
Gradus Vol 5, No 1 (2018) 134-139
ISSN 2064-8014

134

SOFTWARE IMPLEMENTATION OF AUTOMATIC
FUZZY SYSTEM GENERATION AND OPTIMIZATION

Ádám Bors*, Zsolt Csaba Johanyák

Department of Information Technology, GAMF Faculty of Engineering and Computer Science, John von
Neumann University, Hungary

Keywords:
fuzzy logic
software
optimization
fuzzy system

Article history:
Received 30 March 2018
Revised 25 April 2018
Accepted 29 April 2018

 Abstract
Automatic fuzzy system generation from sample data is a
common task in fuzzy modeling. Here usually first an initial
system is created using clustering, grid partitioning or other
approaches and next, the parameters of the system are
optimized based on the difference between the sample output
and the output of the fuzzy system.
The software being presented in this paper supports the whole
process providing a wide range of parameterization
opportunities. It also includes an optimization toolbox that offers
five optimization algorithms, from which one represents a novel
approach. The proposed new algorithm was compared with four
well-known methods using several benchmark functions and it
ensured better results in case of many functions.

1. Introduction

The original goal of our project was to create a software capable creating a fuzzy system
from sample data. The fuzzy system should work as similar as possible to the modelled system
described by sample data. The creation of the fuzzy system would be done in two steps, first one
generates an initial system using the sample input and output data, then the parameters of the
systems are optimized to make it even more accurate. Multiple types of fuzzy set based solutions
were meant to be implemented, as well as different optimization methods to choose from.

Basically optimization methods are used to find the combination of parameters that result in
the most favorable output. In most of the cases the problem can be formulated in such a way that
the goal becomes finding a minimum point. This is why the implementation the chosen methods
targeted only the search for the minimum.

A test application was also developed for the optimization methods, which included several
test-functions to see how well each method performed on various test functions. Measurements
were made of their effectiveness and the tool can help with finding proper values for the
optimization method parameters.

Having an optimization toolbox developed our research work focused more on the specific
field of fuzzy model generation. Fuzzy model based solutions are widely used to calculate an
output value from given input values according to a set of rules that specify the connection
between antecedent and consequent fuzzy sets. Fuzzy systems can be used in a wide variety of
cases and require fairly low computational power to process even in complex cases. Being able to
acquire an appropriate system usually poses a challenge, but our tool could present a solution.

The rest of this paper is organized as follows. Section 2 gives a short introduction in the
optimization methods included into the optimization toolbox presenting the main ideas of the
mentioned methods. Section 3 presents the results of the experimental investigation of the
optimization techniques using five well-known benchmark functions. Section 4 focuses on fuzzy
system generation and optimization and the conclusions are drawn in Section 5.

* Corresponding author: adam.bors4@gmail.com

 Software implementation of automatic fuzzy system generation and optimization

 135

2. Optimization Methods

The goal of an optimization process is finding a combination of values within given bounds
that result in the most favorable output. Since the connection between the input and output sides is
not always given with such a mathematical function for which one could determine its minimum
point easily by analytical methods, we use a guided search that aims finding the global minimum of
a so called fitness function. Most methods keep repeating a sequence of given steps until a certain
condition is met, which can be one of the following.

 A solution has been found that ensures a fitness value below a threshold value.

 A given number of iterations have been reached.

 The number of fitness evaluations has exceeded a limit.
Further on the five optimization approaches that are included in our toolbox are presented

shortly focusing on their main ideas only.

2.1. Firework Algorithm

The firework algorithm [13] unlike most other methods it was inspired by something man-
made, rather than something natural. It selects several particles in each generation, then places
new particles in their vicinity. This gives them a similar appearance to fireworks, where multiple
sparks appear around a central location. The selected particles are chosen in such a way, that
ones with good and bad fitness values alike will make up the centers of the next generation’s
explosions. This behavior lets it search even for value combinations that are not close to the
currently known best particle, but often at the cost of slower convergence.

