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Abstract 

Aims: Due to their significant biological activity, thiosemicarbazones (TSCs) are promising 

candidates for anticancer therapy. In part, the efficacy of TSCs is linked to their ability to 

chelate essential metal ions such as copper and iron. Triapine, the best-studied anticancer 

TSC, has been tested clinically with promising results in hematological diseases. During the 

last years, a novel subclass of TSCs with improved anticancer activity was found to induce 

paraptosis, a recently characterized form of cell death. The aim of this study was to 

identify structural and chemical properties associated with anticancer activity and 

paraptosis induction of TSCs. 

Results: When testing a panel of structurally related TSCs, compounds with nanomolar 

anticancer activity and paraptosis-inducing properties showed higher copper(II) complex 

solution stability and a slower reduction rate, which resulted in reduced redox activity. In 

contrast, TSCs with lower anticancer activity induced higher levels of superoxide that 

rapidly stimulated superoxide dismutase expression in treated cells, effectively protecting 

the cells from drug-induced redox stress. 

Innovation: Consequently, we hypothesize that in case of close Triapine derivatives, 

intracellular reduction leads to rapid dissociation of intracellularly formed copper 

complexes. In contrast, TSCs characterized by highly stable, slowly reducible copper(II) 

complexes are able to reach new intracellular targets such as the ER-resident protein 

disulfide isomerase. 

Conclusions: The additional modes of actions observed with highly active TSC derivatives 

are based on intracellular formation of stable copper complexes, offering a new approach 

to combat (drug-resistant) cancer cells.  
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Introduction  

Thiosemicarbazones (TSCs) possess significant biological activity, which resulted in their 

development as pharmaceuticals against several diseases, including cancer (24). In part, 

the efficacy of TSCs is linked to their ability to chelate essential metal ions such as copper 

and iron. Cancer cells, in particular, require higher amounts of these metal ions due to 

their increased rate of replication (3,60). As a result, the ability of α-N-heterocyclic TSCs to 

form stable metal complexes is an important property for their development as anticancer 

agents (26).  

Initially, the mechanism of action of α-N-heterocyclic TSCs was thought to primarily rely on 

the depletion of iron and the consequential inhibition of the iron-containing enzyme 

ribonucleotide reductase (57). However, the role of other metals (especially copper), 

metalloenzymes and metal-interacting proteins is gaining more attention (16,22). For 

example, the ability of copper(II)-TSC complexes to undergo redox cycling in the presence 

of reducing agents, with production of reactive oxygen species (ROS) (a process also called 

“activation by reduction” (22)), and the disruption of the cellular thiol redox homeostasis is 

increasingly discussed as relevant contributions to TSC activity (11,23,27,44). Furthermore, 

the interaction with copper ions has been recently suggested to be involved in collateral 

sensitivity of P-glycoprotein (P-gp, ABCB1)-overexpressing multidrug-resistant cancer cells 

to the nanomolar-active TSC di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone 

(Dp44mT) (21). Interestingly, recently performed studies confirmed the enhanced 

sensitivity of certain P-gp-overexpressing cells (e.g. MES-SA/Dx5) to several metal 

chelators (including Dp44mT), but also suggested that the collateral sensitivity of these 

MDR cells may rely on other (more complex) mechanisms independent of P-gp transport 

function (9,40). 

With regard to the clinical situation, the best studied anticancer TSC, Triapine, has been 

already tested in several phase I and II trials with promising results especially against 

hematological diseases (12,25,54,56,59). Currently, this drug is being investigated as 

chemo- and radiosensitizer in an ongoing clinical phase III study assessing Triapine in 

combination with cisplatin and radiation therapy (NCT02466971) (30). In addition, two 

other α-N-heterocyclic TSCs di-2-pyridylketone 4-cyclohexyl-4-methyl-3-

thiosemicarbazone (DpC) and 4-(pyridine-2-yl)-N-{[(8E)-5,6,7,8-tetrahydroquinolin-8-
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ylidene]amino})piperazine-1-carbothioamide (Coti-2) recently entered clinical phase I trials 

(www.clinicaltrials.gov). Noteworthy, these two compounds as well as Dp44mT (the 

predecessor of DpC) and our dimethylated Triapine derivative Me2NNMe2 represent a 

subclass of TSCs characterized by a ~500-fold higher anticancer activity compared to 

Triapine in cell culture (20,37). Recent studies suggested that this efficiency could be based 

on an additional mode-of-action, associated with the formation of intracellular copper 

complexes (16,19,34). In particular, our group discovered that these compounds are able 

to induce paraptosis, a novel form of programmed cell death (13). Paraptosis is a caspase-

independent cell death discernable by the appearance of cytoplasmic vesicles originating 

from the endoplasmic reticulum (ER) (33,50). TSC-induced paraptosis appears to be 

associated with the (copper-dependent) inhibition of the ER-resident protein disulfide 

isomerase (PDI) (13). In light of these recent data, the aim of this study was to elucidate 

the role of copper complex formation of various TSCs in anticancer activity, paraptosis 

induction and collateral sensitivity. For this purpose, we investigated solution stability and 

redox properties of a selected panel of structurally related α-N-heterocyclic TSCs and their 

respective copper(II) complexes. The measured physico-chemical properties were then 

correlated with biological parameters (anticancer activity, resistance ratio of multidrug-

resistant (MDR) cancer cells, paraptosis induction and PDI inhibition). Thus, we show that 

highly active TSCs (with IC50 values in the nanomolar range) form copper(II) complexes 

characterized by high stability and slow reduction kinetics. Our data suggest that these 

stability and redox properties protect the copper(II) complexes of this TSC subclass from 

premature reduction-induced ligand liberation allowing the interaction of the copper(II) 

complexes with intracellular targets such as the ER-resident PDI. In contrast, the copper 

complexes of TSCs such as Triapine are sensitive to rapid reduction and thus ligand 

liberation inside the cancer cells, which are efficiently protected from the generated 

superoxide by the upregulated enzyme superoxide dismutase (SOD) in cell culture as well 

as in a tumor model in vivo. 
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Results 

Anticancer activity and paraptosis-inducing potential of the TSC panel 

As a first step, the in vitro anticancer activity of the selected α-N-pyridyl TSCs (see Table 1 

for their chemical formulae) and their preformed (i.e. in situ generated) copper(II) 

complexes (in a 1:1 metal-to-ligand ratio) was measured in human colon adenocarcinoma 

SW480 and uterine sarcoma MES-SA cells as well as the multidrug-resistant subline MES-

SA/Dx5. SW480 cells were investigated by conventional MTT assay, while the fluorescently 

labelled MES-SA and MES-SA/Dx5 cells were tested in co-culture using an automated 

system (Figure 1A and B, Table 1 and 2 as well as Suppl. Table 1 - 4) (55). In accordance to 

previous reports (27-29,47,52), following 72 or 144 h incubation, the three terminally 

dimethylated compounds pyridine-2-carbaldehyde thiosemicarbazone (PTSC), Me2NNMe2, 

Dp44mT and the disubstituted derivative DpC showed distinctly higher anticancer activities 

than the other compounds (2-formylpyridine thiosemicarbazone (FTSC), Triapine, 

H2NNHMe, H2NNMe2, MeHNNMe2, Me2NNH2, Me2NNHMe). This was especially 

pronounced in the MES-SA/Dx5 cell model, reflecting the collateral sensitivity of the P-gp-

overexpressing cells to this subtype of TSCs (Table 1 and 2, Figure 1B).  

In order to gain more insight into the time dependency of these effects, the activity of the 

compounds was also assessed after 3 and 24 h. None of the metal-free ligands exhibited 

relevant anticancer activity after 3 h resulting in IC50 values above the highest tested 

concentration of 25 µM. With the exception of PTSC, Dp44mT and DpC, the compounds 

did not decrease viability following a 24 h-long incubation with the tested cancer cells. 

Interestingly, in contrast to the later time points (Figure 1B), collateral sensitivity of MES-

SA/Dx5 cells was not observed at 24 h (Suppl. Table 2 and 3), indicating that the collateral 

sensitivity might be based on enhanced cell cycle arrest rather than enhanced apoptosis. 

The anticancer activity of copper(II) complexes was slightly different (Table 1 and 2 as well 

as Suppl. Table 1 - 4). Several complexes were already active after a relatively short 

incubation time (24 h) in SW480 cells (Suppl. Table 1 - 3), showing the same activity 

pattern as observed in the 72 h experiment (Table 1). However, after 72 h IC50 values of all 

tested copper complexes were in a similar range as the respective metal-free ligands 

(Figure 1A, Table 1), with the exception of Me2NNHMe, which was significantly more active 
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as a copper(II) complex. Thus, the long-germ anticancer activity of the copper complexes 

of the nanomolar-active TSCs was similar to that of the respective metal-free ligand.  

In order to investigate the paraptosis-inducing potential of the compounds, perinuclear 

vesicle formation was investigated by microscopy after drug treatment (Figure 1C). In 

agreement with previous results (13), Me2NNMe2, Dp44mT and DpC induced high levels of 

vacuolization in SW480 cells already at 0.1 µM drug concentrations (Figure 1C and D). In 

addition, also incubation with the terminally dimethylated PTSC, H2NNMe2 and 

MeHNNMe2 likewise induced paraptosis (however, vacuolization at 0.1 µM was observed 

only in case of PTSC, while for the other two derivatives, the effect was visible only at 1 

µM, reflecting their higher IC50 values). Similar results were obtained in MES-SA cells 

(Suppl. Figure 2).  

Proton dissociation processes and pKa values of the investigated TSCs 

As there is a distinct structure-activity relationship in our TSCs panel, subsequently, we 

characterized whether these effects are reflected by differences in their chemical 

properties. While for Triapine and some derivatives several reports on proton dissociation 

processes are available (5-7), for most of the compounds in this study this parameter has 

not been characterized so far (especially not in pure aqueous solution). First, pKa values 

were determined by UV-visible (UV-vis) spectrophotometric titrations in pure water at 

compound concentrations of 10-50 µM. In case of DpC, addition of some dimethyl 

sulfoxide (DMSO) was necessary and the pKa values of DpC in pure water were estimated 

by extrapolation (Table 3; Suppl. Figure 3A). For all compounds, the measured UV-vis 

spectra revealed characteristic changes upon increasing pH, as it is depicted exemplarily 

for Me2NNMe2 in Figure 2A. The pH-dependence of the absorbance values always showed 

two well-separated deprotonation steps: one at pH 2.5‒6.0 and one at 8.0-11.5. Therefore, 

two pKa values could be determined (Table 3). The λmax and  values of the ligand species in 

the different protonation states are collected in Suppl. Table 5. The calculated individual 

spectra (e.g. for Me2NNMe2 in Suppl. Figure 3B) represent significant differences between 

the molar absorptivities of the various ligand species (Suppl. Table 5). Notably, the pKa of 

the second pyridyl moiety in Dp44mT and DpC could not be determined under the applied 

conditions due to its fairly acidic character. Analysis of the pKa values revealed that N-

terminal dimethylation results in slightly higher pKa (H2L+) and lower pKa (HL) (Triapine vs. 
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H2NNMe2 or FTSC vs. PTSC etc.), whereas dimethylation of the pyridine amine increases 

slightly both pKa values (Triapine vs. Me2NNH2). At the same time monomethylations have 

only a minor influence. The dipyridyl derivatives Dp44mT, DpC as well as FTSC and PTSC 

possess decreased pKa H2L+ by almost one order of magnitude, but no clear trend was 

evident for pKa HL. In general, not only the electron-donating/withdrawing properties of 

the substituents should be considered to explain differences in pKa values, but also the 

ability of the derivatives to be stabilized by mesomeric/resonance effects (e.g. the 

thione/thiol equilibrium). As apparent from the determined pKa values all TSCs 

investigated in this study are charge neutral (in HL form) at physiological pH. 

High copper(II) complex solution stability is an important parameter for anticancer 

activity 

Having characterized the (de)protonation behavior of our TSCs, we evaluated the stability 

of the respective copper complexes in aqueous solution. Based on our previous findings 

(5,6), we assumed that some of the studied α-N-pyridyl TSCs (Triapine, FTSC, PTSC, 

H2NNMe2) form very stable [CuL]+ complexes in a wide pH range. At lower pH, the balance 

shifts to [CuLH]2+ complexes, containing the protonated ligand. In contrast, a mixed 

hydroxido complex [CuL(OH)] is prevalent in the basic pH range, while at ligand excess 

further species (e.g. [CuL2], [Cu2L3]+) can be found (6).  

