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A NEW CONSTRUCTION OF SALEM POLYNOMIALS

PIROSKA LAKATOS

Presented by Vlastimil Dlab, FRSC

Abstract. An earlier result of the author on the zeros of reciprocal
polynomials is applied to give a new construction of Salem numbers.

Résumé. Cet article applique un résultat précédent de l’auteur sur les
zéros des polynomes réciproques pour répondre à la question de la construc-
tion des nouveaux nombres Salem.

1. Definitions and preliminary results. A monic reciprocal polynomial
with integer coefficients having exactly one zero (of multiplicity 1) outside the
unit circle is called a Salem polynomial [2].

A Salem number is a real algebraic integer α > 1 of degree ≥ 4, all of whose
conjugates, apart from α and α−1, lie on the unit circle.

Here we give a new construction of Salem polynomials and therefore (in case
of their real zeros are positive) a construction of Salem numbers. This is based
on the following result of the author [4].

All zeros of the (real reciprocal) polynomial

(1) um(z) = u(m,l,a)(z) = l(zm + zm−1 + · · · + z + 1) +
[ m

2 ]∑
k=1

ak(zm−k + zk)

of degree m where l ∈ R, l �= 0, m ∈ N, m ≥ 2, a = (a1, . . . , a[ m
2 ]) ∈ R[ m

2 ] are on
the unit circle if

(2) |l| ≥ 2
[ m

2 ]∑
k=1

|ak|.

Write vm(z) := zm + zm−1 + · · · + z + 1. It has been proved in [2] that for any
sequence of positive integers m1, m2, . . . , ms, s ≥ 3, the polynomial

(3) g(z) = (z + 1)
s∏

i=1

vmi
(z) − z

s∑
k=1

(
vmk−1(z)

s∏
i=1,i �=k

vmi
(z)

)

is either cyclotomic or Salem.
The polynomial (3) is cyclotomic only if s = 3 and (m1 +1)−1 +(m2 +1)−1 +

(m3 + 1)−1 ≥ 1 or s = 4 and m1 = m2 = m3 = m4 = 1.
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To determine the location of zeros of reciprocal polynomials we apply Cheby-
shev transformation. This transformation projects the unit circle on the real
interval [−2, 2].

A polynomial p of the form p(z) =
∑2n

j=0 ajz
j (z ∈ C) where n ∈ N, a0, . . . , a2n

∈ R and aj = a2n−j (j = 0, . . . , n− 1) is called a real semi-reciprocal polynomial
of degree at most 2n. If a2n �= 0 we call p a real reciprocal polynomial of degree
2n. Denote by R2n the set of all real semi-reciprocal polynomials of degree at
most 2n.

If p ∈ R2n, p �= o (o = the zero polynomial), then there is an integer k,
0 ≤ k ≤ n, such that a2n = a2n−1 = · · · = an+k+1 = 0 = an−k−1 = · · · = a0 but
an+k = an−k �= 0 hence

(4) p(z) = zn
[
an+k

(
zk +

1
zk

)
+ · · · + an+1

(
z +

1
z

)
+ an

]
.

Let Tj be the j-th Chebyshev polynomial of the first kind, and Cj be the j-th
normalized Chebyshev polynomial of the first kind defined by C0(x) = T0(x),
Cj(x) = 2Tj(x

2 ) for j > 0.
With z + 1

z = x, we have zj + 1
zj = Cj(x) (j = 1, 2, . . . ), and hence by (4)

(5)

p(z) = zn
k∑

j=0

an+jCj(x) = an+kzn
k∏

j=1

(x − αj) = an+kzn−k
k∏

j=1

(z2 − αjz + 1),

where αj ∈ C (j = 1, . . . , k) are the zeros of the polynomial
∑k

j=0 an+jTj(x).
The Chebyshev transform of a non-zero polynomial p ∈ R2n having the fac-

torization (5) is defined by

T p(x) = an+k

k∏
j=1

(x − αj),

while for the zero polynomial p we put T p(x) = 0.
It is clear that T maps R2n into the set Pn of all polynomials of degree ≤ n

with real coefficients. In fact, we have the following:

Proposition 1. The Chebyshev transform T is an isomorphism between the
(real) vector spaces R2n and Pn.

Our basic tool is the following lemma (cf. [2]).

Lemma 1. Let f(z) be a monic integral reciprocal polynomial and let f̄(z)
be defined by

f̄(z) =

{
f(z) if the degree of f is 2n,
f(z)(z + 1) if the degree of f is 2n − 1.

Then f(z) is a Salem polynomial if and only if the Chebyshev transform T f̄(x)
of f̄(z) has n − 1 zeros in the interval [−2, 2].
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2. The construction. Write ṽ2n(z) = v2n+1(z)
z+1 . Similarly, if um(z) is a

reciprocal polynomial of the form (1) and m = 2n+1, we write ũ2n(z) = u2n+1(z)
z+1 .

