
Gradus Vol 5, No 2 (2018) 381-390
ISSN 2064-8014

Yggdrasil: a test question editor with symbolic expression
support in high-throughput multi-language education

Péter Makra1∗, László Égerházi1 and Ferenc Bari1

1Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, Hungary

Keywords:
tests, question variants, symbolic
expressions, C#

Article history:
Received 1 August 2018
Revised 4 September 2018
Accepted 1 Oktober 2018

Abstract
When preparing test questions for a large population of students,
one usually needs to reconcile two conflicting factors: on one
hand, the variability, and on the other hand, the consistent diffi-
culty of questions. Random selection from a large pool of unre-
lated questions does ensure variability, but at the cost of compar-
able difficulty. One way to provide balanced difficulty is to create
templates with variants that may differ in numeric values or relev-
ant phrases, or may simply employ negation. Experience shows
us, though, that manual variant management is as cumbersome
as it is error-prone. In this paper, we shall introduce a program
we wrote in C# to address this problem. The program, Yggdrasil,
supports the creation of templates with text-valued, logical or nu-
meric symbolic expressions, manages their interdependence in
an internal context and produces an output where the expres-
sions are replaced by individual variants. The templates are easy
to import into computer-assisted translation tools, allowing the
translation of the templates themselves instead of the high num-
ber of variants. At the moment, Yggdrasil can provide xml output
for the CooSpace learning management system used by the Uni-
versity of Szeged or LATEX files for a printable pdf, but to increase
availability, we plan to implement Word docx output.

1 Introduction

The assessment of students is always a challenge regardless of the method of education. Though
oral examination offers the greatest possible depth, it is inherently subjective, and above a certain
student population it becomes unfeasible. To tackle the assessment of a large number of students,
one needs to find a method that can be automated using computers. It is a science in its own right
how to construct good automatable tests that lose as little of the probing depth in comparison with
oral examinations as possible, and it is clearly outside the scope of this paper. What we focus on
here is two problems associated with computerised tests: cheating and test difficulty.

A test question that can be automated is inherently easier for students to copy from their peers
as it usually involves a choice between alternatives or a short numerical answer. To address this
problem, one either ensures a greater physical distance between students during a test, thus sacri-
ficing examination throughput, or gives different questions to each student. But if the questions are
fully different, test difficulty inherently varies from student to student, it is hard to standardise per-
formance and students may complain legitimately. A straightforward solution to avert this danger is
to use questions that are not totally different but are variants of each other: multiple choice questions
addressing the same concept, but with some variation (achieved using negation in the statements or

∗Corresponding author. E-mail address: makra.peter@med.u-szeged.hu

381

Péter Makra

a different choice out of a family of related or complementary concepts) in the introductory question
or statement (stem [1]), in the true items (keys [1]) or the false items (distractors [1]), or numerical
questions that use the same formula but with different numbers.

The more variants we have, the better we can balance variability with difficulty, but the harder
it becomes to maintain the question bank. In creating variants of a multiple choice question, for
instance, a negation in the stem may not be correctly reflected in the key or in the distractors, resulting
in a faulty question having either a wrong key or multiple keys. Similarly, the greater the variation of
the particular numerical values in a numerical question, the greater the probability of calculation
errors. This problem is exacerbated in a multi-language environment, where question banks must be
managed simultaneously in multiple languages. For consistent and feasible maintenance of question
banks in such an environment, one must ensure the following:

1. a clear identification system that allows us to separate variants and trace them to their root
template;

2. automation in variant generation to reduce the risk of human errors;

3. streamlined storage in which questions are reduced to templates and only these templates
are stored and translated to other languages, whilst variants are created on demand from the
translated templates.

In this paper, we shall introduce Yggdrasil, a test question editor program whose aim is to fulfil
all these requirements. We have developed it in C#, using the .NET framework and the Windows
Presentation Foundation (WPF) user interface architecture. It employs a symbolic notation we have
devised, and this allows us to create templates from which variants of equal difficulty can be gen-
erated on demand in a consistent manner. It stores questions in its own XML format, which makes
it compatible with computer-assisted translation tools, and it supports import from and export to
CooSpace, the learning management system used by the University of Szeged. It can also produce
LATEX output that can be translated to printable pdf files for cases when computerised tests are not
available.