Equimolar aqueous solutions of the metal ion and the respective ligands (10 or 25 µM 

concentration) were titrated and the deprotonation processes of the complexes were 

followed spectrophotometrically (Figure 2B for Cu-Me2NNH2). Deconvolution of the 

spectra resulted in the pKa values of the copper(II) complexes and their individual 

absorbance spectra (Suppl. Table 6, Suppl. Figure 3C). All pKa values were in the range of 

2.1-2.6 (for [CuLH]2+) and 8.1-8.8 (for [CuL]+) and thus well comparable to reported data of 

FTSC (with 1% DMSO) (1). In general, the pKa value of [CuLH]2+ was by 7.2-8.6 orders of 

magnitude lower compared to that of the metal-free HL form, revealing that displacement 

of the dissociable proton in the complex is mediated by the metal ion coordination. As the 

formation of the complex [CuL]+ is predominant in a wide pH range (4‒6.5) (Figure 2C for 

Cu-Triapine) and assumed to be quantitative due to the high solution stability, apparent 

(conditional) formation constants (β′) for this type of complexes were subsequently 

determined by competition experiments with EDTA (24) (Figure 2D for 1:1 Cu-Me2NNHMe 
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and Suppl. Figure 3D). Since the displacement was found to be relatively slow, 1–2 h 

equilibration time was applied for this reaction (the reverse experiment using Cu-EDTA + 

FTSC resulted in the same endpoint; see Suppl. Figure 4). Increasing amounts of EDTA 

resulted in decreasing absorbance at the wavelength characteristic for the S→Cu charge 

transfer band (e.g. 422 nm in case of Me2NNHMe in Figure 2D). Taken into account the 

conditional stability constants determined (Suppl. Table 6) as well as the proton 

dissociation constants of the ligands (Table 3), the overall stability constants (β) of the 

complexes [CuL]+ were calculated (Table 3). Furthermore, also the β values of the other 

two types of complexes [CuLH]2+ and [CuL(OH)] were computed (Table 3) using the pKa of 

[CuLH]2+ and [CuL]+ (Suppl. Table 6). Based on these data, it can be concluded that at 

physiological pH, [CuL]+ is the most predominant species, accompanied by a smaller 

fraction (3.9-16.3%) of [CuL(OH)] (Table 3, Figure 2C). 

Since a direct comparison of the logβ [CuL]+ constants is not adequate due to the different 

basicity of the ligands, pCu (−log [Cu(II)]) values were calculated in order to compare the 

copper(II)-binding ability of the studied TSCs at pH 7.4 (a higher pCu value indicates a 

stronger metal ion-binding ability of the ligand) (Table 3). The calculated pCu values 

revealed that dimethylation at both the terminal and the pyridine amino group increased 

complex stability. On the contrary, the effect of monomethylation on the copper(II)-

binding ability was minor at both positions. Undoubtedly, the four compounds with 

activity in the nanomolar range form copper(II) complexes with the highest stability, 

followed by the two trimethylated compounds MeHNNMe2 and Me2NNHMe and all other 

derivatives (Table 3).  

To evaluate the effect of copper complex stability on the biological activity, the pCu and 72 

h pIC50 values of either the ligands or their in situ generated copper complexes were 

correlated. These analyses revealed that the ligands with high pIC50 values possess a higher 

copper(II)-binding ability (indicated by higher pCu values) and the correlation is even more 

pronounced for the pIC50 values of the copper(II) complexes (Figure 2E and Suppl. Figure 

4). Accordingly, the higher copper complex stability was also associated with higher 

activity in the multidrug-resistant cells after long-term incubations (Figure 2F) and 

paraptosis induction (Figure 2G), indicating an important role of the copper(II) complex in 

these TSC-induced effects. 
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Reduced reduction rate of copper(II) complex has a strong impact on TSC activity 

In addition to the stability of the formed copper(II) complexes, also their redox properties 

may have an impact on their biological activities. In order to investigate, whether there are 

differences in the reduction rates of our TSC panel, the redox reactions of the in-situ 

generated copper(II) complexes with two physiological reducing agents, namely ascorbic 

acid (AA) and L-glutathione (GSH), were studied. Reduction of the copper(II) complexes 

was followed spectrophotometrically in aqueous solution at pH 7.4 under anaerobic 

conditions.  

In good agreement with the literature (11), no time-dependent spectral changes were 

observed in the case of AA which suggests that these metal complexes cannot be reduced 

by AA under the applied conditions (see Suppl. Figure 5). This could be explained by the 

relatively weak reducing power of ascorbate (formal potential at pH 7.4: +0.05 V for 

dehydro-L-ascorbate/AA) (15). In contrast, the stronger reducing agent GSH (formal 

potential at pH 7.4: −0.26 V for GSSG/GSH (45) reduced all studied copper(II) TSC 

complexes, although with different rates (Figure 3A and B).  

The first recorded spectrum after mixing the reactants showed a small shift of the λmax 

value (e.g. 448 → 452 nm, as shown for Cu-MeHNNMe2 in Figure 3A) most probably due to 

the formation of a mixed ligand complex with GSH, as it is reported for various TSC 

complexes (22,44). This shift was followed by a significant decrease of the absorbance at 

this λmax, while the absorbance value at the λmax of the free ligand (~382 nm) increased, 

probably as a result of the decomposition of the generated unstable copper(I) complex. 

Noteworthy, oxygenizing (bubbling O2 into) the solution regenerated the original copper(II) 

complexes, confirming the reversibility of the redox process (data not shown). The other 

studied TSCs behaved similarly. However, significant differences were observed regarding 

the reduction rates of the respective complexes (Figure 3B). In order to obtain comparable 

data, the recorded absorbance/time curves were further analyzed at the λmax of the 

complexes. The calculated kobs, half-lives (t1/2) and percentage of non-reduced complex 

after 1 h in the presence of 50 equiv. (1.25 mM) of GSH are collected in Table 4. For 

selected complexes (Triapine, PTSC), kinetic runs were additionally performed at other 

equivalents of GSH, and kobs were found to be very sensitive to the concentration of the 

reducing agent, namely slower reaction rates with decreasing excess of GSH were 
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observed (data not shown). In accordance to the reports from Santoro et al. (44) under the 

applied conditions, the reduction of the copper(II) complexes was incomplete, especially 

with nanomolar-active compounds (see plateau in Figure 3B and % non-reduced copper(II) 

complex after 1 h in Table 4). Interestingly, the remaining fraction of non-reduced 

copper(II) complex after 1 h (Table 4) showed a strong correlation with the pCu value and, 

therefore, with the solution stability of the copper(II) complexes (Figure 3C). These data 

demonstrate that the copper(II) complexes of α-N-pyridyl TSC ligands bearing higher 

solution stability can only be reduced by GSH in a slower and much less effective way. 

When these reduction rates were subsequently correlated with the anticancer activity 

(after 72 h), it became apparent that a slower reduction rate is associated with higher 

anticancer activity (Figure 3D and Suppl. Figure 6A) and paraptosis-inducing potential 

(Figure 3E and Suppl. Figure 6B) of the metal-free ligands as well as the copper complexes. 

Overall, these results are surprising, as so far it has been assumed that the anticancer 

activity of copper TSC complexes is mainly based on intracellular redox activity, either by 

the copper(II) TSC itself or by the copper release from the complex in the cell (22,44). 

Copper(II) complex stability influences redox behavior of TSCs under cell-free conditions 

It is widely accepted in the literature (22,27,38,44), that reduction of copper(II) complexes 

to copper(I) and their subsequent re-oxidation under aerobic conditions, results in the 

generation of superoxide radicals and thus redox stress in treated cells. In order to 

compare the obtained reduction rates of the copper(II) complexes by GSH to their 

superoxide production potential, formation of cell-free superoxide was measured 

spectrophotometrically using the nitroblue tetrazolium (NBT) assay. In line with the 

activation by reduction theory for this compound class (16), without the addition of a 

reducing agent, none of the tested TSCs (neither as metal-free ligand nor as copper(II) 

complex) induced any positive signal (data not shown). In contrast, as expected when the 

GSH precursor and reducing agent N-acetyl cysteine (NAC) was added to the copper(II) 

complexes, superoxide generation (up to 1.6-fold compared to the control) was detected 

(Figure 3F). In agreement with the above shown results, distinct differences between the 

individual ligands were observed. Thus, indeed copper(II) complexes with a higher stability 

and slower reduction rate produced also less cell-free superoxide (Figure 3G and Suppl. 

Figure 7). In contrast, copper ions, which under certain conditions have been reported to 
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induce ROS on their own (10,41), did not result in positive measurable NBT signals (at 5 

µM) neither alone nor in combination with NAC (data not shown). Consequently, these 

data indicate that despite the widely accepted hypothesis that the anticancer activity of 

copper(II) complexes is based on (intracellular) reduction-induced ROS (superoxide) 

formation, in our hands especially the TSC complexes showing reduced redox activity are 

characterized by distinctly enhanced cytotoxicity.  

Stimulation of antioxidant enzymes and stress-response genes in TSC-treated cells 

In order to investigate, whether we can also detect superoxide production upon drug 

treatment in living tumor cells, the dihydroethidium (DHE) assay was used at conditions 

similar to the cell-free assay. Comparably to the results of the cell-free experiments, 

neither the ligands nor copper ions (5 µM) alone did significantly increase the fluorescence 

signals (data not shown). Unexpectedly, for the copper(II) complexes a different picture 

emerged compared to the cell-free experiments, as no significant increase in superoxide 

levels could be detected neither in presence nor in absence of NAC (Figure 4A). 

Hypothesizing that cancer cells efficiently protect themselves from TSC-induced redox 

stress by upregulation of antioxidant response signaling, we used our previously published 

(13) whole genome gene expression data of Triapine- and Me2NNMe2–treated SW480 

cells. In these experiments cells were treated either with Triapine (1 µM), Me2NNMe2 (0.1 

and 1 µM) or solvent for 15 h and mRNA levels were analyzed for drug-induced changes in 

gene transcription. When looking for altered gene sets associated with response to 

oxidative stress (e.g. “regulation of response to oxidative stress”) by gene set enrichment 

analysis (GSEA), no significant gene set enrichment was detected (lowest FDR values: 0.10 

for Me2NNMe2 and 0.35 for Triapine (Suppl. Figure 8)). However, when looking at 

individual genes, we found upregulation of the superoxide scavenger enzymes SOD2 and 

SOD3, but not SOD 1 upon Triapine treatment (Figure 4B). In contrast, in Me2NNMe2-

treated cells no comparable upregulation was observed for SOD2 (at IC50 concentrations) 

and SOD3 (Figure 4B). 

For confirmation at the protein level, Western blot analysis of SOD2 with lysates from cells 

treated with our TSC panel were performed. Indeed, SOD2 was upregulated after 

treatment with Triapine and all other micromolar-active TSCs, while none of the 

compounds with activity in the nanomolar concentration range induced SOD2 expression 
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(Figure 4C and D). To test whether SOD2 was also upregulated by Triapine treatment in 

tumor cells in vivo, CT-26 colon carcinoma-bearing mice were treated orally with either 

solvent or 10 mg/kg Triapine. As shown in Supp. Figure 10, Triapine had significant 

anticancer activity and was well tolerated in this setting. On the last day of treatment (day 

15), the tumors were collected and immunohistochemically stained for SOD2. In 

accordance with the array data as well as the Western blot analysis, also tumors from 

Triapine-treated animals showed strong stimulation of SOD2 expression compared to the 

solvent control (Figure 4E).  

Overall, the significant upregulation of SOD is in line with the hypothesis of efficient 

degradation of TSC-induced ROS and might explain the discrepancy of superoxide 

production between the cell-free and cell culture experiments observed above. Despite its 

much higher cytotoxicity, the SOD stimulation was weaker in case of Me2NNMe2 and the 

nanomolar-active TSCs, indicating that (in contrast to Triapine) at drug doses in the IC50 

range no significant generation of superoxide occurs in the treated cells with these 

compounds. Consequently, it can be hypothesized that due to the higher resistance of the 

copper(II) complexes towards reduction, the compounds are less efficient in ROS 

production inside of cells. 

Based on the assumed importance of metal chelation in the mode of action of TSCs, we 

also investigated changes in pathways regarding metal homeostasis in our arrays. 

Interestingly, we found only one significantly changed gene set, namely upregulation of 

genes involved in “response to zinc ions” after treatment with Me2NNMe2 (Figure 4F). This 

is of interest, as a closer look on this gene set revealed that, this gene set mainly contains 

metallothioneins (which are cysteine-rich, low molecular weight proteins being 

responsible also for copper homeostasis) as well as the copper transporters ATP7A and 

ATP7B (Figure 4G).  