Lemma 2.

(i) The values of the polynomial T u2n(x) alternate sign at the zeros of T ṽ2n(x).
(ii) The values of the polynomial T ũ2n−2(x) alternate sign at the zeros of

T v2n(x).

Proof. It is easy to see that T ṽ2n(x) = Un(x
2 ) =

∏n
j=0(x − βj) and

T v2n(x) = Un(x
2 ) + Un−1(x

2 ) =
∏n

j=1(x − γj) where βj = 2 cos 2jπ
2n+2 , γj =

2 cos 2jπ
2n+1 for j = 1, 2, . . . , n and Un is the n-th Chebyshev polynomial of the

second kind (for the details see [4]).
In [4], we found that

T u2n(x) = l
[
Un

(x

2

)
+ Un−1

(x

2

)]
+

n∑
k=1

2akTn−k

(x

2

)
,(6)

T ũ2n−2(x) = lUn−1

(x

2

)
+

n∑
k=1

ak

[
Un−k−1

(x

2

)
− Un−k−2

(x

2

)]
.(7)

Substituting the corresponding zeros into (6), (7) we have, after some calcula-
tions, that

T u2n(βj) = 2
(

l

2
(−1)j+1 +

n∑
k=1

ak cos
2j(n − k)π

2n + 2

)
(8)

T ũ2n−2(γj) = 2
l
2 (−1)j+1 +

∑n
k=1 ak cos 2j(2n−2k−1)π

2(2n+1)

2 cos jπ
2n+1

.

By the condition (2), we get that sgn T ũ2n−2(γj) = sgn l sgn(−1)j+1 and
sgn T u2n(βj) = sgn l sgn(−1)j+1 proving Lemma 2.

Theorem 1. Let m1, m2, . . . , ms and l1, l2, . . . , ls be arbitrary positive inte-
gers and for i = 1, 2, . . . , s; mi ≥ 2 let ai = (ai1, . . . , ai[

mi
2 ]) be vectors with

non-negative integer components such that

(9) li ≥ σi where σi = 2
[

mi
2 ]∑

k=1

aik
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holds while for mi = 1 let ai be the zero vector. Further let

umi
(z) := u(mi,li,ai)(z) = li(zmi + zmi−1 + · · · + z + 1)

+
[

mi
2 ]∑

k=1

aik(zmi−k + zk) if mi ≥ 2

umi
(z) := u(mi,li,ai)(z) = li(z + 1) if mi = 1.

Define the polynomials

f(z) = f(m1,...,ms),(l1,...,ls),(a1,...,as)(z)

= (z + 1)
s∏

i=1

vmi
(z) − z

s∑
k=1

(
umk−1(z)

s∏
i=1,i �=k

vmi
(z)

)
(10)

where

umi−1(z) := u(mi−1,li,ai)(z) if mi ≥ 2

umi−1(z) := li if mi = 1.

Then f(x) is a Salem polynomial unless one of the following conditions hold, in
which case the polynomial is cyclotomic:

(a) s = 1, l1 = 1 or l1 = 2 and m1 ≥ 1
(b) s = 2, l1 = l2 = 1, m1 ≥ 1 and m2 ≥ 1

s = 2, l1 = 2 or l1 = 3, l2 = 1 and m1 = m2 = 1
s = 2, l1 = 2, l2 = 1 and m1 = 1, m2 = 2
s = 2, l1 = l2 = 2 and m1 = m2 = 1

(c) s = 3, l1 = l2 = l3 = 1 and (m1 + 1)−1 + (m2 + 1)−1 + (m3 + 1)−1 ≥ 1
s = 3, l1 = 2, l2 = l3 = 1 and m1 = m2 = m3 = 1

(d) s = 4, l1 = l2 = l3 = l4 = 1 and m1 = m2 = m3 = m4 = 1.

Proof. We may assume that m1, m2, . . . , ms are arranged such that all odd
mi’s are listed first, i.e., mi = 2ni +1, ni ≥ 0 for 1 ≤ i ≤ r and mi = 2ni, ni ≥ 1
if r + 1 ≤ i ≤ s for some 0 ≤ r ≤ s. Taking out the factor z + 1 corresponding
to the zero −1 of f(z), we have

f(z) = (z + 1)r+1
r∏

i=1

ṽ2ni

s∏
i=r+1

v2ni

− z(z + 1)r−1
r∑

k=1

(
u2nk

r∏
i=1,i �=k

ṽ2ni

s∏
i=r+1

v2ni

)

− z(z + 1)r+1
s∑

k=r+1

(
ũ2nk−2

r∏
i=1

ṽ2ni

s∏
i=r+1,i �=k

v2ni

)

= (z + 1)r−1
(
(z + 1)2f1(z) − zf2(z) − z(z + 1)2f3(z)

)
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with suitable polynomials f1, f2, f3.
Write d =

∑s
i=1 ni then the degree of f is N =

∑s
i=1 mi +1 = 2d+ r +1. Let

F (x) =

⎧⎪⎨
⎪⎩

T f(x)

(x+2)
r−1
2

= (x + 2)T f1(x) − T f2(x) − (x + 2)T f3(x) if r is odd

T f̄(x)

(x+2)
r
2

= (x + 2)T f1(x) − T f2(x) − (x + 2)T f3(x) if r is even.

