a Coxeter
transformation, J. of Algebra. 121 (1989), 339–357.

[DR] Dlab, V., Ringel, C.M., Indecomposable representations of graphs
and algebras, Mem. Amer. Math. Soc. 6, No 173 (1976).
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