High copper complex stability is important for PDI inhibition potential 

In a previous study, we showed that Me2NNMe2 induces paraptosis by inhibition of the ER-

resident PDI and consequent disruption of the ER thiol redox homeostasis (13). Therefore, 

the here studied copper-TSC complexes were tested for their potential to inhibit this 

enzyme. In line with our previous report (13), copper in form of a simple salt was already 

able to inhibit the PDI enzymes to some extent. This inhibition distinctly increased when 
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copper was complexed by Me2NNMe2 or other TSCs with terminal dimethylation/di-

substitution (Figure 5A). Interestingly, the inhibition followed an “all-or-nothing” pattern 

with complexes showing either the same weak inhibition as copper ions alone or strong 

PDI-disrupting ability comparable to the Me2NNMe2 complex. Dividing the compounds in 

these two categories, it can be clearly seen that PDI inhibition is associated with higher 

complex stability, higher anticancer activity and enhanced vesicle formation (Figure 5B and 

Suppl. Figure 11). Thus, although inhibition of the PDI is probably not the only target of the 

nanomolar-active TSCs (other targets may include the ribonucleotide reductase (RR) 

inhibition) (29,58), this indicates that there is a link between redox properties and copper 

complex stability with PDI inhibition and paraptosis induction, which needs to be further 

investigated in future studies.  

Discussion  

TSCs have long been known for their anticancer activity and their metal-chelating abilities 

(16,23). In case of the currently in phase III clinically investigated derivative Triapine, 

especially an interaction with the iron homeostasis was suggested based on its strong 

inhibition of the iron-containing ribonucleotide reductase and the occurrence of 

methemoglobinemia as the main adverse effect in patients (16). With the aim to develop 

TSCs with improved efficiency, derivatives with activity in the nanomolar IC50 range (such 

as DpC, Dp44mT and Me2NNMe2) came into the focus of interest during the last decade of 

which DpC also recently entered clinical trials (2,20,28,29). An increasing body of evidence 

indicates that these drugs have additional modes of action that are responsible for their 

increased cytotoxicity. The particularities of nanomolar-active TSC are indicated by the 

induction of 1) a specific form of ER stress associated with disruption of the ER thiol redox 

homeostasis and inhibition of the ER protein PDI (13,14,39,53), 2) a just recently 

discovered form of programmed cell death called paraptosis (13), and 3) increased activity 

in some multidrug-resistant cancer cells (9,40,46). Significantly, for all of these effects, the 

interactions with (intracellular) copper pools leading to formation of redox-active copper 

complexes were suggested to be crucial (16,19,34). Thus, it was proposed that copper 

complexes induce ROS (superoxide) by redox reaction with intracellular reductants, a 

mechanism also referred to as “activation by reduction” (11,34,36,44,49). Accordingly, a 

strong synergism between the metal-free ligand and free copper salts has been repeatedly 
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reported for nanomolar-active TSCs (19,28,49). However, the experiments supporting the 

ROS model were often performed either with preformed copper(II) complexes (11,34) or 

by preincubation of the ligands with high levels of extracellular copper (28,36,49). In 

contrast, in many cases, incubation with the metal-free ligands alone did not induce global 

ROS detectable for example by the DCF-DA stain (13,28,34). Thus, it might be hypothesized 

that, although there are indications that copper plays an important role in the mode of 

action of nanomolar-active TSCs, under physiological conditions, this might not be due to 

reductant-induced global redox stress production. However, localized and slower non-

ROS-producing redox reactions (e.g. formation of disulfide bridges) might still be involved 

in their activity.  

The aim of this study was to further investigate the role of copper in the activity of 

nanomolar-active TSCs in comparison to micromolar-active derivatives such as Triapine. To 

this end, a selected panel of structurally related α-N-heterocyclic TSCs and their respective 

copper(II) complexes was investigated with regard to solution stability, cell-free as well as 

intracellular redox properties, toxicity against sensitive and MDR cancer cell lines and 

paraptosis-inducting potential. We show that the activity of the compounds has a strong 

correlation with these properties, confirming the relevance of their interaction with 

copper ions (Figure 5C). 

To analyze the interaction of the compounds with copper in more detail, we compared the 

anticancer activity of the preformed copper complexes with that of the metal-free ligands, 

together with their potential to induce collateral sensitivity in a P-gp-overexpressing cell 

model. Thereby, crucial differences were observed between short- and long-term drug 

incubation. While short incubation times (3 and 24 h) resulted in higher anticancer activity 

for especially nanomolar-active TSC copper(II) complexes compared to metal-free ligands, 

after longer incubation times (72 and 144 h), mostly no enhanced efficiency of the copper 

complexes was observed. The increased activity is in line with the literature showing 

(mainly for the nanomolar-active compounds) an enhanced activity of the metal-free 

ligands when co-applied with an excess of simple copper salts (19,28,49) or of preformed 

1:1 or 1:2 copper(II):Dp44mT complexes compared to the metal-free ligand (20). An 

exception to the increased activity were copper(II) complexes of Triapine, H2NNHMe and 

H2NNMe2, which showed no activity after short-time and even lower activity compared to 
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the metal-free ligand after long-term incubation. This may be explained by a less efficient 

absorption and cellular uptake of the charged [CuL]+ species compared to the neutral HL 

ligand which are the predominating forms in solution at physiological pH based on our 

solution speciation studies in all cases. After longer incubation times, the differences in 

activity between the copper(II) complexes and the respective metal-free ligands 

disappeared which could be explained by the hypothesis of different kinetics of the 

underlying cell killing mechanisms as described by  Ishiguro et al. (19). Thus, while the 

rapid cell killing mechanism is conducted by extracellular TSC copper complexes and 

characterized by redox reactions (27), the slow activity is redox-independent and depends 

more on the ligand and/or intracellular copper complexation. In this regard, MES-SA/Dx5 

cells were found to be more resistant against the rapid cell killing mechanism of both the 

metal-free ligands and preformed complexes compared to the parental MES-SA cells (seen 

in the 24 h IC50 values), while they were (slightly) more sensitive to the long-term activity 

of most copper complexes compared to the respective ligands. The exception were 

complexes of TSCs such as Triapine, H2NNMeH and H2NNMe2, with lower activity 

compared to metal-free ligands, that also did not exhibit increased activity in MES-SA/Dx5 

cells as either ligand or complex. In fact, collateral sensitivity of MES-SA/Dx5 cells 

correlated with higher copper(II) complex stability, which further points to the importance 

of copper chelation for nanomolar TSC activity. This is in good agreement with previous 

studies, as also P-gp-overexpressing and Triapine-resistant SW480 or colchicine-resistant 

KB-3-1 cells showed no cross-resistance against terminally or pyridine amino di-substituted 

(especially nanomolar) TSCs after long-term incubation (28,52). 

It is important to note that the copper(II) complexes of the studied TSC ligands have the 

same composition ([CuL]+) with the same coordination mode (Npyridyl,N,S−)(H2O) at pH 7.4 

in aqueous solution. However, significant differences were seen regarding their stability. 

Namely, the nanomolar-active TSCs form complexes of significantly higher stability with 

this metal ion compared to the micromolar compounds. On the other hand, the copper(II) 

complexes of the nanomolar TSCs could be reduced by GSH in a much slower redox 

reaction. When we investigated the role of redox activity, opposing to the current theory 

of activation by reduction (16,20,27), nanomolar-active TSCs were characterized by 

copper(II) complexes with higher stability and less efficient reduction by reducing agents.  

D
ow

nl
oa

de
d 

by
 N

or
th

w
es

te
rn

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
03

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 17 of 67 
 
 
 

17 

A
n

ti
o

xi
d

an
ts

 a
n

d
 R

e
d

o
x 

Si
gn

al
in

g
 

H
ig

h
 c

o
p

p
er

 c
o

m
p

le
x 

st
ab

ili
ty

 a
n

d
 s

lo
w

 r
e

d
u

ct
io

n
 k

in
et

ic
s 

as
 k

e
y 

p
ar

am
e

te
rs

 f
o

r 
im

p
ro

ve
d

 a
ct

iv
it

y,
 p

ar
ap

to
si

s 
in

d
u

ct
io

n
 a

n
d

 i
m

p
ac

t 
o

n
 d

ru
g-

re
si

st
an

t 
ce

lls
 o

f 
an

ti
ca

n
ce

r 
th

io
se

m
ic

ar
b

az
o

n
es

 (
D

O
I:

 

1
0

.1
0

8
9

/a
rs

.2
0

1
9

.7
8

5
4

) 

Th
is

 p
a

p
er

 h
as

 b
ee

n
 p

ee
r-

re
vi

ew
ed

 a
n

d
 a

cc
e

p
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g
 a

n
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

This observation is in line with other studies such as from Garcia-Tojal et al., and from 

Santoro et al. who both found slower reduction by GSH in the case of the copper(II) 

complex of Dp44mT, as compared to the copper(II) complexes of Triapine and FTSC/PTSC 

(11,44). Moreover, for both Triapine as well as FTSC, reduction of the copper(II) complex 

resulted in efficient binding of the copper(I) ion to GSH leaving a metal-free ligand able to 

interact with other metal ions such as iron or zinc (44). In agreement with a slower 

reduction, also cell-free superoxide production (which results from re-oxidation of the 

copper(I) complex) was lower with these complexes. Interestingly, the confirmation of 

these data in living cells turned out to be difficult. Thus, at physiologically relevant 

conditions, none of the TSC complexes increased DHE fluorescence (indicating intracellular 

superoxide) neither in presence of a thiol-containing reducing agent (NAC) nor in its 

absence. Consequently, we hypothesized that cells rapidly adapt to redox stress and 

efficiently degrade the drug-generated superoxide.  

In line with a higher, cell-free superoxide production of Triapine and its closest 

(micromolar-active) derivatives, upregulation of the superoxide-degrading enzymes 

SOD2/3 on mRNA and protein levels was identified as a possible protection mechanism. 

This is of interest as comparable upregulation and increased activity of SOD enzymes was 

also reported and shown to protect against treatment with TSC copper complexes by other 

groups (11,48,51). This stimulation of SODs only in case of micromolar-active TSCs led us to 

the theory that in case of Triapine and its close derivatives, the rather fast (intracellular) 

reduction leads to rapid dissociation of the copper complex and thus liberation of the 

metal-free ligands (which is also in good agreement with the very recently published data 

of Santoro et al. (44)). Consequently, metal-free (or iron-/zinc-bound) Triapine could be 

the main species occurring inside the cell, playing a primary role in anticancer activity. In 

contrast, as copper(II) complexes of nanomolar-active TSCs are much slower in their 

reduction and thus more stable, the copper(II) complex is able to reach intracellular 

targets such as the ER-resident protein PDI (Figure 5D). In line with this hypothesis, 

paraptosis induction, measured by vacuole formation, was most pronounced with the 

nanomolar-active TSCs. This increase in paraptosis induction also correlated with the 

solution stability of their copper complexes as well as a slower reduction rate. In addition, 
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also PDI inhibition by the TSC complexes highly correlated with copper complex stability 

and vacuole formation.  

In line with a more pronounced role of copper in the anticancer activity of nanomolar-

active TSCs, our array analysis revealed that Me2NNMe2 induces upregulation of 

metallothioneins, which strongly bind diverse metal ions including copper(I). Noteworthy, 

metallothioneins also contain multiple thiol groups, and thus take part in the cellular thiol 

redox homeostasis (43), which seems to be disrupted by the nanomolar-active TSC copper 

complexes (13). Interestingly, it has been suggested by Santoro et al. that metallothioneins 

play a crucial role in the removal of the reduced copper(I) from Triapine and FTSC after 

reduction, while in case of Dp44mT the interaction of zinc-loaded metallothioneins with 

the copper(I)-TSC-GSH complex resulted in zinc transmetalation (44). In accordance, also 

our data indicate that there might be an interaction with metallothioneins also in the 

cytosol (but not in the ER) of living cells after treatment with the metal-free TSC ligand. 

The exact nature of this interaction definitely warrants further investigations. 

Innovation (100 words) 

In conclusion, the here presented work on the one hand, confirms that interaction with 

copper ions plays an important role in the anticancer activity of nanomolar-active TSCs. On 

the other hand, it also raises strong doubts on the dogma of “activation by reduction”-

induced redox stress via superoxide production as main executer of (metal-free applied) 

drug effectivity. In contrast, we propose that due to their high solution stability, copper(II) 

complexes of nanomolar-active TSCs are able to reach additional intracellular protein 

targets such as the ER-resident PDI resulting in paraptotic cell death induction and 

increased anticancer activity. 

