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Abstract

Adhesion and spreading of primary monocytes isolated from human blood were monitored

utilizing optical waveguide lightmode spectroscopy (OWLS); a highly sensitive label-free

biosensor technique using evanescent optical waves generated at a biocompatible surface.

Appropriate development on a custom built setup enabled the OWLS cuvette to be

operated as a 1.5 ml mini-incubator, controlling both temperature and CO 2 levels. The

incubator-equipped OWLS is readily applicable for delicate and long-term studies on

sensitive primary cells, demonstrated here through monitoring the serum dependence of the

adhesion and spreading of human monocytes. Moreover, the custom-built setup enables the

simultaneous monitoring of the position and overall width of the OWLS resonant peaks.

This unique feature makes it possible to distinguish the refractive index variations induced

by the adsorption of secreted material from refractive index changes provoked by cellular

spreading. A definite attachment and spreading activity was observed on the  substratum

(glassy silica-titania), when the serum level of the culturing medium was 0.0-0.01%.

Increasing serum concentration resulted in a steep fall in monocyte surface adhesion and

spreading. 1.0% serum level practically abolished all spreading activity measured by

OWLS, and the number of attached cells was significantly decreased, too. Serum addition

to fully spread cells provoked a reduction in the cell-substratum contact area, clearly

detectable by the biosensor. Cell spreading was inhibited by pre-coating the sensor surface

with considerable amounts of serum proteins. These findings suggest that monocyte

spreading is inhibited by the adsorption of serum biomolecules to the substratum, rather

than by soluble factors present in the serum. All of these results were obtained completely

non-invasively with real time monitoring; demonstrating the capabilities of OWLS to

sensitively monitor the adhesion properties of immune cells isolated from human blood.
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The current study is, therefore, a significant step towards the application of label-free

optical biosensors in medical diagnostics.
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1. Introduction

Monocytes are a type of white blood cells (leukocytes) playing regulatory and effector

roles, both of pivotal importance in innate immune function (Dale et al., 2008). Initially

they reside in the blood and monitor foreign substances, but further roles require that

monocytes leave the circulatory system by penetrating through the epithelium of the blood

vessels and migrate to the neighboring tissues. These monocytes differentiate to dendritic

cells (DCs) and macrophages (MFs) to either replenish the declining resident population of

those cells under normal conditions or to give rise to a locally increased population of DCs

and MFs, which determine the immune response at inflammation sites. Adhesion of

monocytes to the endothelial cells (Beekhuzien and van Furth, 1993) and to components of

the extracellular matrix (ECM) is essential for the complex, multi-step process of

transmigration (Ley et al., 2007). Compared to non-leukocytes, monocytes exhibit some

unique features in their adhesion, which is associated with their function (Gahmberg, 1997;

Harris et al., 2000; Ley et al., 2007; van Kooyk and Fidgor, 2000); they express leukocyte-

specific β2 integrins, which can be rapidly activated upon stimulation ( e.g. by

inflammatory cytokines) (Gahmberg, 1997; Harris et al., 2000; Ley et al., 2007), and

provoke the cell to undergo from weakly to highly adherent state.

Several diseases are associated with malfunctions in the tightly regulated adhesion of

monocytes to the endothelium or to the ECM. Leukocyte adhesion deficiency (LAD)

syndrome is characterized by insufficient leukocyte expression of β 2-integrins leading to

life-threatening infections in patients (Anderson and Springer, 1987; Beekhuzien and van

Furth, 1993). Monocyte adherence has been reported to be also impaired in patients with

diabetes mellitus or alcohol-induced cirrhosis (Kelly et al., 1985), which is the reason why

these patients are more prone to infections. Monocytes specifically adhering to damaged
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arterial endothelial cells and forming foam cells have major importance in the pathogenesis

of atherosclerosis (Beekhuzien and van Furth, 1993; Huo and Ley, 2001).

Due to the extensive research of the last decades on leukocyte extravasation, much is

known about the activators, mediators and regulators of the distinct steps of the leukocyte

adhesion cascade (Ley et al., 2007). However, e.g., the complex regulatory function of the

ECM on lymphocyte migration and its modulating role during the inflammatory immune

response have gained attention only very recently (Korpos et al., 2010; Schor et al., 2000;

Sorokin, 2010; Vaday and Lider, 2000).