Applying Proposition 1 we can rewrite F as

F (x) = (x + 2)
r∏

i=1

T ṽ2ni

s∏
i=r+1

T v2ni
−

r∑
k=1

(
T u2nk

r∏
i=1,i �=k

T ṽ2ni

s∏
i=r+1

T v2ni

)

− (x + 2)
s∑

k=r+1

(
T ũ2nk−2

r∏
i=1

T ṽ2ni

s∏
i=r+1,i �=k

T v2ni

)
.

By Lemma 1 we have to show that T f̄ has [N+1
2 ]−1 zeros in [−2, 2], or that F

has [N+1
2 ]− 1− [ r

2 ] = d zeros in the interval [−2, +2] apart from the exceptional
cases (a)–(d) when each of the d + 1 zeros of F are in [−2, +2].

To determine the number of zeros of T f̄ we use:

Lemma 3. Let Φi, Ψi, hi (i = 1, 2, . . . , s) and h0 be polynomials with real
coefficients such that h0, h1, . . . , hs are positive on the interval (a, b], h0(a) = 0
and for each i = 1, 2, . . . , s

(A) all zeros of Φi are single, and Φi(b) > 0,
(B) Ψi alternates sign at the zeros of Φi, and Ψi is positive at the largest zero

of Φi,
(C) for each i = 1, 2, . . . , s such that hi(a) �= 0 and Ψi(a) �= 0; Ψi alternates

sign on {a} ∪ {zeros of Φi}, and if Φi has no zeros on (a, b], then Ψi > 0.

Let M be the number of zeros of the product Φ1 · · ·Φs on (a, b), counted with
multiplicity. Then the function

Φ = h0

s∏
i=1

Φi −
s∑

k=1

(
hkΨk

s∏
i=1,i �=k

Φi

)

has M zeros in [a, b].

Lemma 3 can be proved following the arguments of Proposition 4.1, Corol-
laries 1, 2 of [2], pp. 246–249. Condition (7) of Corollary 1 was changed to (C)
to accomodate our situation, this again causes just a small deviation from the
arguments of [2].

In the sequel let Φ = F , h0 = x + 2,

Φi =

{
T ṽ2ni

T v2ni

hi =

{
1
x + 2

Ψi =

{
T u2ni

if 1 ≤ i ≤ r

T ũ2ni−2 if r + 1 ≤ i ≤ s.
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The number of zeros (counted with multiplicity) of the product Φ1 · · ·Φs is easily
seen to be

∑s
i=1 ni = d. All these zeros are in (−2, 2), denote by αd the largest

one.
Choose [a, b] to be [−2, αd + ε] where 0 < ε < 2 − αd. We show that the

conditions of Lemma 3 are satisfied. Obviously hi are positive on (−2, αd + ε]
and h0(−2) = 0.

(A) All zeros of T v2ni
and T ṽ2ni

in (−2, αd + ε) are single. Since T v2ni
(2) =

Uni
(1) + Uni−1(1) = 2ni + 1 > 0, T ṽ2ni

(2) = Uni
(1) = ni + 1 > 0 and T v2ni

,
T ṽ2ni

have no zeros in [αd + ε, 2] they are positive at the point αd + ε.
(B) is ensured by Lemma 2, and also by Lemma 2 we have sgn T u2ni

= 1 > 0
at the largest zero of T ṽ2ni

and sgn T ũ2ni−2 = 1 > 0 at the largest zero of T v2ni
.

To show that (C) is also satisfied we remark first that Ψi(−2) = T u2ni
(−2) =

0 (1 ≤ i ≤ r) if and only if x+2 is a factor of it, i.e., if and only if −1 is a double
zero of u2ni

, and this holds if only if (see [4, Theorem 1])
(11)

li = 2
ni∑

k=1

aik and sgn(−1)k+1 = 1 for all k = 1, . . . , ni for which aik �= 0.

Next, we remark that hi(−2) �= 0 and Ψi(−2) �= 0 holds if only if 1 ≤ i ≤ r and
(11) is not satisfied.

Let us fix a subscript i with this property.

Case 1. Φi = T ṽ2ni
has no zeros on (−2, αd + ε]. This holds if and only if

mi = 1, ni = 0. Then we have Ψi = T u2ni
= li > 0 as required by (C).