Materials and Methods 

Chemicals 

FTSC, PTSC, Triapine, H2NNHMe, H2NNMe2, MeHNNMe2, Me2NNH2, Me2NNHMe, 

Me2NNMe2, FTSC, MeHNNH2, MeHNNHMe, Dp44mT and DpC were prepared as described 

previously (28,29,35). Ethylenediaminetetraacetic acid (EDTA), KCl, KOH, HCl was obtained 

from Reanal (Hungary), 2-(N-morpholino)ethanesulfonic acid (MES) and 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) was purchased from Sigma-Aldrich 
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and used without further purification. Copper(II) stock solution was prepared by the 

dissolution of CuCl2 in water and its concentration was determined by complexometry with 

EDTA. For cell culture experiments TSCs were first diluted in DMSO (10 mM) after which 

further dilutions were performed in aqueous solutions (double distilled (dd) H2O, buffer or 

cell culture media depending on the assay) or with which copper complexes were formed 

in combination with CuCl2 (10 mM in ddH2O). Thereby, concentrations of DMSO in cell 

culture did not reach toxic doses. For spectrophotometric measurements, TSCs were 

directly diluted in ddH2O at low concentrations (255 µM) and dissolution was improved by 

ultrasound bath and adding low concentration of HCl. 

Spectrophotometric titrations 

A Hewlett Packard 8452A diode array spectrophotometer was used to record the UV-Vis 

spectra in the interval 200–800 nm. The path length was 1 cm. Proton dissociation 

constants (pKa) of the TSC ligands, the copper(II) mono complexes and the individual 

spectra of the species in the various protonation states were calculated by the computer 

program PSEQUAD (31). Spectrophotometric titrations were performed on samples 

containing the ligands at 10-50 µM concentration by a KOH solution in the presence of 0.1 

M KCl at 25.0 ± 0.1 oC in the pH range from 2 to 11.9. An Orion 710A pH-meter equipped 

with a Metrohm combined electrode (type 6.0234.100) and a Metrohm 665 Dosimat 

burette were used for the pH-metric titrations. The electrode system was calibrated to the 

pH = -log[H+] scale by means of blank titrations (HCl vs. KOH) according to the method 

suggested by Irving et al. (18). The average water ionization constant (pKw) is 13.76 ± 0.05 

in water. Argon was also passed over the solutions during the titrations. 

Due to the limited water solubility of DpC pKa values of the ligand were determined in 5 

and 30% (w/w) DMSO/H2O solvent mixture, while pKa values of the copper(II) complexes in 

30% (w/w) DMSO/H2O. The pKa values obtained at various DMSO content were plotted 

against the 1/εr values of the solvent medium, where εr is the relative permittivity (or 

dielectric constant) of the solvent medium and values for the pure aqueous solution were 

obtained by extrapolation. The εr values are interpolated data taken from (4). Namely, the 

pKa values for DpC in pure water were extrapolated from the values obtained in the 

DMSO/H2O mixtures with the slopes of the linear curves of DpC (5%, 30%), Triapine (0%, 

30%) and H2NNMe2 (0%, 30%).  
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The conditional stability constants (β’) of the copper(II) complexes were calculated at pH 

5.90 based on the spectral changes via the displacement reaction with EDTA in the 

presence 50 mM MES and 0.1 M KCl (using 1-2 h incubation). Data for pKa of EDTA and its 

Cu(II) complex taken from (8) and log’5.90  = 13.89 was calculated for [Cu(EDTA)]2-. In the 

competition experiments the samples contained 25 µM copper(II), 25 µM ligand and the 

concentration of EDTA was varied in the range from 0 to 400 µM. It should be noted that 

EDTA and its copper(II) complex have negligible contribution to the measured absorbance 

values in the monitored wavelength range (320-550 nm), only [CuL]+ and HL absorb light. 

In the case of DpC and Triapine the completion reaction was performed in 30% (w/w) 

DMSO/H2O solvent mixture. The conditional stability constants of the metal complexes (β' 

(CuL)) and the individual spectra of the species were calculated by the computer program 

PSEQUAD (31). The overall stability constants of the [CuL]+ complexes (β) were calculated 

from the conditional stability constants: β [CuL]+ = β' [CuL]+ × αH, where αH = 1 + [H+]/Ka 

(HL) + [H+]2 / (Ka (HL) × Ka (H2L+)); [H+] = 10‒5.90 M. The overall stability constants of the 

protonated [CuLH]2+ and the mixed hydroxido [CuL(OH)] complexes were calculated as 

follows: log β [CuLH]2+ = log β [CuL]+ + pKa [CuLH]2+. Log β [CuL(OH)] = log β [CuL]+ ‒ pKa 

[CuL]+. pCu = −log [Cu(II)] values were calculated at pH 7.4 using the determined stability 

constants. 

Spectrophotometric kinetic measurements 

The redox reaction of the copper(II) complexes with GSH and AA was studied at 25.0 ± 0.1 

oC on Hewlett Packard 8452A diode array spectrophotometer using a special, tightly closed 

tandem cuvette (Hellma Tandem Cell, 238-QS). The reactants were separated until the 

reaction was triggered. Both isolated pockets of the cuvette were completely 

deoxygenated by bubbling a stream of argon for 10 min before mixing the reactants. 

Spectra were recorded before and then immediately after the mixing, and changes were 

followed till no further absorbance change was observed. One of the isolated pockets 

contained the reducing agent (GSH or AA) and its concentration was in the range of 250-

2500 µM and the other contained the copper(II) complex, which was prepared in situ using 

25 µM of the metal ion and the ligand respectively. The pH of all the solutions was 

adjusted to 7.40 by 50 mM HEPES buffer and an ionic strength of 0.1 M (KCl) was applied. 
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The stock solutions of the reducing agents and the complexes were freshly prepared every 

day.  

During the calculations the absorbance (A) ‒ time (t) curves were fitted and analyzed at 

the λmax of the complex. (A0‒Afinal) × e(‒a×t) + Afinal equation was used where A0, Afinal and a 

parameters were refined and accepted at the minimal value of the weighted sum of 

squared residuals (difference between the measured and calculated absorbance values) at 

the given wavelength. Then observed rate constants (kobs) of the redox reaction were 

obtained from the data points of the simulated absorbance-time curves as the slope of the 

ln(A/A0) versus t plots.  

Cell lines and culture conditions  

Human uterine sarcoma MES-SA and the doxorubicin selected MES-SA/Dx5 cells 

expressing mCherry and eGFP proteins, respectively, were engineered from MES-SA and 

MES-SA/Dx5 (ATCC; MES-SA: No. CRL-1976™, MES-SA/Dx5: No. CRL-1977™) using a 

lentiviral system (55). The phenotype of the resistant cells was verified using cytotoxicity 

assays (not shown). Prior to the experiments, MES-SA/Dx5 cells were cultured in 500 

nmol/L doxorubicin, to ensure Pgp expression. Cells were cultured in DMEM (SigmaAldrich, 

Hungary) supplemented with 10% fetal bovine serum, 5 mmol/L glutamine, and 50 

units/ml penicillin and streptomycin (Life Technologies). Human colorectal 

adenocarcinoma SW480 cells (obtained from ATCC; No. CCL-228™) were cultured in MEME 

supplemented with 10% fetal calf serum (PAA, Austria). CT-26 murine colon carcinoma 

cells (CRL-2638, purchased from ATCC) were cultured in Dulbecco's modified eagle's 

medium (DMEM)/F12 medium (1:1 from Sigma; #D6421) supplemented with 10% heat-

inactivated fetal calf serum. All cell lines were cultivated at 37 °C, 5% CO2. 

Cell viability assay 

In the co-culture system, after trypsinization, suspensions of MES-SA mCherry and MES-

SA/Dx5 eGFP cells were mixed, and seeded on 384-well plates at a 2500 cells/well density 

(1250 cells/well per cell model) in 20 μl of medium, one day prior to drug addition. Cells 

were then treated with a serial dilution of the drugs, so that the final volume was 60 μl. 

Liquid handling was fully automated by a Hamilton StarLet robotic pipetting workstation 

(Hamilton, Switzerland). Plates were incubated, and measured twice: after 72 and 144 h of 
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drug addition. Growth inhibition of the cells was assessed based on the detection of the 

respective fluorescent intensities scanned from the wells by an EnSpire plate reader (eGFP: 

485ex/510em; mCherry: 585ex/610em, Perkin Elmer, UK). Raw measurement files were 

exported, and automated data evaluation was performed by our custom program, which 

was written by Judit Sessler in C#. Data was normalized to the negative (live cells, maximal 

fluorescence) and positive (dead cells, minimal fluorescence) controls, then growth 

inhibition data points (plotted against the respective concentrations) were connected with 

a line, and IC50 was considered as the point, at which the connecting line reached the 50% 

inhibition according to the Y axis.  

For single cell viability assay, SW480 cells were plated (2 x 103 cells/well) in 96-well plates 

and allowed to recover for 24 h. Then, cells were treated with increasing concentrations of 

TSCs for 72 h. Cell viability was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT)-based vitality assay (EZ4U; Biomedica, Vienna, Austria) 

as published (17). GraphPad Prism software was used to calculate cell viability expressed 

as IC50 values calculated from full dose-response curves. For further analysis and 

comparison, pIC50 values were used instead of IC50 values (Suppl. Figure 1). pIC50 values 

were calculated as the –log10 from IC50 values in molar. 

Microscopy 

Cells were seeded into a 24-well plate with 2 x 104 cells/well and left to recover for 24 h. 

Then, cells were treated with indicated concentrations of TSC ligands. After 24 or 48 h, 

microscopic phase-contrast images were taken with a Zeiss primo vert microscope with a 

Zeiss axio cam ERc5s camera. Percentage of vacuolated cells was counted in at least three 

different parts of a well. 

Quantification of superoxide radicals 

To examine the cell-free production of superoxide radicals, the reduction of NBT was 

analyzed as previously reported (27) . Briefly, 0.6 mM NBT was incubated with 5 μM 

copper(II) complexes with or without 2 mM NAC. The experiments were performed in PBS 

(pH 7.4). The extent of NBT reduction was determined spectrophotometrically by 

measuring the absorbance at 560 nm after 45 min of incubation. No superoxide radicals 

were observed without NAC (data not shown). 
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Intracellular superoxide determination using DHE 

DHE (#D7008, Sigma-Aldrich, MO, USA) was used to detect the production of intracellular 

superoxide. Briefly, 5 × 105 MES-SA cells per sample in 500 μl of PBS (78.1 mM Na2PO4 x 2 

H2O, 14.7 mM KH2PO4, 26.8 mM KCl, 1.37 M NaCl) were incubated with or without 2 mM 

NAC for 15 min at 37°C. Then, 5 µM of indicated TSC complexes were added for further 60 

min. Subsequently, DHE (10 µM) was added 30 min before measurement. After incubation, 

the mean fluorescence intensity was measured by flow cytometry using a FACSCalibur 

instrument (Becton Dickinson, Palo Alto, CA, USA). Antimycin A (AMA, 10 µM) was used as 

positive control. 

PDI reduction activity measurement 

PDI reduction activity was measured using PROTEOSTAT PDI assay kit (#ENZ-51024, Enzo 

Life Sciences, Switzerland). Experiments were performed according to the manufacturer's 

instructions. Briefly, drugs alone or preincubated with CuCl2 (1:1) were added to a 

prepared insulin PDI solution. Then, dithiothreitol (DTT) (1 mM) was added to start PDI 

reduction activity. After 30 min the reaction was stopped by the Stop reagent and the 

insulin precipitate was fluorescently labeled with Proteostat PDI detection reagent for 15 

min. Fluorescence intensity was measured at 500 nm excitation and 603 nm emission 

using the spectrophotometer Tecan infinite 200Pro (Tecan Group, Männedorf, 

Switzerland).  

Protein expression 

After drug treatment, total protein lysates were prepared, 20 µg per sample separated by 

SDS-PAGE and transferred onto a polyvinylidene difluoride membrane for Western blotting 

as described previously (17). The following antibodies were used: Cell Signaling Technology 

(MA, USA): SOD2 (#13141), GAPDH (#5174). Primary antibodies were used 1:1000. 

Secondary anti-rabbit (#7074) horseradish peroxidase-labeled antibodies from Cell 

Signaling Technologies were used in working dilutions of 1:10 000. 

Total-RNA isolation and whole genome gene expression array 

Total RNA from SW480 cells (either untreated or treated (0.1 or 1 µM for 15 h)) was 

isolated using RNeasy Mini kit (#74106, Quiagen, Germany) following the manufacturer’s 

instruction. Transcriptional profiles of cells were determined performing a 4 × 44K whole 

genome oligonucleotide gene expression array (Agilent, California, US) as described 
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previously (32). Normalization was performed in R using the Bioconductor (version 3.7) 

package “limma” if not otherwise indicated (42). Whole genome gene expression array 

and gene set enrichment analysis (GSEA) were performed as previously described (13).  