In order to achieve a more detailed understanding of the mechanism of monocyte adhesion,

we wish to move in the direction of increased precision in the quantification of the cells'

behavior when they encounter the ECM. This precision should, ideally, be obtained in real

time, and with negligible perturbation of the system. These criteria can be met by using a

high-resolution label-free biosensing technique, optical waveguide lightmode spectroscopy

(OWLS) (Ramsden, 1998).

OWLS is a high performance surface-sensitive technique allowing label-free real-time

monitoring of processes accompanied by refractive index changes in the close vicinity of a

waveguiding sensor chip (a thin waveguiding layer supported on a thicker optical glass slide

and having a shallow diffraction grating embedded into the structure). The successful

incoupling of a linearly polarized monochromatic laser beam via the grating is characterized

by a sharp resonance peak when plotting the intensity of the incoupled light against the

incident angle of the illuminating beam. The sensing principle is based on the perturbation of
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the evanescent waves of the guided lightmodes; refractive index variations alter the discrete

incoupling angles so the position of the resonance peak will be shifted (Tiefenthaler and

Lukosz, 1989; Vörös et al., 2002).

In the present OWLS configuration (the so-called conventional configuration in which the

refractive index of the substratum is greater than that of the covering medium) the  evanescent

field penetrates to a 100-200 nm thick layer above the planar waveguide, making OWLS

suitable for monitoring the contact area of living cells (Aref et al., 2010a, 2010b; Hug et al.,

2002; Ramsden et al., 1994). Using reverse symmetry waveguides (Horvath et al., 2002),

supported on substrata with lower refractive index than that of the covering medium, the

penetration depth of the evanescent field can be increased and fine-tuned (Horvath et al.,

2008, 2005b, 2003b), making it possible to monitor changes deeper inside cells (Horvath et

al., 2008). Another advantage of OWLS over other sensing platforms (Ramsden, 1997) is that

it enables kinetic readout of multiple parameters characterizing the OWLS's resonance peaks

(Cottier and Horvath, 2008). Comparative analysis of the temporal evolution of these

parameters enables to distinguish the refractive index variations caused by secreted molecules

from refractive index changes provoked by cellular spreading (Ramsden and Horvath, 2009).

Noted that the substratum is the high refractive index waveguiding film, typically about 200

nm thick, for which a wide range of biocompatible materials (e.g., titania, niobia (Starikov et

al., 2007)) are available. Moreover, these substrata can be easily surface-modified or coated

with a thin layer of virtually any material, provided it is transparent at the wavelength of the

guided light. This gives a tremendous flexibility to the technique.

Given that high sensitivity, excellent temporal resolution, and label-free detection principle

are further characteristics of the technique, we believe that OWLS has an outstanding
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potential to contribute to a deeper understanding of monocyte adhesion. Although OWLS has

previously been used to investigate the adhesion and spreading of various cell lines (Aref et

al., 2010a, 2010b; Horvath et al., 2008, 2005a; Hug et al., 2002, 2001; Li et al., 1994;

Ramsden and Horvath, 2009; Ramsden et al., 1994), its potentials have never hitherto been

exploited in primary cell studies.

The purpose of this paper is twofold. Firstly, we describe a significant instrumental

development of a previously constructed (Horvath et al., 2008, 2003a, 2002) OWLS setup.

We developed the OWLS sample cuvette into a mini-incubator that enables control over

the temperature and atmosphere of the living cell environment while retaining all the other

convenient functions. This upgraded OWLS can be readily used for the long term

monitoring of sensitive cells. Secondly, we utilized this incubator-equipped setup to

characterize monocyte adhesion and spreading as a function of the serum content of the

culture medium. Analysis of the OWLS data enables the underlying cause of the observed

dependence now be understood in its details.

Beyond these advances, we consider these experiments as the next step towards medical

diagnostic applications, especially those involving the monitoring of primary cells

noninvasively.

2. Materials and methods

2.1 Sensor chip cleaning and pretreatment

Prior to experiments, the applied OW2400 waveguide sensor chip (Microvacuum Ltd.,

Hungary) underwent a cleaning routine. First, they were immersed into chromic acid (Merck)
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for 3 minutes, followed by subsequent rinsing with Milli-Q water (MQ), potassium hydroxide

(KOH), and MQ again. Afterwards the chips were placed into an ultrasonicator for at least 30

minutes and the bathing MQ water was changed every 3 minutes over them. Prior to

experiments the cleaned waveguides were incubated in serum-free Roswell Park Memorial

Institute (RPMI, Sigma) medium overnight.