2 The program

Yggdrasil is written in C# and relies on the classes provided by the .NET framework. The user
interface is built using the Windows Presentation Foundation (WPF). We have written most of the
code ourselves but used two third-party libraries: mahApps [2], which provides a more aesthetic
user interface, a number of additional user controls and tools for easy application skinning; and Math
Parser .NET [3], a library that allows the program to parse mathematical expressions in text format
and translate them into programmatic representations of functions that can be evaluated at arbitrary
values of the independent variables.

2.1 Questions

At the moment, Yggdrasil supports two types of questions: choice questions and numerical ques-
tions. Both of these derive from an abstract base class, which provides functionality shared by all
question types and makes it possible for us to implement new question types in the future whilst
staying compatible with the existing program logic.

All questions have a score, a culture and may have category labels. The score is the amount of
points the learning management system – CooSpace in our case – awards for a correct answer. The
culture is currently either English, German or Hungarian, and it determines the decimal separator in
the textual representation of numbers. Categories serve as descriptors on the basis of which we plan
to support searching or filtering by subject, topic or difficulty, but we have not yet implemented this
feature.

382

Yggdrasil : a test question editor with symbolic expression support in high-throughput multi-language education

Questions also have a unique identifier (ID), which can be an arbitrary piece of text, but we prefer
structured identifiers that carry information on the subject, the topic, the index of the template and
that of the particular version, each separated by a fixed character, such as a full stop. The identifier
physics.basics.18.2 in panel A of Figure 1, for example, tells us that it is a physics question, from a
collection that deals with basics like SI, scalars v vectors, &c, and the third variant of the 19th disjunct
question of this collection (indexing starts at 0). When creating variants of a question, Yggdrasil
creates a variant identifier postfixing the identifier of the parent question with a full stop followed by
the index of the variant. This system allows us to decide whether a particular question is a variant of
a template or a disjunct question.

2.1.1 Choice questions

We apply the term ‘choice question’ to fuse English terminology, in which ‘multiple choice’ denotes
a question with multiple items to choose from but with only one key, with Hungarian terminology, which
distinguishes between multiple-item questions with one key and those with multiple keys. Where
distinction is necessary, we shall call these ‘single-key choice questions’ and ‘multiple-key choice
questions’, respectively. Panel A of Figure 1 illustrates a choice question in Yggdrasil.

A B

Figure 1. A multiple-key choice question (A) and a numerical question (B) in the question editor panel
of Yggdrasil

The program itself does not distinguish between single-key and multiple-key choice questions:
they belong to the same class, only the number of keys is different. In CooSpace, however, these
represent two different question types. The only ambiguous case is when we export a choice question
with a single key to CooSpace, since this can be understood either as a CooSpace question of single-
key format or a question of multiple-key format which happens to have a single key. Yggdrasil offers
an option to decide between single-key and multiple-key CooSpace export.

2.1.2 Numerical questions

Numerical questions are questions whose answer is a single real number. To allow for rounding
errors, numerical questions have a tolerance value (5% by default), which determines the interval
in which we consider an answer correct. CooSpace does not currently support entering a unit or a
number in scientific format, so we prefer to specify the unit in the question text and choose an SI
prefix for which the numeric value is convenient to enter. Panel B of Figure 1 shows an example of a
numerical question in Yggdrasil.

383

Péter Makra

2.2 Organisation and storage

Yggdrasil has a Windows installer, which, in addition to copying the required files on the computer,
will associate two file types with Yggdrasil in the registry: catalogue files (extension: .ycm) and
assortment files (extension: .yar). These will appear with the correct description and with their own
icons in File Explorer, and double-clicking will open them in Yggdrasil.

2.2.1 Catalogues

A catalogue in Yggdrasil is a collection of questions similar in topic, type or difficulty. A catalogue
is stored as a single xml file and can be exported to a single CooSpace quiz (see Subsection 2.4).
We use catalogues to establish pools of questions of the same topic or group examination questions
by topic, type and difficulty. A catalogue may contain simple questions or templates (see Section 3).
Each question ID within a catalogue must be unique.

