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 Abstract 
Automatic fuzzy system generation from sample data is a 
common task in fuzzy modeling. Here usually first an initial 
system is created using clustering, grid partitioning or other 
approaches and next, the parameters of the system are 
optimized based on the difference between the sample output 
and the output of the fuzzy system.  
The software being presented in this paper supports the whole 
process providing a wide range of parameterization 
opportunities. It also includes an optimization toolbox that offers 
five optimization algorithms, from which one represents a novel 
approach. The proposed new algorithm was compared with four 
well-known methods using several benchmark functions and it 
ensured better results in case of many functions. 

1. Introduction 

The original goal of our project was to create a software capable creating a fuzzy system 
from sample data. The fuzzy system should work as similar as possible to the modelled system 
described by sample data. The creation of the fuzzy system would be done in two steps, first one 
generates an initial system using the sample input and output data, then the parameters of the 
systems are optimized to make it even more accurate. Multiple types of fuzzy set based solutions 
were meant to be implemented, as well as different optimization methods to choose from. 

Basically optimization methods are used to find the combination of parameters that result in 
the most favorable output. In most of the cases the problem can be formulated in such a way that 
the goal becomes finding a minimum point. This is why the implementation the chosen methods 
targeted only the search for the minimum.  

A test application was also developed for the optimization methods, which included several 
test-functions to see how well each method performed on various test functions. Measurements 
were made of their effectiveness and the tool can help with finding proper values for the 
optimization method parameters.  

Having an optimization toolbox developed our research work focused more on the specific 
field of fuzzy model generation. Fuzzy model based solutions are widely used to calculate an 
output value from given input values according to a set of rules that specify the connection 
between antecedent and consequent fuzzy sets. Fuzzy systems can be used in a wide variety of 
cases and require fairly low computational power to process even in complex cases. Being able to 
acquire an appropriate system usually poses a challenge, but our tool could present a solution. 

The rest of this paper is organized as follows. Section 2 gives a short introduction in the 
optimization methods included into the optimization toolbox presenting the main ideas of the 
mentioned methods. Section 3 presents the results of the experimental investigation of the 
optimization techniques using five well-known benchmark functions. Section 4 focuses on fuzzy 
system generation and optimization and the conclusions are drawn in Section 5. 
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2. Optimization Methods 

The goal of an optimization process is finding a combination of values within given bounds 
that result in the most favorable output. Since the connection between the input and output sides is 
not always given with such a mathematical function for which one could determine its minimum 
point easily by analytical methods, we use a guided search that aims finding the global minimum of 
a so called fitness function. Most methods keep repeating a sequence of given steps until a certain 
condition is met, which can be one of the following. 

 A solution has been found that ensures a fitness value below a threshold value. 

 A given number of iterations have been reached. 

 The number of fitness evaluations has exceeded a limit. 
Further on the five optimization approaches that are included in our toolbox are presented 

shortly focusing on their main ideas only. 

2.1. Firework Algorithm 

The firework algorithm [13] unlike most other methods it was inspired by something man-
made, rather than something natural. It selects several particles in each generation, then places 
new particles in their vicinity. This gives them a similar appearance to fireworks, where multiple 
sparks appear around a central location. The selected particles are chosen in such a way, that 
ones with good and bad fitness values alike will make up the centers of the next generation’s 
explosions. This behavior lets it search even for value combinations that are not close to the 
currently known best particle, but often at the cost of slower convergence.  

2.2. Particle Swarm Optimization Algorithm 

The particle swarm optimization (PSO) algorithm [5] is a nature inspired method. The 
particles have their own knowledge of the search space, but also share some of it with each other. 
This way they move towards not just the globally known best position, but their own previously 
found best positions as well. They also maintain a certain amount of their velocity, which lets them 
move to previously unexplored regions of the search space. In each generation they take a small 
step based on their current velocity, which is then recalculated. This algorithm finds minimum 
points quickly and accurately, but tends to get stuck in local minima. 

2.3. Genetic algorithm 

The genetic algorithm (GA) [3] resembles how genes are inherited, with some added 
randomness. Well-performing particles are crossed over and some of the newly created particles 
have random mutations applied to them. This way the algorithm always has a chance to find a 
better solution even when it is seemingly trapped in a local minimum. 

2.4. Clonal selection algorithm 

The fourth optimization method in the toolbox is the clonal selection algorithm [1], which 
belongs to the family of artificial immune system algorithms. It makes copies of the best performing 
antibodies and makes randomized changes to them. Since it only uses the available information to 
a small degree, it rarely gets stuck in local minima, but it also does not give us the best possible 
solution always. It is efficient at finding a point with great fitness, but has trouble when it comes to 
finding an even better one, even when it would be close to the previous one. 

2.5. Modified clonal selection algorithm 

Seeing how the previously mentioned method performs well, bit has a significant downside, 
we decided to improve it by adding a local search step to the end of each generation, which 
supplements the existing global search. This involves trying to change the position of the best 
antibody by a small randomized number along each axis and overwriting the original when a better 
solution is found. Due to this modification, the algorithm continuously tries to find points around the 
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best performing particle that have even better fitness, instead of trying to find these points across 
the whole search space randomly. The modified algorithm was found to give better results than the 
original one. 

3. Experimental Evaluation of the Optimization Methods 

In order to compare the implemented well-known methods and the proposed new one we 
tested them against five widely used benchmark functions introduced in [10]. The tests ran until the 
processes reached a predefined number of evaluations, which gave results showing how good of a 
solution they found in approximately the same time interval. The algorithms were put through 
different challenges by the test functions. The results can be seen in Table 1. 