Case 2. mi > 1. By 2. Ψi alternates sign at the zeros of Φi. By Lemma 1 the
smallest zero of Φi is βni

= 2 cos 2niπ
2ni+2 . To show that (C) holds in this case it is

enough to prove that

(12) sgn Ψi(−2) �= sgn Ψi(βni
).

From (8) sgn Ψi(βni
) = sgn T u2ni

(βni
) = (−1)ni+1, and by (6)

Ψi(−2) = T u2ni
(−2) = li[Uni

(−1) + Uni−1(−1)] +
ni∑

k=1

2aikTni−k(−1)

= li(−1)ni +
ni∑

k=1

2aik(−1)ni−k = (−1)ni

(
li + 2

ni∑
k=1

aik(−1)k
)

and the expression in the last parenthesis is positive by li > 0 and by the
assumption that (11) does not hold, proving that (12) is satisfied.

Since ε > 0 was arbitrary we have proved that F has d zeros in the interval
[−2, αd]. The polynomial F is of degree d+1 its d+1-th zero can only be outside
this interval.
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The exceptional cases of the statement are the cases, when F has d + 1 zeros
in the interval [−2, 2], i.e., when F (2) ≥ 0 since sgn F (αd) = −1. A simple
calculation shows that

F (2) = 4
r∏

i=1

(ni + 1)
s∏

i=r+1

(2ni + 1)
[
1 −

r∑
k=1

(2nk + 1)lk + 2
∑nk

i=1 aik

4(nk + 1)

−
s∑

k=r+1

nklk +
∑nk

i=1 aik

2nk + 1

]
.

The first sum in the bracket is ≥
∑r

k=1 lk/4 the second ≥
∑s

k=r+1 lk/3. Using
this, one can prove that if s ≥ 4 then F (2) ≥ 0 implies that l1 = · · · = ls = 1.
However, s ≥ 5 and l1 = · · · = ls = 1 is not possible since then two sums are at
least s/4 > 1 making F (2) ≥ 0 impossible. This is how we get the exceptional
case (d). Similarly, if s = 3 then F (2) ≥ 0 implies lk ≤ 2 (k = 1, 2, 3), if
s = 2 then F (2) ≥ 0 implies that lk ≤ 3 (k = 1, 2), finally if s = 1 then F (2) ≥ 0
implies that l1 ≤ 4. For a given s (= 3, 2, 1) we list the possible values of l1, . . . , ls
and using the condition F (2) ≥ 0 we can select the suitable cases (a)–(c).

Remark 1. We remark that the cases s ≥ 3 and lk = 1 (k = 1, . . . , s) are
known for example from [5]. In this way our result gives a new method for the
description of trees with maximum eigenvalue ≤ 2.

Remark 2. The sets defined in [5], [3] and [6] are proper subsets of the
set defined by polynomials of Theorem 1. For example, the Salem number �
1.673324849 defined by the polynomial

z14 − z12 − z11 − z10 − z9 − 2z8 − 3z7 − 2z6 − z5 − z3 − z2 + 1

= (z + 1)v1(z)v12(z) − z
(
2v11(z) + z5 + z6

)
(z + 1) − zv12(z)

which is of the form (9) of Theorem 1, is not in the previously known sets. This
holds since previous sets were defined by help of graphs. Due to the discrete
nature of graphs there are “gaps” in these sets. The Salem number above is in
such a gap.

Remark 3. In some cases the polynomials of the form (9) are Salem poly-
nomials even if umi−1 do not satisfy condition (8) but their zeros are on the unit
circle. For example let s = 1, m1 = 16, l1 = 2 and

u15(z) = 2v15(z) + z5 + z6 + z9 + z10; f1(z) = (z + 1)v16(z) − zu15(z).

Then f1(z) = (z + 1)Φ4(z)Φ12(z)g1(z) where g1(z) is the Salem polynomial of
the smallest known Salem number.
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This holds since the Chebyshev transform of f1(z)/(z + 1) has 7 zeros on
the interval [−2, 2]. The polynomial g1 is an irreducible factor of many Salem
polynomials of the form

(13) (z + 1)vm−1(z) − z
(
2vm−2(z) + zi + zj + zm−2−i + zm−2−j

)
,

for example if m = 20, i = 3, j = 6; m = 21, i = 2, j = 9; m = 25, i = 1, j = 10.
Also, the majority of the small Salem numbers listed in parameter set for the
Salem polynomials of the 8 smallest Salem numbers

# 1 2 3 4 5 6 7 8
m 17 19 17 16 15 19 13 25
i 5 3 3 3 3 1 4 0
j 6 5 5 6 5 7 5 8.

It may be of interest to show that the construction defined in Theorem 1 yields
all small Salem numbers.
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