2.2.2 Assortments

Assortments represent larger units consisting of several catalogues. A typical use of an assort-
ment is to represent a particular test, within which each catalogue is a pool of questions from the
same topic and of similar difficulty. In the final realisation of the test, the learning management sys-
tem can allot to each student a set number of questions randomly selected from each catalogue,
ensuring that students receive questions that are similar in topic and difficulty, but are not identical.
Yggdrasil stores assortments as zip files that contain the catalogues as individual xml files, and can
export them to a zip file CooSpace will import as a folder structure with catalogues as subfolders.

2.3 User interface

The user interface of Yggdrasil is split into two panels of equal width. On startup, each panel
is occupied by an assortment view. An assortment view contains a catalogue view showing the
questions in the currently selected catalogue as a list of text blocks. The user can open assortments
or catalogues in both panels and drag and drop questions between the panels with the mouse.
Certain user actions, such as double-clicking a question in a catalogue to edit it, or generating variants
of an assortment or a catalogue, will bring up a new view in the opposite panel. In such cases, the
view previously occupying a panel will be saved on a stack to be restored when the new view closes
(eg, when the user has finished editing the question). Figure 2 shows such an arrangement.

2.4 Output files

Our computerised tests are hosted by CooSpace, which is a learning management system that
services a few Hungarian universities, including the University of Szeged. CooSpace imports and
exports questions in a simple xml format, which was easy to implement in Yggdrasil. As mentioned
above, the two possible import options are a simple xml file for stand-alone question collections
that get translated into a single question folder in CooSpace, or a structured zip file, which will be
imported into a folder structure of several question banks. Figure 3 shows how CooSpace renders
the questions we have exported.

To facilitate offline tests, Yggdrasil can also generate LATEX source files, which can be compiled
into printable pdf files (as shown in Figure 4) if LATEX is installed on the computer. These files contain
both the student copy and the key, the latter also in a grid format, which makes correcting papers more
convenient. Since LATEX is only used by a relatively small dedicated community, we consider it our
priority in future development to implement similar output in Microsoft Word to increase accessibility.

3 Templating and variant generation

Since the most important feature of Yggdrasil is the symbolic framework that makes it capable
of handling templates, we shall devote a whole section to this. What we refer here as a template

384

Yggdrasil : a test question editor with symbolic expression support in high-throughput multi-language education

Figure 2. The user interface of Yggdrasil with the active catalogue in the left panel and the question
being edited in the right panel

is basically a question of which we can generate variants. Templates can either be symbolic or
non-symbolic.

3.1 Non-symbolic templates

Templates need not contain symbolic expressions to allow the creation of variants. Consider a
choice question that contains a large pool of keys and distractors. A variant of such a template
represents a random selection of a set number of keys and distractors out of the items of the template.

3.2 Symbolic templates

To achieve the required flexibility and consistency, we need to establish a syntax of symbolic
expressions. In Yggdrasil, any component of a question may contain such expressions, which are
denoted in the text as sections enclosed in double square brackets. Within the double square brack-
ets, each symbolic expression must contain a symbol that must be unique within a single question
(different questions may freely use the same symbol but no question may contain two expressions
with the same symbol), followed by an equals sign and the expression body. The last section of a
symbolic expression may be an optional format specifier (prefixed by a dollar sign), which regulates
how the evaluated result of the symbolic expression will appear in the text of the variants. Most format
specifiers are standard C# numeric format strings, but Yggdrasil also uses a custom format specifier
H, which causes the value of expression to be hidden in the output – this is useful when defining
expressions that are needed in the calculations but must not appear in the final text. The format
specifier not only determines the format and the number of decimals of numerical expressions in the
text, but also tells Yggdrasil to round the numerical expression internally to the number of decimals
specified, in order to prevent rounding errors from appearing in the output. For example, the text [[b
= 5~20 $F0]] on the right in Figure 2 defines a symbolic expression b whose value is an integer (F0
is the standard C# numeric format string representing a number with no fractional decimals) picked
randomly from the interval between 5 and 20 (see 3.2.4).

385

Péter Makra

Figure 3. The questions from Figure 1 as they appear in CooSpace

Yggdrasil traces symbolic expressions as regular expression patterns. When generating variants,
it looks for such patterns in the text and builds an internal database (the context) out of them. A
context is essentially a list of expressions uniquely identified by their symbol, which allows cross-
referencing between expressions. Internally, all symbolic expressions evaluate to either a number
(rounded to the precision given by the format specifier), a piece of text or a logical value. In the
output of variant generation, symbolic expressions are replaced by the text representation of their
current values.