Animal experiments 

Six- to eight-week-old BALB/c mice were purchased from Janvier (France). The animals 

were kept in a pathogen-free environment and every procedure was done in a laminar 

airflow cabinet. Experiments were done according to the regulations of the Ethics 

Committee for the Care and Use of Laboratory Animals at the Medical University Vienna 

(proposal number BMWF-66.009/0081-WF/V/3b/2015), the U.S. Public Health Service 

Policy on Human Care and Use of Laboratory Animals as well as the United Kingdom 

Coordinating Committee on Cancer Prevention Research's Guidelines for the Welfare of 

Animals in Experimental Neoplasia. To ensure animal welfare throughout the experiment, 

the body weight of the mice was assessed once a day. At weight loss exceeding 10 % (in 

less than two days) or occurrence of ascites, animals were sacrificed by cervical 

dislocation.  

In vivo analysis of SOD2 expression 

CT-26 cells (5x105
 cells in 50 µl) were injected subcutaneously into the right flank of female 

Balb/c mice. Starting on day 4, Triapine (10 mg/kg in 10% DMSO) or solvent treatment was 

given orally for 5 consecutive days a week for two weeks. Animals were sacrificed on 

indicated days per cervical dislocation and tumor tissue was isolated and fixed in 4% 

paraformaldehyde (Carl Roth, #P087.3) for 24 h. Tumor tissue was paraffin-embedded 

with the KOS machine (Milestone) and sliced in 4 µm thick sections. For SOD2 staining, 

sections were incubated with a SOD2-specific antibody (1:1000, Cell Signaling, #13141) in a 

humid chamber for 1 h at room temperature after antigen retrieval by boiling for 30 min in 

10 mM citrate buffer (pH 6.0, DAKO; #S1699),. Antibody binding was detected using the 

UltraVision LP detection system according to the manufacturer's instructions (Thermo 

Fisher Scientific Inc.; #TL-125-HL). Color was developed using 3,3′-diaminobenzidine (Dako; 

#K3468), followed by a nuclear counterstain with hematoxylin. Stained tissue slides were 

scanned and analyzed using Definiens Software. 
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Correlation analysis 

Correlations were performed in the GraphPad Prism 8 software. R2 from linear or one 

phase decay regression are given in correlation diagrams. Regressions lines are shown in 

correlation plots with 95% confidence interval. P-values were calculated using Pearson 

correlation coefficient which is a measure of linear correlation. For the correlation matrix 

(Figure 6D) p-values of correlations were corrected for multiple comparisons with two-

stage linear step-up procedure of Benjamini, Krieger and Yekutieli with a false discovery 

rate (FDR) of 1%. The thereby generated q-values are shown with a greyscale code. 
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List of Abbreviations 

AA – ascorbic acid 

AMA – antimycin A 

dd – double distilled 

DHE - dihydroethidium 

DMSO – dimethyl sulfoxide 

Dp44mT - di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone 

DpC – di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone 

DTT – dithiothreitol 

EDTA – ethylenediaminetetraacetic acid 

ER – endoplasmic reticulum 

FDR – false discovery rate 

FTSC - 2-formylpyridine thiosemicarbazone  

GSEA – gene set enrichment analysis 

GSH – glutathione 

HEPES - 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

MDR – multidrug resistant 

MES - 2-(N-morpholino)ethanesulfonic acid 

MT – metallothionein 

MTT - 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NAC – N-acetyl cysteine 

NBT- nitroblue tetrazolium 

PDI – protein disulfide isomerase 

P-gp – P-glycoprotein (ABCB1) 

PTSC - pyridine-2-carbaldehyde thiosemicarbazone 

RR – ribonucleotide reductase 

ROS – reactive oxygen species 

SOD – superoxide dismutase 

TSC – thiosemicarbazone 

UV-vis – UV-visible 

D
ow

nl
oa

de
d 

by
 N

or
th

w
es

te
rn

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
03

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 27 of 67 
 
 
 

27 

A
n

ti
o

xi
d

an
ts

 a
n

d
 R

e
d

o
x 

Si
gn

al
in

g
 

H
ig

h
 c

o
p

p
er

 c
o

m
p

le
x 

st
ab

ili
ty

 a
n

d
 s

lo
w

 r
e

d
u

ct
io

n
 k

in
et

ic
s 

as
 k

e
y 

p
ar

am
e

te
rs

 f
o

r 
im

p
ro

ve
d

 a
ct

iv
it

y,
 p

ar
ap

to
si

s 
in

d
u

ct
io

n
 a

n
d

 i
m

p
ac

t 
o

n
 d

ru
g-

re
si

st
an

t 
ce

lls
 o

f 
an

ti
ca

n
ce

r 
th

io
se

m
ic

ar
b

az
o

n
es

 (
D

O
I:

 

1
0

.1
0

8
9

/a
rs

.2
0

1
9

.7
8

5
4

) 

Th
is

 p
a

p
er

 h
as

 b
ee

n
 p

ee
r-

re
vi

ew
ed

 a
n

d
 a

cc
e

p
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g
 a

n
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

References 

1. Antholine W, Knight J, Whelan H, Petering DH. Studies of the reaction of 2-

formylpyridine thiosemicarbazone and its iron and copper complexes with 

biological systems. Mol Pharmacol 13: 89-98, 1977. 

2. Bacher F, Domotor O, Kaltenbrunner M, Mojovic M, Popovic-Bijelic A, Graslund A, 

Ozarowski A, Filipovic L, Radulovic S, Enyedy EA, Arion VB. Effects of terminal 

dimethylation and metal coordination of proline-2-formylpyridine 

thiosemicarbazone hybrids on lipophilicity, antiproliferative activity, and hR2 RNR 

inhibition. Inorg Chem 53: 12595-609, 2014. 

3. Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, Knapp S, Xiao K, 

Campbell SL, Thiele DJ, Counter CM. Copper is required for oncogenic BRAF 

signalling and tumorigenesis. Nature 509: 492-6, 2014. 

4. Covington AK, Dickinson T. Physical chemistry of organic solvent systems London, 

New York,: Plenum Press; 1973. x, 823 p. p. 

5. Domotor O, May NV, Pelivan K, Kiss T, Keppler BK, Kowol CR, Enyedy EA. A 

comparative study of alpha-N-pyridyl thiosemicarbazones: Spectroscopic 

properties, solution stability and copper(II) complexation. Inorg Chim Acta 472: 

264-275, 2018. 

6. Enyedy EA, Nagy NV, Zsigo E, Kowol CR, Arion VB, Keppler BK, Kiss T. Comparative 

Solution Equilibrium Study of the Interactions of Copper(II), Iron(II) and Zinc(II) with 

Triapine (3-Aminopyridine-2-carbaldehyde Thiosemicarbazone) and Related 

Ligands. Eur J Inorg Chem: 1717-1728, 2010. 

7. Enyedy EA, Primik MF, Kowol CR, Arion VB, Kiss T, Keppler BK. Interaction of Triapine 

and related thiosemicarbazones with iron(III)/(II) and gallium(III): a comparative 

solution equilibrium study. Dalton Trans 40: 5895-5905, 2011. 

8. Felcman J, da Silva JJ. Complexes of oxovanadium(IV) with polyaminocarboxylic 

acids. Talanta 30: 565-70, 1983. 

 

 

 

D
ow

nl
oa

de
d 

by
 N

or
th

w
es

te
rn

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
03

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 28 of 67 
 
 
 

28 

A
n

ti
o

xi
d

an
ts

 a
n

d
 R

e
d

o
x 

Si
gn

al
in

g
 

H
ig

h
 c

o
p

p
er

 c
o

m
p

le
x 

st
ab

ili
ty

 a
n

d
 s

lo
w

 r
e

d
u

ct
io

n
 k

in
et

ic
s 

as
 k

e
y 

p
ar

am
e

te
rs

 f
o

r 
im

p
ro

ve
d

 a
ct

iv
it

y,
 p

ar
ap

to
si

s 
in

d
u

ct
io

n
 a

n
d

 im
p

ac
t 

o
n

 d
ru

g
-r

e
si

st
an

t 
ce

lls
 o

f 
an

ti
ca

n
ce

r 
th

io
se

m
ic

ar
b

az
o

n
es

 (
D

O
I:

 

1
0

.1
0

8
9

/a
rs

.2
0

1
9

.7
8

5
4

) 

Th
is

 p
a

p
er

 h
as

 b
ee

n
 p

ee
r-

re
vi

ew
ed

 a
n

d
 a

cc
e

p
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g
 a

n
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

9. Furedi A, Toth S, Szebenyi K, Pape VF, Turk D, Kucsma N, Cervenak L, Tovari J, 

Szakacs G. Identification and Validation of Compounds Selectively Killing Resistant 

Cancer: Delineating Cell Line-Specific Effects from P-Glycoprotein-Induced Toxicity. 

Mol Cancer Ther 16: 45-56, 2017. 

10. Gaetke LM, Chow-Johnson HS, Chow CK. Copper: toxicological relevance and 

mechanisms. Arch Toxicol 88: 1929-1938, 2014. 

11. Garcia-Tojal J, Gil-Garcia R, Fouz VI, Madariaga G, Lezama L, Galletero MS, Borras J, 

Nollmann FI, Garcia-Giron C, Alcaraz R, Cavia-Saiz M, Muniz P, Palacios O, Samper 

KG, Rojo T. Revisiting the thiosemicarbazonecopper(II) reaction with glutathione. 

Activity against colorectal carcinoma cell lines. J Inorg Biochem 180: 69-79, 2018. 

12. Giles FJ, Fracasso PM, Kantarjian HM, Cortes JE, Brown RA, Verstovsek S, Alvarado Y, 

Thomas DA, Faderl S, Garcia-Manero G, Wright LP, Samson T, Cahill A, Lambert P, 

Plunkett W, Sznol M, DiPersio JF, Gandhi V. Phase I and pharmacodynamic study of 

Triapine, a novel ribonucleotide reductase inhibitor, in patients with advanced 

leukemia. Leuk Res 27: 1077-83, 2003. 

13. Hager S, Korbula K, Bielec B, Grusch M, Pirker C, Schosserer M, Liendl L, Lang M, 

Grillari J, Nowikovsky K, Pape VFS, Mohr T, Szakacs G, Keppler BK, Berger W, Kowol 

CR, Heffeter P. The thiosemicarbazone Me2NNMe2 induces paraptosis by disrupting 

the ER thiol redox homeostasis based on protein disulfide isomerase inhibition. Cell 

Death Dis 9: 1052, 2018. 

14. Hancock CN, Stockwin LH, Han B, Divelbiss RD, Jun JH, Malhotra SV, Hollingshead 

MG, Newton DL. A copper chelate of thiosemicarbazone NSC 689534 induces 

oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free Radic Biol 

Med 50: 110-21, 2011. 

15. Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK. From 

bench to bedside - preclinical and early clinical development of the anticancer 

agent indazolium trans-*tetrachlorobis(1H-indazole)ruthenate(III)+ (KP1019 or 

FFC14A). J Inorg Biochem 100: 891-904, 2006. 

16. Heffeter P, Pape VFS, Enyedy EA, Keppler BK, Szakacs G, Kowol CR. Anticancer 

Thiosemicarbazones: Chemical Properties, Interaction with Iron Metabolism, and 

Resistance Development. Antioxid Redox Signal 30: 1062-1082, 2019. 

D
ow

nl
oa

de
d 

by
 N

or
th

w
es

te
rn

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
03

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 29 of 67 
 
 
 

29 

A
n

ti
o

xi
d

an
ts

 a
n

d
 R

e
d

o
x 

Si
gn

al
in

g
 

H
ig

h
 c

o
p

p
er

 c
o

m
p

le
x 

st
ab

ili
ty

 a
n

d
 s

lo
w

 r
e

d
u

ct
io

n
 k

in
et

ic
s 

as
 k

e
y 

p
ar

am
e

te
rs

 f
o

r 
im

p
ro

ve
d

 a
ct

iv
it

y,
 p

ar
ap

to
si

s 
in

d
u

ct
io

n
 a

n
d

 i
m

p
ac

t 
o

n
 d

ru
g-

re
si

st
an

t 
ce

lls
 o

f 
an

ti
ca

n
ce

r 
th

io
se

m
ic

ar
b

az
o

n
es

 (
D

O
I:

 

1
0

.1
0

8
9

/a
rs

.2
0

1
9

.7
8

5
4

) 

Th
is

 p
a

p
er

 h
as

 b
ee

n
 p

ee
r-

re
vi

ew
ed

 a
n

d
 a

cc
e

p
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g
 a

n
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

17. Heffeter P, Pongratz M, Steiner E, Chiba P, Jakupec MA, Elbling L, Marian B, Korner 

W, Sevelda F, Micksche M, Keppler BK, Berger W. Intrinsic and acquired forms of 

resistance against the anticancer ruthenium compound KP1019 *indazolium trans-

*tetrachlorobis(1H-indazole)ruthenate (III)+ (FFC14A). J Pharmacol Exp Ther 312: 

281-9, 2005. 