2.2 Monocyte isolation from human blood

Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coat obtained from

healthy donors and provided by the Hungarian National Blood Transfusion Service by

density gradient centrifugation on Ficoll-Paque (GE Healthcare). Informed consent was

provided for the use of blood samples according to the Declaration of Helsinki. Unlabeled

monocytes were isolated by negative magnetic separation using the Miltenyi Monocyte

Isolation kit II (Miltenyi) according to the manufacturer’s instructions. In short, non-

monocytes are indirectly magnetically labeled using a cocktail of biotin-conjugated

antibodies and anti-biotin MicroBeads. Highly enriched unlabeled monocytes are obtained

by depletion of the magnetically labeled cells. Cells were cultivated in RPMI-10% FBS

(37°C, 5% CO2 atmosphere) media in Teflon coated flasks to avoid spontaneous monocyte

attachment to the culture dish. OWLS experiments were carried out within one day after

their isolation to exclude the spontaneous differentiation into MFs or DCs.

2.3 Cell spreading assay on the OWLS sensor

Assay media for the OWLS experiments were prepared by adding 4 mM glutamine, 40 µg/ml

gentamicin, 0.25 µg/ml amphotericin-B, and fetal bovine serum (FBS) in the desired volume

to the RPMI medium (all substances were obtained from Sigma-Aldrich).
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OWLS measurements were initiated by taking a baseline with 1400 µl of assay medium,

while both the temperature (37 °C) and CO 2-level (5%) were controlled with the novel mini-

incubator. Monocytes were centrifuged at 300 g for 7 min, and gently suspended in 1 ml fresh

assay medium. Cells were then counted with a hemocytometer. At this point, the OWLS

scanning was stopped and, if not stated otherwise, 60,000 cells were pipetted into the cuvette

having a bottom surface area of 44 mmଶ. Then the scanning was continued, and the enclosed

atmosphere was renewed with 5% CO 2 by opening the valve manually for 10-15 seconds.

During the 2 h long spreading measurements, 5% CO 2 -atmosphere was sustained by

automatic injections (5 s/10 min) from a tank.

2.4 Visualization of the cell-substratum contact area and image analysis

At the end of the OWLS experiments the assay medium was carefully removed from the

cuvette with a pipette, unspread cells were washed away by gently pipetting phosphate

buffered saline (PBS, Sigma) onto the sensor disassembled from the cuvette, and finally, cells

remaining on the sensor were fixed with paraformaldehyde (4% PFA, 20 min). Fixed cells

were visualized with an inverted Zeiss Axio Observer A1 microscope using a 10x objective,

and a representative phase contrast image was taken. Mean cell-substratum contact areas were

accessed by tracking the contour of 50 cells in each image and averaging the enclosed contact

areas (measured using ImageJ).

2.5 Cell viability

The viability of cells that spread on the sensor surface for two hours in the total absence of

serum was checked with a trypan blue test, and all spread cells were found to be fully

viable.
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3. Results and discussion

3.1 Mini-incubator development for the OWLS setup

To avoid disturbing effects of temperature or pH fluctuations on the OWLS signal, and

also to better mimic in vivo conditions, we needed to control the temperature and CO 2

levels in the OWLS cuvette. This required further developments on our custom built

OWLS setup (Horvath et al., 2008, 2003a, 2002).   The cuvette of the improved OWLS

system can be temperature stabilized at 37 °C. The heating module is attached to the back

of the track in which the cuvette holder can be fastened. Both the track and the cuvette

holder are made of metal and small in size, thus heat is transmitted very effectively

towards the waveguide sensor (which also serves as the bottom of the cuvette and the

substratum for adhering cells). We verified that the sensor measures the temperature of the

assay medium with a precision of 0.1 °C. The optical unit of the OWLS (the high-precision

goniometer holding the cuvette and the photodiodes on both sides of the sensor) was heat

insulated by enclosing it in a polystyrene foam box. In this way, we obtained temperature

control of the cuvette with a precision of ±0.1 °C.