Expressions may rely upon the values of other expressions within the same context. Evaluation is
always preceded by a parsing round, so expressions can refer to other expressions that are defined
later in the text. To continue the previous example, [[A = b^2]] will calculate the square of the current
value of b, and it will work correctly even when it precedes the definition of b in the text.

Symbolic expressions may be non-variable or variable. Non-variable expressions are either con-
stants or are fully determined by the value of other expressions, whilst variable expressions have an
internal state that may change from variant to variant. This internal state may simply be an index that
determines which element of a table (see 3.2.2) we choose or the state of a random generator in a
random pick (see 3.2.4). In the examples above, b is variable and A is non-variable. Variable expres-
sions are required for a template to have several variants; if a template contains only non-variable
symbolic expressions, it will only yield a single variant.

To illustrate the templating and variant generation process with an example, let us take the ques-
tion being edited in in Figure 2. It reads
{ A swimming pool has dimensions [[a = 20~50 $F0]] m × [[b = 5~20 $F0]] m and a flat bottom. When
the pool is filled to a depth of [[h = 1~10 $F1]] m with fresh water, how many meganewtons is the
force acting on the bottom (including the atmospheric pressure, <i>p</i>0 = [[p0 = 101.3]] kPa)?
Answer: [[F = a * b * (p0 + g * h)]] |

When generating variants, Yggdrasil will first parse the whole text of the question and find the follow-
ing symbolic expressions:

• a, b, h: random picks (see 3.2.4);

• p0: constant (see 3.2.1);

• F: formula (see 3.2.5), a function of all other expressions in the context;

386

Yggdrasil : a test question editor with symbolic expression support in high-throughput multi-language education

Figure 4. The printable output of Yggdrasil, generated using LATEX. The student page is on the left,
whilst the key is on the right.

• g: constant – not defined in the text but a built-in constant of Yggdrasil.

The random picks are variable expressions, whilst the formula and the constants are non-variable. To
create a variant, Yggdrasil will change the state of the variable expressions – in this case, generate
a new random number within the specified bounds for each random pick a, b and h. Each (a,
b, h) combination of variable expression states defines a new variant. In the final step, Yggdrasil
will evaluate F using the current value of a, b and h and that of the constants, and will replace
each symbolic expression definition with the textual representation of the current value of the given
expression. The final form of a variant will be like
{ A swimming pool has dimensions 42 m × 16 m and a flat bottom. When the pool is filled to a depth
of 7.5 m with fresh water, how many meganewtons is the force acting on the bottom (including the
atmospheric pressure, <i>p</i>0 = 101.3 kPa)?
Answer: 117.52 |

Then Yggdrasil choses a new random value for a, b and h each, and repeats the process above.
The decimal separator in the text is determined by the culture of the question: point for English and
comma for German or Hungarian questions.

Yggdrasil ensures that each variant thus generated is unique: it maintains a table of unique
integer keys (a hash table) for each variant using the built-in algorithm of .NET, which guarantees
identical keys for identical variants, and if the table already contains the key of a ‘new’ variant, the
variant is discarded. To avoid infinite loops in cases where no new variants are available, Yggdrasil
defines a timeout: a maximum number of iterations above which it aborts variant generation even if it
could not create enough variants.

In what follows, we shall provide an overview of the types of symbolic expressions Yggdrasil
recognises.

3.2.1 Constants

Constants are numeric, text or logical literals that can be referenced by other symbolic expres-
sions. Examples: [[g = 9.81 $H2]] for a numeric, [[t = "text" $H]] for a text and [[b = true $H]] for a
logical constant. Constants are of course non-variable expressions.

387

Péter Makra

3.2.2 Tables

Tables enumerate numeric, text or logical literals one after the other, separated by a semicolon.
The list of literals in a table must be enclosed in braces, eg [[t = { "ultrasound"; "CT" }]]. Tables
are variable expressions whose state is reflected by the index of the item currently chosen. When
generating a new variant, Yggdrasil chooses a new index randomly between 0 and the number of
items in the table minus 1.

3.2.3 Lookup tables

Lookup tables are tables whose value is determined by the current index of other tables. Their
form is similar to that of tables, but the brace-enclosed list of literals is followed by a comma-separated
list, in brackets, of the symbols of other tables whose current index determines the current value of
the lookup table. Lookup tables are non-variable expressions which are useful when we have to
select one out of a finite set of options depending on the state of other tables.