18. Irving HM, Miles MG, Pettit LD. A Study of Some Problems in Determining 

Stoicheiometric Proton Dissociation Constants of Complexes by Potentiometric 

Titrations Using a Glass Electrode. Anal Chim Acta 38: 475-+, 1967. 

19. Ishiguro K, Lin ZP, Penketh PG, Shyam K, Zhu R, Baumann RP, Zhu YL, Sartorelli AC, 

Rutherford TJ, Ratner ES. Distinct mechanisms of cell-kill by triapine and its 

terminally dimethylated derivative Dp44mT due to a loss or gain of activity of their 

copper(II) complexes. Biochem Pharmacol 91: 312-22, 2014. 

20. Jansson PJ, Sharpe PC, Bernhardt PV, Richardson DR. Novel thiosemicarbazones of 

the ApT and DpT series and their copper complexes: identification of pronounced 

redox activity and characterization of their antitumor activity. J Med Chem 53: 

5759-69, 2010. 

21. Jansson PJ, Yamagishi T, Arvind A, Seebacher N, Gutierrez E, Stacy A, Maleki S, Sharp 

D, Sahni S, Richardson DR. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone 

(Dp44mT) overcomes multidrug resistance by a novel mechanism involving the 

hijacking of lysosomal P-glycoprotein (Pgp). J Biol Chem 290: 9588-603, 2015. 

22. Jungwirth U, Kowol CR, Keppler BK, Hartinger CG, Berger W, Heffeter P. Anticancer 

activity of metal complexes: involvement of redox processes. Antioxid Redox Signal 

15: 1085-127, 2011. 

23. Kalinowski DS, Stefani C, Toyokuni S, Ganz T, Anderson GJ, Subramaniam NV, Trinder 

D, Olynyk JK, Chua A, Jansson PJ, Sahni S, Lane DJ, Merlot AM, Kovacevic Z, Huang 

ML, Lee CS, Richardson DR. Redox cycling metals: Pedaling their roles in metabolism 

and their use in the development of novel therapeutics. Biochim Biophys Acta 1863: 

727-48, 2016. 

 

 

 

D
ow

nl
oa

de
d 

by
 N

or
th

w
es

te
rn

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
03

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 30 of 67 
 
 
 

30 

A
n

ti
o

xi
d

an
ts

 a
n

d
 R

e
d

o
x 

Si
gn

al
in

g
 

H
ig

h
 c

o
p

p
er

 c
o

m
p

le
x 

st
ab

ili
ty

 a
n

d
 s

lo
w

 r
e

d
u

ct
io

n
 k

in
et

ic
s 

as
 k

e
y 

p
ar

am
e

te
rs

 f
o

r 
im

p
ro

ve
d

 a
ct

iv
it

y,
 p

ar
ap

to
si

s 
in

d
u

ct
io

n
 a

n
d

 im
p

ac
t 

o
n

 d
ru

g
-r

e
si

st
an

t 
ce

lls
 o

f 
an

ti
ca

n
ce

r 
th

io
se

m
ic

ar
b

az
o

n
es

 (
D

O
I:

 

1
0

.1
0

8
9

/a
rs

.2
0

1
9

.7
8

5
4

) 

Th
is

 p
a

p
er

 h
as

 b
ee

n
 p

ee
r-

re
vi

ew
ed

 a
n

d
 a

cc
e

p
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g
 a

n
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

24. Kallus S, Uhlik L, van Schoonhoven S, Pelivan K, Berger W, Enyedy EA, Hofmann T, 

Heffeter P, Kowol CR, Keppler BK. Synthesis and biological evaluation of biotin-

conjugated anticancer thiosemicarbazones and their iron(III) and copper(II) 

complexes. J Inorg Biochem 190: 85-97, 2019. 

25. Karp JE, Giles FJ, Gojo I, Morris L, Greer J, Johnson B, Thein M, Sznol M, Low J. A 

phase I study of the novel ribonucleotide reductase inhibitor 3-aminopyridine-2-

carboxaldehyde thiosemicarbazone (3-AP, Triapine) in combination with the 

nucleoside analog fludarabine for patients with refractory acute leukemias and 

aggressive myeloproliferative disorders. Leuk Res 32: 71-7, 2008. 

26. Kontoghiorghes GJ, Efstathiou A, Loannou-Loucaides S, Kolnagou A. Chelators 

controlling metal metabolism and toxicity pathways: Applications in cancer 

prevention, diagnosis and treatment. Hemoglobin 32: 217-227, 2008. 

27. Kowol CR, Heffeter P, Miklos W, Gille L, Trondl R, Cappellacci L, Berger W, Keppler 

BK. Mechanisms underlying reductant-induced reactive oxygen species formation 

by anticancer copper(II) compounds. J Biol Inorg Chem 17: 409-23, 2012. 

28. Kowol CR, Miklos W, Pfaff S, Hager S, Kallus S, Pelivan K, Kubanik M, Enyedy EA, 

Berger W, Heffeter P, Keppler BK. Impact of Stepwise NH2-Methylation of Triapine 

on the Physicochemical Properties, Anticancer Activity, and Resistance 

Circumvention. J Med Chem 59: 6739-52, 2016. 

29. Kowol CR, Trondl R, Heffeter P, Arion VB, Jakupec MA, Roller A, Galanski M, Berger 

W, Keppler BK. Impact of metal coordination on cytotoxicity of 3-aminopyridine-2-

carboxaldehyde thiosemicarbazone (triapine) and novel insights into terminal 

dimethylation. J Med Chem 52: 5032-43, 2009. 

30. Kunos CA, Ivy SP. Triapine Radiochemotherapy in Advanced Stage Cervical Cancer. 

Front Oncol 8: 149, 2018. 

31. L. Zékány IN. Computational Methods for the Determination of Stability Constants. 

In: Computational Methods for the Determination of Stability Constants. edited by 

Leggett DJ. New York: Springer US; 1985. pp. 291-353. 

 

 

 

D
ow

nl
oa

de
d 

by
 N

or
th

w
es

te
rn

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
03

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 31 of 67 
 
 
 

31 

A
n

ti
o

xi
d

an
ts

 a
n

d
 R

e
d

o
x 

Si
gn

al
in

g
 

H
ig

h
 c

o
p

p
er

 c
o

m
p

le
x 

st
ab

ili
ty

 a
n

d
 s

lo
w

 r
e

d
u

ct
io

n
 k

in
et

ic
s 

as
 k

e
y 

p
ar

am
e

te
rs

 f
o

r 
im

p
ro

ve
d

 a
ct

iv
it

y,
 p

ar
ap

to
si

s 
in

d
u

ct
io

n
 a

n
d

 i
m

p
ac

t 
o

n
 d

ru
g-

re
si

st
an

t 
ce

lls
 o

f 
an

ti
ca

n
ce

r 
th

io
se

m
ic

ar
b

az
o

n
es

 (
D

O
I:

 

1
0

.1
0

8
9

/a
rs

.2
0

1
9

.7
8

5
4

) 

Th
is

 p
a

p
er

 h
as

 b
ee

n
 p

ee
r-

re
vi

ew
ed

 a
n

d
 a

cc
e

p
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g
 a

n
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

32. Laszlo V, Hoda MA, Garay T, Pirker C, Ghanim B, Klikovits T, Dong YW, Rozsas A, 

Kenessey I, Szirtes I, Grusch M, Jakopovic M, Samarzija M, Brcic L, Kern I, Rozman A, 

Popper H, Zochbauer-Muller S, Heller G, Altenberger C, Ziegler B, Klepetko W, 

Berger W, Dome B, Hegedus B. Epigenetic down-regulation of integrin alpha7 

increases migratory potential and confers poor prognosis in malignant pleural 

mesothelioma. J Pathol 237: 203-14, 2015. 

33. Lee D, Kim IY, Saha S, Choi KS. Paraptosis in the anti-cancer arsenal of natural 

products. Pharmacol Ther 162: 120-33, 2016. 

34. Lovejoy DB, Jansson PJ, Brunk UT, Wong J, Ponka P, Richardson DR. Antitumor 

activity of metal-chelating compound Dp44mT is mediated by formation of a redox-

active copper complex that accumulates in lysosomes. Cancer Res 71: 5871-80, 

2011. 

35. Lovejoy DB, Sharp DM, Seebacher N, Obeidy P, Prichard T, Stefani C, Basha MT, 

Sharpe PC, Jansson PJ, Kalinowski DS, Bernhardt PV, Richardson DR. Novel second-

generation di-2-pyridylketone thiosemicarbazones show synergism with standard 

chemotherapeutics and demonstrate potent activity against lung cancer xenografts 

after oral and intravenous administration in vivo. J Med Chem 55: 7230-44, 2012. 

36. Malarz K, Mrozek-Wilczkiewicz A, Serda M, Rejmund M, Polanski J, Musiol R. The 

role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget 9: 

17689-17710, 2018. 

37. Maleki Vareki S, Salim KY, Danter WR, Koropatnick J. Novel anti-cancer drug COTI-2 

synergizes with therapeutic agents and does not induce resistance or exhibit cross-

resistance in human cancer cell lines. PLoS One 13: e0191766, 2018. 

38. McGivern TJP, Afsharpour S, Marmion CJ. Copper complexes as artificial DNA 

metallonucleases: From Sigman's reagent to next generation anti-cancer agent? 

Inorg Chim Acta 472: 12-39, 2018. 

39. Merlot AM, Porter GM, Sahni S, Lim EG, Peres P, Richardson DR. The metastasis 

suppressor, NDRG1, differentially modulates the endoplasmic reticulum stress 

response. Biochim Biophys Acta Mol Basis Dis 1865: 2094-2110, 2019. 

 

 

D
ow

nl
oa

de
d 

by
 N

or
th

w
es

te
rn

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
03

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 32 of 67 
 
 
 

32 

A
n

ti
o

xi
d

an
ts

 a
n

d
 R

e
d

o
x 

Si
gn

al
in

g
 

H
ig

h
 c

o
p

p
er

 c
o

m
p

le
x 

st
ab

ili
ty

 a
n

d
 s

lo
w

 r
e

d
u

ct
io

n
 k

in
et

ic
s 

as
 k

e
y 

p
ar

am
e

te
rs

 f
o

r 
im

p
ro

ve
d

 a
ct

iv
it

y,
 p

ar
ap

to
si

s 
in

d
u

ct
io

n
 a

n
d

 im
p

ac
t 

o
n

 d
ru

g
-r

e
si

st
an

t 
ce

lls
 o

f 
an

ti
ca

n
ce

r 
th

io
se

m
ic

ar
b

az
o

n
es

 (
D

O
I:

 

1
0

.1
0

8
9

/a
rs

.2
0

1
9

.7
8

5
4

) 

Th
is

 p
a

p
er

 h
as

 b
ee

n
 p

ee
r-

re
vi

ew
ed

 a
n

d
 a

cc
e

p
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g
 a

n
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

40. Pape VF, Toth S, Furedi A, Szebenyi K, Lovrics A, Szabo P, Wiese M, Szakacs G. 

Design, synthesis and biological evaluation of thiosemicarbazones, 

hydrazinobenzothiazoles and arylhydrazones as anticancer agents with a potential 

to overcome multidrug resistance. Eur J Med Chem 117: 335-54, 2016. 

41. Pham AN, Xing GW, Miller CJ, Waite TD. Fenton-like copper redox chemistry 

revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant 

production. Journal of Catalysis 301: 54-64, 2013. 

42. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers 

differential expression analyses for RNA-sequencing and microarray studies. Nucleic 

Acids Res 43: e47, 2015. 

43. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova 

M, Adam V, Kizek R. The role of metallothionein in oxidative stress. Int J Mol Sci 14: 

6044-66, 2013. 

44. Santoro A, Vileno B, Palacios O, Peris-Diaz MD, Riegel G, Gaiddon C, Krezel A, Faller 

P. Reactivity of Cu(ii)-, Zn(ii)- and Fe(ii)-thiosemicarbazone complexes with 

glutathione and metallothionein: from stability to dissociation to transmetallation. 

Metallomics 11: 994-1004, 2019. 

45. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the 

redox state of the glutathione disulfide/glutathione couple. Free Radical Bio Med 

30: 1191-1212, 2001. 