2.2. Particle Swarm Optimization Algorithm

The particle swarm optimization (PSO) algorithm [5] is a nature inspired method. The
particles have their own knowledge of the search space, but also share some of it with each other.
This way they move towards not just the globally known best position, but their own previously
found best positions as well. They also maintain a certain amount of their velocity, which lets them
move to previously unexplored regions of the search space. In each generation they take a small
step based on their current velocity, which is then recalculated. This algorithm finds minimum
points quickly and accurately, but tends to get stuck in local minima.

2.3. Genetic algorithm

The genetic algorithm (GA) [3] resembles how genes are inherited, with some added
randomness. Well-performing particles are crossed over and some of the newly created particles
have random mutations applied to them. This way the algorithm always has a chance to find a
better solution even when it is seemingly trapped in a local minimum.

2.4. Clonal selection algorithm

The fourth optimization method in the toolbox is the clonal selection algorithm [1], which
belongs to the family of artificial immune system algorithms. It makes copies of the best performing
antibodies and makes randomized changes to them. Since it only uses the available information to
a small degree, it rarely gets stuck in local minima, but it also does not give us the best possible
solution always. It is efficient at finding a point with great fitness, but has trouble when it comes to
finding an even better one, even when it would be close to the previous one.

2.5. Modified clonal selection algorithm

Seeing how the previously mentioned method performs well, bit has a significant downside,
we decided to improve it by adding a local search step to the end of each generation, which
supplements the existing global search. This involves trying to change the position of the best
antibody by a small randomized number along each axis and overwriting the original when a better
solution is found. Due to this modification, the algorithm continuously tries to find points around the

 Ádám Bors, Zsolt Csaba Johanyák

136

best performing particle that have even better fitness, instead of trying to find these points across
the whole search space randomly. The modified algorithm was found to give better results than the
original one.

3. Experimental Evaluation of the Optimization Methods

In order to compare the implemented well-known methods and the proposed new one we
tested them against five widely used benchmark functions introduced in [10]. The tests ran until the
processes reached a predefined number of evaluations, which gave results showing how good of a
solution they found in approximately the same time interval. The algorithms were put through
different challenges by the test functions. The results can be seen in Table 1.

Table 1. The results of the optimization tests on various functions

Firework Particle swarm

Genetic
algorithm

Clonal
generation

Modified clonal
generation

Parabola

0.003891 0 0.000482 0.001047 0.000237

0.000229 0 0.000506 0.000218 0.000011

0.004353 0 0.001721 0.000875 0.000084

Average 0.002824333 0 0.000903 0.000713333 0.000110667

Tripod

2.000011 0 1.056429 0.016366 0.008281

1.219455 2 0.165951 0.014777 0.002298

1.000234 0 0.021329 0.02639 0.018436

Average 1.406566667 0.666666667 0.414569667 0.019177667 0.009671667

Alpine

0.000635 0 0.000091 0.000907 0.000252

0.174246 0 0.002578 0.000364 0.000529

0.001375 0 0.001287 0.000736 0.000241

Average 0.058752 0 0.001318667 0.000669 0.000340667

Griewank

0.04685 0.007396 0.000113 0.007429 0.007398

0.004828 0 0.000853 0.007402 0.000011

0.018313 0.007396 0.007433 0.007454 0.007402

Average 0.023330333 0.004930667 0.002799667 0.007428333 0.004937

Rosenbrock

0.000264 0 5.048517 0.425764 0.002665

27.47576 0 24.149024 0.399099 0.009095

9.861422 4.031709 1.579632 0.048878 0.03909

Average 12.44581533 1.343903 10.25905767 0.291247 0.01695

Overall average 2.787457733 0.403100067 2.135729733 0.063847067 0.006402

Number of
generations 501 996 452 123 118

Each algorithm had their own strengths and weaknesses, but their performance depends
significantly on their parameters and in part on the randomly generated initial particles/antibodies.
The modified clonal selection performed better than its original counterpart in all of the cases. The
local search means more evaluations per generation, so the number of generations is slightly
lower. This trade-off is greatly compensated by the much lower fitness value found.