Example:
{ The [[t = { "lower threshold of the audible frequency domain for humans"; "upper threshold of
the audible frequency domain for humans"; "lower threshold of the frequency domain for human
speech"; "upper threshold of the frequency domain for human speech" }]] is [[f = { 0.02; 20; 0.3; 3
}(t)]] kHz. Assuming a speed of wave of [[c = 330]] m/s, how many metres is the wavelength of this
tone?
Answer: [[lambda = 0.001 * c / f]] |

Here t is a table of four different choices. The lookup table f defines corresponding numeric values
for each choice in t, in the same order as the choices appear in t. It is not a variable expression, which
would determine a new variant, but a dependent expression whose current value is determined by
the state of t. This template has four potential variants as the only variable expression in it, t, contains
four distinct items. If the current value of t is "upper threshold of the audible frequency domain for
humans", the second item in t, f will evaluate to its second item, 20.

Lookup tables may depend on multiple tables. In such cases, the enumerated body of the lookup
table is to be understood as a two- (or higher) dimensional matrix whose rows are indexed by the first
table in the argument list and whose column index is determined by the second table, &c. To make
these lookup tables readable despite the fact that the elements are enumerated in the same row
without line break, Yggdrasil also accepts the | character as a separator in addition to semicolons.
Let us see an example.
{ Open the workbook CT.xlsx. Calculate the sinogram in worksheet [[sheet = { "A"; "B"; "C"; "D";
"E" }]]. What value does cell [[cell = { "F14"; "D15"; "C16" }]] of the sinogram contain? Read the
values from left to right in the 0◦ projection, from the lower left corner to the upper right corner in the
45◦ projection and from bottom to top in the 90◦ projection, and enter them into the respective row in
the sinogram from left to right.
Answer: [[m = { 3 ; 17 ; 6 | 5 ; 15 ; 3 | 5 ; 19 ; 8 | 2 ; 12 ; 2 | 6 ; 13 ; 4 }(sheet, cell)]] |

Here the lookup table m depends on two tables, sheet and cell. Sections delimited by | indicate
enumeration by sheet, within which semicolons separate values that are indexed by cell. This
means that when sheet assumes its second possible value, "B", and the current value of cell is the
third one, "C16", m will evaluate to the third semicolon-separated item within the second vertical
line delimited segment, that is, 3. The definition of m would be syntactically correct with semicolons
instead of vertical lines and would produce the same output, but it would lose readability.

3.2.4 Random-pick expressions

The most crucial element of flexible variant creation is the ability to generate random numeric
values. In Yggdrasil, random-pick expressions serve this purpose. They are variable expressions
defined by two numeric literals (lower and upper bounds) separated by a tilde sign. To pick one
example from the ones already mentioned: [[h = 1~10 $F1]]. This expression generates a random

388

Yggdrasil : a test question editor with symbolic expression support in high-throughput multi-language education

number between 1 and 10 and rounds it to a single decimal place. It is important to note again that
the format specifier (F1 in the example) does not only regulate the text representation of the result but
it also instructs the program to round the random number to the specified precision (one digit in the
example) and use this rounded value in all further tasks. This way we can avoid situations where the
student using the rounded values that are displayed is bound to have a result different to the internal
one based on more precise numbers.

3.2.5 Formulae

No quantitative question worth asking would be possible without the ability to incorporate calcu-
lations into the symbolic framework. To do this, we need to be able to recognise numbers, variables,
mathematical operators and functions in the text, and translate them into executable program ele-
ments. This is called parsing. We did not want to reinvent the wheel and chose an existing open-
source solution, Math Parser .NET, to accomplish this task. This library can parse text containing
numbers, symbols, brackets, operators (+, −, ∗, /, % – the modulo operator, ^ – exponentiation) and
basic mathematical functions (abs, sin, cos, tan, log, logn) and build executable algorithms out of
them. In addition to built-in functions, it allows the user to register custom functions without having
to edit the source code, which we do leverage in Yggdrasil to offer inverse sine, cosine and tangent;
sine, cosine and tangent whose argument is provided in degrees (and not radians as in the built-in
implementation) and functions for conversions between degrees and radians.