46. Seebacher NA, Richardson DR, Jansson PJ. A mechanism for overcoming P-

glycoprotein-mediated drug resistance: novel combination therapy that releases 

stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT 

or DpC. Cell Death Dis 7: e2510, 2016. 

47. Serda M, Kalinowski DS, Rasko N, Potuckova E, Mrozek-Wilczkiewicz A, Musiol R, 

Malecki JG, Sajewicz M, Ratuszna A, Muchowicz A, Golab J, Simunek T, Richardson 

DR, Polanski J. Exploring the anti-cancer activity of novel thiosemicarbazones 

generated through the combination of retro-fragments: dissection of critical 

structure-activity relationships. PLoS One 9: e110291, 2014. 

 

 

D
ow

nl
oa

de
d 

by
 N

or
th

w
es

te
rn

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
03

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 33 of 67 
 
 
 

33 

A
n

ti
o

xi
d

an
ts

 a
n

d
 R

e
d

o
x 

Si
gn

al
in

g
 

H
ig

h
 c

o
p

p
er

 c
o

m
p

le
x 

st
ab

ili
ty

 a
n

d
 s

lo
w

 r
e

d
u

ct
io

n
 k

in
et

ic
s 

as
 k

e
y 

p
ar

am
e

te
rs

 f
o

r 
im

p
ro

ve
d

 a
ct

iv
it

y,
 p

ar
ap

to
si

s 
in

d
u

ct
io

n
 a

n
d

 i
m

p
ac

t 
o

n
 d

ru
g-

re
si

st
an

t 
ce

lls
 o

f 
an

ti
ca

n
ce

r 
th

io
se

m
ic

ar
b

az
o

n
es

 (
D

O
I:

 

1
0

.1
0

8
9

/a
rs

.2
0

1
9

.7
8

5
4

) 

Th
is

 p
a

p
er

 h
as

 b
ee

n
 p

ee
r-

re
vi

ew
ed

 a
n

d
 a

cc
e

p
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g
 a

n
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

48. Shao J, Zhou B, Di Bilio AJ, Zhu L, Wang T, Qi C, Shih J, Yen Y. A Ferrous-Triapine 

complex mediates formation of reactive oxygen species that inactivate human 

ribonucleotide reductase. Mol Cancer Ther 5: 586-92, 2006. 

49. Shimada K, Reznik E, Stokes ME, Krishnamoorthy L, Bos PH, Song Y, Quartararo CE, 

Pagano NC, Carpizo DR, deCarvalho AC, Lo DC, Stockwell BR. Copper-Binding Small 

Molecule Induces Oxidative Stress and Cell-Cycle Arrest in Glioblastoma-Patient-

Derived Cells. Cell Chem Biol 25: 585-594 e7, 2018. 

50. Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of 

programmed cell death. Proc Natl Acad Sci U S A 97: 14376-81, 2000. 

51. Srivastava S, Blower PJ, Aubdool AA, Hider RC, Mann GE, Siow RC. Cardioprotective 

effects of Cu((II))ATSM in human vascular smooth muscle cells and cardiomyocytes 

mediated by Nrf2 and DJ-1. Sci Rep 6: 7, 2016. 

52. Stacy AE, Palanimuthu D, Bernhardt PV, Kalinowski DS, Jansson PJ, Richardson DR. 

Structure-Activity Relationships of Di-2-pyridylketone, 2-Benzoylpyridine, and 2-

Acetylpyridine Thiosemicarbazones for Overcoming Pgp-Mediated Drug Resistance. 

J Med Chem 59: 8601-20, 2016. 

53. Trondl R, Flocke LS, Kowol CR, Heffeter P, Jungwirth U, Mair GE, Steinborn R, Enyedy 

EA, Jakupec MA, Berger W, Keppler BK. Triapine and a more potent dimethyl 

derivative induce endoplasmic reticulum stress in cancer cells. Mol Pharmacol 85: 

451-9, 2014. 

54. Turk D, Hall MD, Chu BF, Ludwig JA, Fales HM, Gottesman MM, Szakacs G. 

Identification of compounds selectively killing multidrug-resistant cancer cells. 

Cancer Res 69: 8293-301, 2009. 

55. Windt T, Toth S, Patik I, Sessler J, Kucsma N, Szepesi A, Zdrazil B, Ozvegy-Laczka C, 

Szakacs G. Identification of anticancer OATP2B1 substrates by an in vitro triple-

fluorescence-based cytotoxicity screen. Arch Toxicol 93: 953-964, 2019. 

56. Yee KW, Cortes J, Ferrajoli A, Garcia-Manero G, Verstovsek S, Wierda W, Thomas D, 

Faderl S, King I, O'Brien S M, Jeha S, Andreeff M, Cahill A, Sznol M, Giles FJ. Triapine 

and cytarabine is an active combination in patients with acute leukemia or 

myelodysplastic syndrome. Leuk Res 30: 813-22, 2006. 

 

D
ow

nl
oa

de
d 

by
 N

or
th

w
es

te
rn

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
03

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 34 of 67 
 
 
 

34 

A
n

ti
o

xi
d

an
ts

 a
n

d
 R

e
d

o
x 

Si
gn

al
in

g
 

H
ig

h
 c

o
p

p
er

 c
o

m
p

le
x 

st
ab

ili
ty

 a
n

d
 s

lo
w

 r
e

d
u

ct
io

n
 k

in
et

ic
s 

as
 k

e
y 

p
ar

am
e

te
rs

 f
o

r 
im

p
ro

ve
d

 a
ct

iv
it

y,
 p

ar
ap

to
si

s 
in

d
u

ct
io

n
 a

n
d

 im
p

ac
t 

o
n

 d
ru

g
-r

e
si

st
an

t 
ce

lls
 o

f 
an

ti
ca

n
ce

r 
th

io
se

m
ic

ar
b

az
o

n
es

 (
D

O
I:

 

1
0

.1
0

8
9

/a
rs

.2
0

1
9

.7
8

5
4

) 

Th
is

 p
a

p
er

 h
as

 b
ee

n
 p

ee
r-

re
vi

ew
ed

 a
n

d
 a

cc
e

p
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g
 a

n
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

57. Yu Y, Gutierrez E, Kovacevic Z, Saletta F, Obeidy P, Suryo Rahmanto Y, Richardson DR. 

Iron chelators for the treatment of cancer. Curr Med Chem 19: 2689-702, 2012. 

58. Yu Y, Suryo Rahmanto Y, Hawkins CL, Richardson DR. The potent and novel 

thiosemicarbazone chelators di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone 

and 2-benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone affect crucial thiol 

systems required for ribonucleotide reductase activity. Mol Pharmacol 79: 921-31, 

2011. 

59. Zeidner JF, Karp JE, Blackford AL, Smith BD, Gojo I, Gore SD, Levis MJ, Carraway HE, 

Greer JM, Ivy SP, Pratz KW, McDevitt MA. A phase II trial of sequential 

ribonucleotide reductase inhibition in aggressive myeloproliferative neoplasms. 

Haematologica 99: 672-8, 2014. 

60. Zhang C. Essential functions of iron-requiring proteins in DNA replication, repair and 

cell cycle control. Protein Cell 5: 750-60, 2014. 

 

  

D
ow

nl
oa

de
d 

by
 N

or
th

w
es

te
rn

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
03

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 35 of 67 
 
 
 

35 

A
n

ti
o

xi
d

an
ts

 a
n

d
 R

e
d

o
x 

Si
gn

al
in

g
 

H
ig

h
 c

o
p

p
er

 c
o

m
p

le
x 

st
ab

ili
ty

 a
n

d
 s

lo
w

 r
e

d
u

ct
io

n
 k

in
et

ic
s 

as
 k

e
y 

p
ar

am
e

te
rs

 f
o

r 
im

p
ro

ve
d

 a
ct

iv
it

y,
 p

ar
ap

to
si

s 
in

d
u

ct
io

n
 a

n
d

 i
m

p
ac

t 
o

n
 d

ru
g-

re
si

st
an

t 
ce

lls
 o

f 
an

ti
ca

n
ce

r 
th

io
se

m
ic

ar
b

az
o

n
es

 (
D

O
I:

 

1
0

.1
0

8
9

/a
rs

.2
0

1
9

.7
8

5
4

) 

Th
is

 p
a

p
er

 h
as

 b
ee

n
 p

ee
r-

re
vi

ew
ed

 a
n

d
 a

cc
e

p
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g
 a

n
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

Table 1: Structure and IC50 (72 h) values of tested compounds in SW480 cells. 

Compound Structure TSC IC50 (µM) Cu-TSC IC50 (µM) 

FTSC 

 

6.54 ± 0.22 6.01 ± 0.54 

PTSC 

 

0.051 ± 0.025 0.057 ± 0.024 

Triapine 

 

0.68 ± 0.18 1.19 ± 0.61 

H2NNHMe 

 

2.54 ± 0.61 3.13 ± 1.48 

H2NNMe2 

 

0.80 ± 0.12 1.62 ± 0.28 

MeHNNMe2 

 

2.28 ± 0.17 3.30 ± 0.83 

Me2NNH2 

 

8.51 ± 1.18 4.97 ± 1.57 

Me2NNHMe 

 

7.80 ± 2.06 0.93 ± 0.38 
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Me2NNMe2 

 

0.038 ± 0.012 0.066 ± 0.020 

Dp44mT 

 

0.047 ± 0.018 0.034 ± 0.013 

DpC 

 

0.043 ± 0.017 0.039 ± 0.012 
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Table 2: IC50 (72 h) values of tested compounds in MES-SA and MES-SA/Dx5 cells. 

 

  

 

TSC IC50 (µM) Cu-TSC IC50 (µM) 

 

MES-SA 

MES-SA/Dx5 

(resistance factor) 

MES-SA 

MES-SA/Dx5 

(resistance factor) 

FTSC 1.87 ± 0.22 8.11 ± 0.94 (4.3) 9.45 ± 0.49 4.31 ± 0.72 (0.46) 

PTSC 0.129 ± 0.032 0.029 ± 0.003 (0.22) 0.081 ± 0.046 0.024 ± 0.005 (0.30) 

Triapine 0.63 ± 0.09 2.58 ± 0.33 (4.1) 2.44 ± 0.47 16.86 ± 2.15 (6.9) 

H2NNHMe 0.86 ± 0.10 4.05 ± 0.39 (4.7) 6.75 ± 1.31 21.35 ± 3.35 (3.2) 

H2NNMe2 0.51 ± 0.13 0.76 ± 0.17 (1.5) 2.57 ± 0.47 4.19 ± 0.24 (1.6) 

MeHNNMe2 0.99 ± 0.12 2.76 ± 0.00 (2.8) 6.22 ± 1.43 2.13 ± 0.47 (0.34) 

Me2NNH2 3.51 ± 0.55 3.29 ± 0.74 (0.94) 9.91 ± 1.22 3.24 ± 0.29 (0.33) 

Me2NNHMe 2.57 ± 0.31 2.24 ± 0.51 (0.87) 3.58 ± 0.97 1.13 ± 0.13 (0.32) 

Me2NNMe2 0.013 ± 0.002 0.004 ± 0.001 (0.31) 0.030 ± 0.018 0.008 ± 0.002 (0.27) 

Dp44mT 0.029 ± 0.015 0.006 ± 0.001 (0.21) 0.066 ± 0.039 0.004 ± 0.001 (0.06) 

DpC 0.034 ± 0.027 0.003 ± 0.002 (0.09) 0.009 ± 0.007 0.001 ± 0.0008 (0.11) 
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Table 3: pKa values of the TSC ligands determined by spectrophotometric titrations and 

overall stability constants for the copper(II) TSC complexes (logβ) * calculated from the 

conditional stability constants (logβ’5.9 of [CuL]+) and pKa values of the copper(II) 

complexes. pCu = −log *Cu(II)+ values calculated at pH 7.4 cCu(II) = cTSC = 1 µM and fraction of 

[CuL(OH)]. 

ligand mediu

m 

pKa 

(H2L+

) 

pKa (HL) logβ 

[CuLH]2

+ 

logβ 

[CuL]

+ 

logβ 

[CuL(OH)

] 

pCu % 

[CuL(OH)

] 

FTSC H2O 3.48

± 

0.01 

10.72±0.0

1 

20.34 18.26 9.56 11.9

6 

4.8 

PTSC H2O 3.61

± 

0.01 

10.22±0.0

1 

21.05 18.96 10.40 13.1

7 

6.5 

Triapine * H2O 4.25 10.58 20.08 17.57 8.93 11.3

5 

5.4 

H2NNHMe H2O 4.40

± 

0.01 

11.03±0.0

1 

20.26 17.72 9.10 11.1

2 

5.7 

H2NNMe2 H2O 4.64

± 

0.01 

10.09±0.0

1 

20.84 18.33 9.68 12.6

6 

5.3 

MeHNNMe

2 

H2O 4.87

± 

0.01 

9.87±0.01 20.80 18.16 9.97 12.7

5 

14.0 

Me2NNH2 H2O 4.43 10.87±0.0 20.56 18.25 9.72 11.8 6.9 
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± 