The pH of the assay medium in the OWLS cuvette is maintained by an appropriate CO 2

atmosphere. Special gas mixture containing 5% CO 2 is infused with a preset periodicity

and duration through a valve operated by an external, programmable control unit (see Fig.

1). The valve and the cuvette are connected with a Teflon tube. The distal end of this tube

is introduced into a cap which can be tightly pulled over the top of the closed cuvette. In

order to minimize the disturbing effects of direct gas infusion on the biosensor signal, a

plug with a gap of 0.1 mm around its cylinder is inserted between the cap and the assay
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medium, thus gas directly above the medium is exchanged by diffusion rather than by

flow. Overpressure is guided away from the cuvette by an additional tube with its other end

kept under water to avoid the backflow of air. A photo showing the assembled mini-

incubator cuvette is presented in the inset of Fig. 1.

Figure 1.

3.2 OWLS measurements on primary monocytes

The incubator-equipped OWLS setup was utilized to investigate the dependence of

monocyte adhesion and spreading on the serum content of the culture medium.

Inset in Fig 2a depicts how the overall shape (central position and overall width ,ߙ ߜ

(Cottier and Horvath, 2008)) of the transverse magnetic (TM) resonance peak is altered

during a typical cell adhesion experiment. The position of the peak is shifted to higher

incident angles due to refractive index increment near the surface, which can originate

from cell spreading and/or surface adsorption of biomolecules secreted by the cells
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(Ramsden and Horvath, 2009). On the other hand, width of the resonance peak reflects the

extent of micrometer scale inhomogeneity in the refractive index, thus its variation is a

specific indicator of cell spreading, and is not affected by any adsorbing biomolecules

(Cottier and Horvath, 2008; Ramsden and Horvath, 2009). Numerical simulations have

proven that maximum width corresponds to the case when 50% of the surface is covered

by cells (Cottier and Horvath, 2008).

Figure 2.

Panels (a) and (b) in Fig. 2 show representative kinetic data for these two parameters,  i.e.,

ߙ  and ߜ , measured on the same day by monitoring the adhesion of monocytes in the

presence of the indicated serum concentrations (0.0%, 0.01%, 0.1% and 1.0% FBS). We
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found that FBS above the concentration of 1.0% abolished practically all spreading activity

detectable by OWLS. Monocytes seeded in the presence of 1.0% FBS induced a slight shift

in over time (Fig. 2a), while no change was observed in ߙ These findings may .(Fig. 2b) ߜ

be explained by the adsorption of molecules secreted by the cells rather than by cell

spreading (Aref et al., 2010a). This hypothesis is further strengthened by the non-sigmoidal

shape of the peak position vs. time curves (Aref et al., 2010a; Ramsden and Horvath,

2009). When decreasing the FBS concentration, the peak position vs. time curves increased

monotonically (Fig. 2a). In contrast, the peak width vs. time curves increased with

decreasing serum concentration and reached a maximum at 0.01 % FBS, i.e., the signal did

not increase further when decreasing the serum content to 0.0% (see Fig 2b).

We replotted against ߜ∆ ) to elucidate the origin of these findings in more detail ߙ∆ Fig. 3).

Interestingly, the same shift in was accompanied by a greater ߙ when the assay medium ߜ∆

contained 0.01% FBS as compared to 0.0% FBS. This strongly suggests that the most

intensive spreading activity took place at intermediate serum dilutions (~0.01%).  When

the serum content was decreased from 0.01% to 0.0%, only increased further, while ߙ ߜ

followed the same evolution as in the presence of 0.01% FBS ( Fig. 2ab). This suggests

that more secreted material adsorbed to the bare surface (which did not receive any serum)

– either due to an increased secretion activity and/or the highest ratio of the surface being

available for adsorbing species.
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Figure 3.

We mapped the serum dependence of monocyte adhesion at a higher resolution ( Fig. 3

inset). Here cellular activity is characterized by the OWLS signal that was obtained 30 ߙ∆

min after seeding of the cells. Each point on the graph is the mean of the results of at least

duplicates of experiments. These results confirm our previous findings, as the inset in Fig.

3 shows an exceptionally strong dependence of spreading on the serum content. Drastically

less cells attached and spread when the serum level was increased, which might be

associated with the non-adherent state of quiescent monocytes described in vivo (Dale et

al., 2008).