Math Parser .NET is an open-source library whose source we can and may (under Code Project
Open Licence 1.02) modify, and this was important to us mainly because Yggdrasil needs to com-
municate with the parsing engine to know if a given piece of text is recognised as a mathematical
expression and to register the list of symbols such a mathematical expression is dependent upon.

Using the functionality that Math Parser .NET offers, Yggdrasil defines formulae as non-variable
symbolic expressions containing numbers, symbols of numerical expressions and the operators and
functions discussed above which evaluate to a numeric value. For instance, the expression [[F = a *
b * (p0 + g * h)]] in the first example is a formula. When parsing, Math Parser .NET will recognise
the expression body as a valid mathematical expression and identify the symbols a, b, p0, g and h
as variables upon which the formula depends. Yggdrasil stores the list of these variables and the
expression body, and when we evaluate the formula, it will retrieve the current value of each, register
the values with Math Parser .NET, which in turn will evaluate the expression body using the current
values.

3.2.6 Custom methods

Although Math Parser .NET does allow us to register custom functions, it still has a limitation:
these functions can only have real numbers as their input or output. If we wish to process text or
logical information, we have to implement our own custom methods. These are similar in appearance
to the mathematical functions in formulae: the method name is followed by a pair of brackets which
contain the comma-separated list of the symbols of the independent variables. The two main differ-
ences are that we are only allowed to list the symbols and no arithmetic is allowed within the brackets,
and that the symbols can (and usually do) refer to non-numeric (that is, text or logical) variables or
can return non-numeric values. The three custom methods at the moment are huart(w), which takes
a text variable w and returns the appropriate Hungarian definite article (‘a’ or ‘az’); Huart(w), which
does the same, only with a capital initial for the definite article (‘A’ or ‘Az’) and eq(a, b), which has two
compulsory arguments and returns true when these are equal and false otherwise. Our future plan
is to merge this category with formulae and rewrite our custom copy of Math Parser .NET so that it
can handle text and logical values.

389

Péter Makra

4 Conclusions and outlook

In this paper, we have introduced Yggdrasil, our test question editor with templating capability,
devoting special attention to the symbolic expressions that make such templating possible. We are
confident that such a framework as the one shown here fulfils the main requirements we outlined
in the Introduction: it can support tests that make cheating less feasible whilst ensuring consistent
difficulty. We are currently in the process of testing this statement with the statistical analysis of three
years – six semesters – of data. We have been applying these templated tests for three years in our
medical physics practicals. More than 500 students write these tests each year in three languages
– English, German and Hungarian –, not all together but distributed into groups all over the week,
which gives us a unique opportunity to check whether there is an efficient exchange of information
between groups that wrote the test at the beginning of the week and those that wrote it later. Though
it does not yield insight into the feasibility of cheating per se, but might give us a hint at how easy it is
to pass information on the questions between the students, and these two are obviously related.

Currently Yggdrasil is geared towards our local needs with its CooSpace and LATEX export cap-
abilities, but it is easy to extend these if the desired export format is documented. One of our main
priorities for the future is to implement Microsoft Word export, which has been made possible by
the fact that docx is an open and documented format, however convoluted it may be. Even before
that, our next step will be to incorporate searching and filtering functions, which will make use of the
already supported categorisation capability we discussed in Subsection 2.1.

References

[1] Jerard Kehoe, ‘Writing multiple-choice test items,’ Practical Assessment, Research & Evalu-
ation, Nov-1995 [Online]. Available: https://pareonline.net/getvn.asp?v=4&n=9. [Accessed: 18-
Jul-2018].

[2] mahapps.metro [Online]. Available: https://mahapps.com/. [Accessed: 18-Jul-2018]

[3] Icemanind, ‘Math Parser .NET,’ Code Project, 31-Oct-2011 [Online]. Available:
https://www.codeproject.com/articles/274093/math-parser-net. [Accessed: 18-Jul-2018]

390

	Introduction
	The program
	Questions
	Choice questions
	Numerical questions

	Organisation and storage
	Catalogues
	Assortments

	User interface
	Output files

	Templating and variant generation
	Non-symbolic templates
	Symbolic templates
	Constants
	Tables
	Lookup tables
	Random-pick expressions
	Formulae
	Custom methods

	Conclusions and outlook