Table 1. The results of the optimization tests on various functions 

 
Firework Particle swarm 

Genetic 
algorithm 

Clonal 
generation 

Modified clonal 
generation 

Parabola 

0.003891 0 0.000482 0.001047 0.000237 

0.000229 0 0.000506 0.000218 0.000011 

0.004353 0 0.001721 0.000875 0.000084 

Average 0.002824333 0 0.000903 0.000713333 0.000110667 

Tripod 

2.000011 0 1.056429 0.016366 0.008281 

1.219455 2 0.165951 0.014777 0.002298 

1.000234 0 0.021329 0.02639 0.018436 

Average 1.406566667 0.666666667 0.414569667 0.019177667 0.009671667 

Alpine 

0.000635 0 0.000091 0.000907 0.000252 

0.174246 0 0.002578 0.000364 0.000529 

0.001375 0 0.001287 0.000736 0.000241 

Average 0.058752 0 0.001318667 0.000669 0.000340667 

Griewank 

0.04685 0.007396 0.000113 0.007429 0.007398 

0.004828 0 0.000853 0.007402 0.000011 

0.018313 0.007396 0.007433 0.007454 0.007402 

Average 0.023330333 0.004930667 0.002799667 0.007428333 0.004937 

Rosenbrock 

0.000264 0 5.048517 0.425764 0.002665 

27.47576 0 24.149024 0.399099 0.009095 

9.861422 4.031709 1.579632 0.048878 0.03909 

Average 12.44581533 1.343903 10.25905767 0.291247 0.01695 

Overall average 2.787457733 0.403100067 2.135729733 0.063847067 0.006402 

Number of 
generations 501 996 452 123 118 

Each algorithm had their own strengths and weaknesses, but their performance depends 
significantly on their parameters and in part on the randomly generated initial particles/antibodies. 
The modified clonal selection performed better than its original counterpart in all of the cases. The 
local search means more evaluations per generation, so the number of generations is slightly 
lower. This trade-off is greatly compensated by the much lower fitness value found. 

4. Fuzzy System Generation and Optimization 

The concept of fuzzy sets and logic was originally developed by Lotfi A. Zadeh [15]. Since 
then intensive research work have been done in this field. Fuzzy set based solutions have many 
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practical applications ([8][9][2][11][14]) and several different methods were proposed for inference 
and different calculations. We implemented three different inference types, i.e. the Mamdani type 
[7], the Larsen type [6] and the Takagi-Sugeno type [12]. They have their characteristics, but each 
serve the general purpose of taking input values and returning output values using fuzzy sets and 
rules. Nature inspired and other heuristic optimization methods are widely used in fuzzy model 
identification (see e.g. [8][9]) 

The software creates the fuzzy system in two steps. First, an initial system is generated 
using grid partitioning using the same method as presented in [4]. Next, the parameters of the 
initial system are optimized to obtain the most possible similarity between the sample output values 
and the output values created by the fuzzy system. During the fine-tuning the shape and position of 
the fuzzy sets are modified. This is done by minimizing the difference between the original output 
values and the ones calculated using the generated system. The mean squared error (MSE) or its 
root (RMSE) can be used as performance indicators in this process. 

The correct generation of fuzzy control systems was verified using corresponding input and 
output data. First the systems were generated, then the mean square root (PIMSE) was calculated 
between the original output values and the ones calculated by the new system. This can be seen in 
Table 2. 

Table 2. The results of the fuzzy system generation 

Membership 
function count 

PIMSE 

2 0.385892 

3 0.35489 

4 0.104177 

5 0.17099 

6 0.166918 

7 0.117259 

8 0.021361 

9 0.006942 

10 0.01412 

15 0.001591 

Table 3. The results of the fuzzy control system optimization 

Membership 
function count 

Optimized 
parameter 

Optimization 
target 

Original PIMSE Optimized PIMSE 

3 

Base ratio 

Input 

0.595727 

0.58502 
0.585112 
0.584901 

Output 
0.576314 
0.576310 
0.576307 

Input and output 
0.563336 
0.563123 
0.562823 

Reference point 

Input 
0.198174 
0.209501 
0.230194 

Output 
0.519039 
0.519028 
0.519022 

Input and output 0.122615 



 Ádám  Bors, Zsolt Csaba  Johanyák  

138 

0.123118 
0.168264 

Membership 
function count 

Optimized 
parameter 

Optimization 
target 

Original PIMSE Optimized PIMSE 

15 

Base ratio 

Input 

0.03989 

0.039797 
0.039799 
0.039799 

Output 
0.037674 
0.037674 
0.037674 

Input and output 
0.037674 
0.037674 
0.037674 

Reference point 

Input 
0.009077 
0.02785 
0.009077 

Output 
0.032407 
0.021563 
0.023256 

Input and output 
0.006705 
0.007602 
0.009077 

The values show that the system works appropriately, with generally smaller error when 
more fuzzy sets are used in a partition. This shows that the first step is successful and even in this 
stage we have a usable product. 

The second step is the optimization of the generated system. Measurements were made on 
how the PIMSE values changed after an optimization, the results of which can be seen in Table 3. 

The effect of the optimization varies depending on the characteristics of the data, but it 
makes a noticeable difference in most of the cases. Optimizing the reference point led to a bigger 
improvement than that of the base ratio, this is due to the former being able to make a relatively 
large change to the system compared to the latter. 

5. Conclusions and summary 

The test results show that the software package can be used to run optimization processes, 
effectively perform fuzzy set based solutions and generate new systems that can be used in 
various scenarios. A potential use case would be using the application to generate a system based 
on existing data, optimizing in and also integrating the fuzzy solver library into an application. That 
way the generated system can be used for decision making purposes. 
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