We hypothesized that the spreading of monocytes was inhibited by proteins adsorbed from

the serum rather than by soluble factors in it. This was tested in two separate OWLS

experiments; in these 10ହ cells were seeded in order to obtain larger biosensor responses.

First, we added serum to cells which have previously spread in its absence. This triggered a

steady robust decrease in Fig. 4) ߙ main image), which was the result of cell retraction and

serum protein adsorption, the former being the dominant. The width of the resonance peak

vs. time (inset in Fig. 4) confirms that cells retracted from the surface in a response to
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serum, as the degree of inhomogeneity derivable from the optical width (Cottier and

Horvath, 2008), started to increase again (solid red curve). In comparison, cells seeded in

the presence of 20% serum did not show any spreading activity (dashed blue curves on

Fig. 4). These results suggest that spreading is demolished by the serum proteins adsorbed

to the surface, especially that of the cell-anti-adhesive albumin, the most abundant protein

in serum. This was further confirmed in the second experiment, where cells were seeded in

the absence of serum onto a sensor surface that has been pre-coated with 10% serum, and

no spreading activity was observed (data not shown).

Figure 4.

3.3 Analysis of phase-contrast images of cells spread on the optical

waveguide

At the end of each of the four experiments discussed above ( Fig. 2 and 3), cells were

visualized with a phase contrast microscope. Representative images are presented in Fig. 5.
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Analysis performed on the fields-of-view images facilitated the appropriate interpretation

of the biosensor data. Based on the observed morphologies, cells were classified and

ordered into four subgroups (Fig. 6). Type 1, appearing on the images with a dark cell

body and a well-established peripheral skirt of cytoplasm around it, is the most spread

type. Type 2 attains a similar, often elongated morphology, but does not have a skirt

around the main cell body. In contrast, a Type 3 cell, showing a rounded morphology and

high brightness, is weakly adhered or even floating. Type 4 is an aggregate of at least five

Type 3 cells. Cells that have attained distinct morphologies were counted separately in the

fields-of-view images. Resulting statistics for cell populations spread at various serum

concentrations (0.0%, 0.01%, 0.1% and 1.0% FBS) are shown in Fig. 6. The contribution

of Type 3 and Type 4 cells to the biosensor signal, especially to is negligible compared ,ߜ∆

to that of Type 1 and Type 2 cells (spread types) (Aref et al., 2010a). As Fig. 6 indicates,

the summed number of Type 1 and Type 2 cells are nearly equal for 0.0% and 0.01% FBS

content in the assay medium. In contrast, the number of spread-type cells decreases

drastically and monocytes tend to form aggregates when the FBS content of the culture

medium is further increased.
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Fig. 5

The ూాܣ  mean contact area (expressed as mean ± ‘standard error of the mean’) of cells

spread in the presence of various serum concentrations ( ܿୗ ) was measured to be as

follows: %.ܣ = 237 ± 14 , %.ଵܣ = 238 ± 12 , %.ଵܣ = 145 ± 5 , %ଵ.ܣ = 108 ±

5 μmଶ. These results evidence that both the number of spread-type cells and their average

contact area are decreasing with increasing serum concentration. Compared with the

spreading in the absence of serum, the total area covered by cells (which is the product of

the number of spread-type cells and their mean contact area) decreased by a factor of 2.77,

while the end-point value of ) decreased by a factor of 3.17 ߜ∆ Fig. 2b) when 0.1% FBS

was present in the assay medium. Therefore, we conclude that the findings obtained from

image analysis are in nice accordance with the OWLS data, and support its interpretation

described in §3.2.
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Fig. 6.