0.01 

1 1 

Me2NNHM

e 

H2O 4.53

± 

0.02 

10.98±0.0

7 

21.02 18.45 10.34 11.9

5 

16.3 

Me2NNMe2 H2O 4.93

± 

0.01 

10.69±0.0

1 

22.06 19.55 10.77 13.2

8 

4.0 

Dp44mT  H2O 3.44

± 

0.01 

10.44±0.0

1 

21.77 19.43 10.64 13.4

1 

3.9 

DpC 5% 

DMSO 

3.47

± 

0.01 

10.71±0.0

1 

- - - - - 

DpC 30% 

DMSO 

3.03

± 

0.06 

11.38±0.0

6 

19.28 17.15 7.69 10.1

7  

0.9  

DpC † H2O 3.50 10.67 22.81 20.36 12.00 14.1

3 

9.9 

Triapine ‡ 30% 

DMSO 

3.92 10.78 16.69 14.35 4.68 8.55 0.5 

H2NNMe2
 ‡ 30% 

DMSO 

4.31 10.29 17.05 15.12 5.63 9.38 0.8 

* pKa taken from Ref. (20). † Estimated values from the pKa values of DpC ligand measured 

in 5% and 30% (w/w) DMSO/H2O mixtures. ‡ Data taken from Ref.(5).  
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Table 4: Calculated observed rate constants (kobs) and half-lives (t1/2) in the copper(II) – TSC 

– GSH (1:1:50) systems from the spectral changes at the λmax of the copper(II) complex and 

absorbance values measured at 1 h compared to that of the ligand.  

 kobs (min‒1) t1/2 (min) λ (nm) fraction of non-

reduced Cu(II)-

complex at 1 h (%) 

FTSC 4.13×10‒2 17 380 10 

PTSC* 4.30×10‒4 1615 394 90 

Triapine † 1.10×10‒1 6 420 4 

H2NNHMe 7.70×10‒2 9 420 10 

H2NNMe2  1.60×10‒2 44 424 61 

MeHNNMe2 1.12×10‒2 62 450 57 

Me2NNH2 4.47×10‒2 16 416 24 

Me2NNHMe 3.90×10‒2 18 420 20 

Me2NNMe2 6.97×10‒4 1019 422 92 

Dp44mT 2.12×10‒3 329 412 80 

DpC 2.30×10‒3 298 422 85 

FTSC 4.13×10‒2 17 380 10 

PTSC† 4.30×10‒4 1615 394 90 

* kobs = 1.03×10‒3 min‒1, t1/2 = 675 min in the presence of 100 eq. GSH (20). † kobs = 6.30×10‒

2 min‒1, t1/2 = 11 min in the presence of 20 eq. GSH; kobs = 5.90×10‒2 min‒1, t1/2 = 12 min in 

the presence of 10 eq. GSH.  
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Figure Legends 

 

Figure 1: Change of anticancer activity upon complexation with copper(II) and potential 

of the tested TSC panel to induce paraptosis. A: Differences of logarithmic anticancer 

activity of the metal-free ligand to the respective copper in the indicated cell lines complex 

[pIC50(TSC) - pIC50(Cu-TSC)]. IC50 values were determined in mono- or co-culture as 

described in the Materials and Methods section after 72 h. B: Fold resistance of MES-

SA/Dx5 compared to MES-SA cells against either the metal-free TSCs or the respective 

copper(II) complexes (Cu-TSC). C: Representative microscopy images of SW480 cells 

treated with 1 µM of the indicated metal-free TSCs for 24 h. Arrows indicate the 

cytoplasmic vesicles. Scale bar: 100 µm. The graph on the right shows the percentage of 

cytoplasmic vesicles observed after treatment of SW480 cells with 0.1 or 1 µM metal-free 

TSC for 24 h. Values given are mean ± standard deviation of three areas per well of two 
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independent experiments. Line indicates 10% threshold of vesicle induction. D: Metal-free 

compounds inducing vesicles (threshold: 10%) at 1 µM in SW480 cells also showed a higher 

anticancer activity in the nanomolar range [pIC50 = -log(IC50)]. Significance between groups 

was calculated using T-test by two-tailed t-test using GraphPad Prism software (** p < 

0.01). Open symbols indicate nanomolar-active TSCs. 
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Figure 2: Higher copper(II) complex stability correlates with increased anticancer activity. 

A: UV-vis spectra of Me2NNMe2 (40 µM) recorded at pH values between 2 and 11.9 and 

scheme for stepwise deprotonation of metal-free TSCs. B: UV-vis spectra of the copper(II) 

complex of Me2NNH2 (25 µM) recorded at pH values between 2 and 11.5 and scheme of 

stepwise deprotonation of TSC copper(II) complexes. C: Speciation curves of Cu-Triapine 

system depending on pH. D: UV-vis spectra of the copper(II) complex of Me2NNMeH (25 

µM) in the presence of EDTA at various ratios (EDTA to complex, cEDTA = 0-175 µM) and the 

spectrum of the metal-free Me2NNMeH (grey dashed line) at pH 5.9. E: Correlation of pCu 

[-log(Cu(II))] values, representing copper(II) complex stability, to anticancer activity (pIC50 

values) of the TSC copper complexes in MES-SA cells. R2 and p values have been calculated 

using Graph Pad Prism software. F: Correlation of pCu to the logarithmic resistance factor 
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to the metal-free TSCs of MES-SA/Dx5 cells compared to parental MES-SA cells. R2 and p 

values have been calculated using Graph Pad prism software. G: Grouping of the 

compounds by vesicle induction (threshold: 10%) at 1 µM treatment metal-free ligand of 

SW480 for 24 h or MES-SA cells for 48 h showed a higher complex stability in vesicle-

inducing TSCs. Significance between groups was calculated by two-tailed T-test using 

GraphPad Prism software (*** p < 0.001, * p < 0.05). Open symbols indicate nanomolar-

active TSCs. 
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Figure 3: Cell-free reduction rate and superoxide production of copper(II) complexes and 

their correlation with biological activity. A: Time dependence of the UV-vis spectra of the 

MeHNNMe2 copper(II) complex (25 µM) in the presence of 50 equivalents GSH (1.25 mM) 

and the spectrum of the metal-free ligand (dashed line) at pH 7.4 under O2-free condition. 

B: Decrease of absorbance (in % A/A0) recorded at λmax of the different copper(II) TSC 

complexes over time at the same conditions given in A. Symbols: Triapine (■), H2NNHMe 

(♦), FTSC (▲), Me2NNHMe (●), Me2NNH2 (▲), MeHNNMe2 (♦), H2NNMe2 (●), Dp44mT (─), 

DpC (●), Me2NNMe2 (×) and PTSC (▲). C: Correlation of pCu to the % of non-reduced 

copper(II) complexes calculated from GSH reduction studies. D: Correlations of the 

logarithmic reduction half-life of the TSC complexes by GSH to the anticancer activity (pIC50 

values) of metal-free ligands or copper(II) complexes in SW480 cells. R2 and p values have 

been calculated using Graph Pad prism software. E: Grouping of the compounds by vesicle 

induction (threshold: 10%) at 1 µM treatment metal-free ligand for 48 h in SW480 cells 

showed a slower copper(II) complex reduction by GSH in vesicle-inducing TSCs. 

Significance between groups was calculated by two-tailed T-test using GraphPad Prism 

software (** p < 0.01). Open symbols indicate nanomolar-active TSCs. F: Fold increase of 

superoxide levels by 5 µM treatment of indicated TSC copper(II) complexes in the presence 
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of 2 mM NAC was evaluated by the cell-free NBT assay. Values given are mean ± standard 

deviation of duplicates of two independent experiments. G: Correlation of pCu (indicating 

copper(II) complex stability) with superoxide production. Open symbols indicate 

nanomolar-active TSCs. R2 and p values have been calculated using Graph Pad prism 

software. 
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Figure 4: Upregulated redox stress signaling after TSC treatment. A: Intracellular 

superoxide production measured by flow cytometry of DHE fluorescence of MES-SA cells 

treated with 5 µM of indicated TSC with or without 2 mM NAC for 1 h. Values given are 

mean ± standard deviation of at least three independent experiments. B: Normalized 

mRNA expression values for SOD1/2/3 of SW480 cells untreated or treated with 0.1 µM 

Me2NNMe2, 1 µM Me2NNMe2 or 1 µM Triapine for 15 h were assessed by whole genome 

gene expression analysis performed with two technical replicates from two biological 

replicates. Normalization and annotation was performed with GeneSpring software 

(Agilent). C: Western blot analysis of SOD2 expressed by SW480 cells treated with 1 µM of 

the indicated TSC for 24 h. GAPDH was used as a loading control. Densitometric 

D
ow

nl
oa

de
d 

by
 N

or
th

w
es

te
rn

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
03

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 48 of 67 
 
 
 

48 

A
n

ti
o

xi
d

an
ts

 a
n

d
 R

e
d

o
x 

Si
gn

al
in

g
 

H
ig

h
 c

o
p

p
er

 c
o

m
p

le
x 

st
ab

ili
ty

 a
n

d
 s

lo
w

 r
e

d
u

ct
io

n
 k

in
et

ic
s 

as
 k

e
y 

p
ar

am
e

te
rs

 f
o

r 
im

p
ro

ve
d

 a
ct

iv
it

y,
 p

ar
ap

to
si

s 
in

d
u

ct
io

n
 a

n
d

 im
p

ac
t 

o
n

 d
ru

g
-r

e
si

st
an

t 
ce

lls
 o

f 
an

ti
ca

n
ce

r 
th

io
se

m
ic

ar
b

az
o

n
es

 (
D

O
I:

 

1
0

.1
0

8
9

/a
rs

.2
0

1
9

.7
8

5
4

) 

Th
is

 p
a

p
er

 h
as

 b
ee

n
 p

ee
r-

re
vi

ew
ed

 a
n

d
 a

cc
e

p
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g
 a

n
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

quantification using ImageJ of two separate experiments is given as mean ± standard 

deviation. Significance to control was calculated by one-way Anova and Dunnett’s multiple 

comparison test using GraphPad Prism software (** p < 0.01, * p < 0.05). D: Micromolar-

active TSC-treated SW480 cells express higher protein levels of SOD2 than nanomolar-

active TSC-treated cells. Open symbols indicate nanomolar active TSCs. E: Female Balb/c 

mice bearing subcutaneous CT-26 tumors were treated with solvent (10% DMSO, n = 4) or 

Triapine (10 mg/kg , n = 4) p.o. for 5 consecutive days a week for two weeks. Tumor were 

sampled and paraffin-embedded for immunohistochemical stain of SOD2. Representative 

images of the stain are depicted (scalebar = 50 µm). Percent highly positive SOD2-stained 

area of whole tissue slides were analysed by Definiens software. Significanct difference to 

solvent group was calculated by one-way ANOVA with Dunnett‘s multiple comparison test 

(* p < 0.05). F: GSEA from whole-genome gene expression data revealed significant 

enrichment in genes of the Gene Ontology term “Response to zinc ion” in SW480 cells 

treated with 1 µM Me2NNMe2 compared to untreated cells. Normalized enrichment score 

(NES) and false discovery rate (FDR) are given. G: Upregulation of metallothioneins and 

copper transporter ATP7A/B mainly contributed to the enrichment of the Gene Ontology 

term “Response to zinc ion” as seen by their individual mRNA expression levels given as 

mean log fold change to control ± standard deviation.  
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Figure 5: Inhibition of PDI by TSC copper(II) complexes. A: PDI activity was measured with 

10 or 100 µM of indicated TSC copper(II) complexes or copper alone using the 

PROTEOSTAT PDI assay kit. B: TSC complexes that inhibit PDI above levels of copper ions 

alone also showed higher pCu (indicating copper(II) complex stability), anticancer activity 

(in SW480 cells) and vesicle formation (in SW480 cells). Open symbols indicate nanomolar-

active TSCs. C: Correlation matrix of measured chemical and biological parameters in MES-

SA cells. P-values corrected for multiple comparisons (q-value) with an FDR of 1% are 

indicated with grayscale and were calculated with GraphPad Prism 8. Labels on x-axis are 

grouped thematically on the y-axis for a better overview. D: Differences in the proposed 

mode of action of nanomolar-active TSCs (represented by Me2NNMe2) and micromolar-

active TSCs (represented by Triapine).  
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