4. Conclusions

The present report is the first to demonstrate that "zero-perturbation" OWLS is suitable for

monitoring the adhesion and spreading of primary cells. In particular, we consider that the

use of OWLS to characterize cells freshly isolated from human blood is a crucial step

towards the application of optical biosensors to medical diagnostics. Such cells require

delicate handling (including, preferably, the avoidance of labelling) and culture conditions

approximating those they have in vivo. To ensure the latter, we successfully developed a

sample cuvette that also functions as a mini-incubator while retaining all its other functions

such as the possibility of pipetting diverse solutions over the cells.
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The novel setup was applied to investigate the adhesion and spreading of human

monocytes on a silica-titania substratum; here we elucidated the serum dependence of the

process. A definite attachment and spreading activity was observed on the sensor surface

when the culturing medium contained no serum. Cells seeded in the presence of 0.01%

serum spread identically with those spreading in serum-free medium, but a less marked

surface adsorption of secreted material was detected in the former case. Further increasing

serum concentration resulted in a steep fall in monocyte cell adhesion. 1.0% serum

practically abolished all spreading activity measured by OWLS, and the number of

attached cells was significantly decreased, too. The addition of serum to cells that have

previously spread in its absence caused the cell-substratum contact area to significantly

diminish. We infer that the observed inhibitory effect of serum is due to the adsorption of

cell-anti-adhesive serum biomolecules to the substratum.

It is important to stress that our results were obtained noninvasively without the

incorporation of any labels (such as organic or nanoparticulate fluorophores). These

advantages apply to other kinds of optical biosensors, albeit that they are typically less

sensitive and less informative than OWLS. The principle of the mini-incubator could be

applied to many different kinds of biosensors. OWLS also has the versatility to permit the

cell substratum to be readily modified. Hence, the present approach could be applied to

study the adhesion of other primary cells to a wide diversity of biological coatings and for

monitoring the effects of receptor-specific mediators.
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Figure captions

Figure 1. Simple modification on our custom built OWLS setup allowed us to operate the

OWLS cuvette as a mini-incubator. In this drawing only the parts enabling CO 2 control are

depicted. Roman numbers indicate the order of assembly: i-ii) the waveguide (sensor chip

with optical grating) and the cuvette is inserted to the holder, iii) the cuvette is fixed with a

screw, then iv) plugged and v) capped, the cap being connected to the CO 2-infusion control

unit (bottom left corner).

Inset: photograph of the assembled mini-incubator OWLS cuvette mounted on the

goniometer. 1: mirror reflecting the laser light, 2: track into which the cuvette holder can be

fixed, 3: heating module fastened to the back of the metallic cuvette holder, 4: cuvette holder,

5: sensor chip guiding the in-coupled light, 6: photodiode measuring the intensity of in-

coupled light, 7: cap for CO2-infusion, 8: high-precision goniometer.

Figure 2. OWLS responses provoked by monocyte adhesion and spreading in the presence of

various serum concentrations (expressed as % FBS dilution). All of the four experiments were

carried out on the same day with monocytes of the same donor. Panel (a): shift of the position

of the resonance peak (∆ߙ) as a function of time. Inset: temporal evolution of the overall

shape of the resonance peak. Panel (b): temporal evolution of the width of the resonance peak

provoked by monocyte spreading in the presence of the indicated serum concentrations.

Figure 3.  Alteration in the width of the resonance peak (∆ߜ from Fig 2b) replotted against

the shift in the peak position (∆ߙ from Fig 2a) enables more detailed data analysis. Inset: the

serum concentration (ܿୗ) dependence of monocyte adhesion characterized by obtained ߙ∆

after 30 min of seeding. Each point on the graph is the mean of at least duplicated

experiments.
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Figure 4. Serum addition to monocytes that have previously spread in the absence of serum

triggers the cell-substratum contact area to retract. Solid red curves show the spreading in the

absence of serum; at ݐ = 127 min  FBS was added to the medium to obtain an FBS

concentration of 20%. As a control, dashed blue curves reflect the abolished spreading

activity in the presence of 20% FBS. Main image shows the shift in the position of the

transverse magnetic resonance peak ( of the TM (ߜ∆) Inset: alterations of the width .(ߙ∆

resonance peak registered in the same experiments.

Figure 5. Representative phase contrast images of cultures fixed at the end of the OWLS

experiments presented in Fig. 2. White scale bar on the second panel represents 50 µm.

Figure 6. Cells were classified based on their morphologies observed at the end of the OWLS

experiments (Fig. 2). Microscope images to the right show two typical examples for each

morphology (type). Cells belonging to the distinct types were counted for each experimental

condition (varying FBS concentrations), and the resulting statistics is shown in pie charts (to

the right). Relative size of the pie charts correlates with the total number of cells counted in

the presence of the indicated serum concentrations (in italics).
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