4. Fuzzy System Generation and Optimization

The concept of fuzzy sets and logic was originally developed by Lotfi A. Zadeh [15]. Since
then intensive research work have been done in this field. Fuzzy set based solutions have many

 Software implementation of automatic fuzzy system generation and optimization

 137

practical applications ([8][9][2][11][14]) and several different methods were proposed for inference
and different calculations. We implemented three different inference types, i.e. the Mamdani type
[7], the Larsen type [6] and the Takagi-Sugeno type [12]. They have their characteristics, but each
serve the general purpose of taking input values and returning output values using fuzzy sets and
rules. Nature inspired and other heuristic optimization methods are widely used in fuzzy model
identification (see e.g. [8][9])

The software creates the fuzzy system in two steps. First, an initial system is generated
using grid partitioning using the same method as presented in [4]. Next, the parameters of the
initial system are optimized to obtain the most possible similarity between the sample output values
and the output values created by the fuzzy system. During the fine-tuning the shape and position of
the fuzzy sets are modified. This is done by minimizing the difference between the original output
values and the ones calculated using the generated system. The mean squared error (MSE) or its
root (RMSE) can be used as performance indicators in this process.

The correct generation of fuzzy control systems was verified using corresponding input and
output data. First the systems were generated, then the mean square root (PIMSE) was calculated
between the original output values and the ones calculated by the new system. This can be seen in
Table 2.

Table 2. The results of the fuzzy system generation

Membership
function count

PIMSE

2 0.385892

3 0.35489

4 0.104177

5 0.17099

6 0.166918

7 0.117259

8 0.021361

9 0.006942

10 0.01412

15 0.001591

Table 3. The results of the fuzzy control system optimization

Membership
function count

Optimized
parameter

Optimization
target

Original PIMSE Optimized PIMSE

3

Base ratio

Input

0.595727

0.58502
0.585112
0.584901

Output
0.576314
0.576310
0.576307

Input and output
0.563336
0.563123
0.562823

Reference point

Input
0.198174
0.209501
0.230194

Output
0.519039
0.519028
0.519022

Input and output 0.122615

 Ádám Bors, Zsolt Csaba Johanyák

138

0.123118
0.168264

Membership
function count

Optimized
parameter

Optimization
target

Original PIMSE Optimized PIMSE

15

Base ratio

Input

0.03989

0.039797
0.039799
0.039799

Output
0.037674
0.037674
0.037674

Input and output
0.037674
0.037674
0.037674

Reference point

Input
0.009077
0.02785
0.009077

Output
0.032407
0.021563
0.023256

Input and output
0.006705
0.007602
0.009077

The values show that the system works appropriately, with generally smaller error when
more fuzzy sets are used in a partition. This shows that the first step is successful and even in this
stage we have a usable product.

The second step is the optimization of the generated system. Measurements were made on
how the PIMSE values changed after an optimization, the results of which can be seen in Table 3.

The effect of the optimization varies depending on the characteristics of the data, but it
makes a noticeable difference in most of the cases. Optimizing the reference point led to a bigger
improvement than that of the base ratio, this is due to the former being able to make a relatively
large change to the system compared to the latter.

5. Conclusions and summary

The test results show that the software package can be used to run optimization processes,
effectively perform fuzzy set based solutions and generate new systems that can be used in
various scenarios. A potential use case would be using the application to generate a system based
on existing data, optimizing in and also integrating the fuzzy solver library into an application. That
way the generated system can be used for decision making purposes.

Acknowledgment

This research was supported by the ÚNKP-17-A-PAE-39 New National Excellence Program
of the Ministry of Human Capacities and by EFOP-3.6.1-16-2016-00006 "The development and
enhancement of the research potential at John von Neumann University" project. The Project is
supported by the Hungarian Government and co-financed by the European Social Fund.

References

[1] De Castro, L. N., & Von Zuben, F. J. (2002). Learning and optimization using the clonal selection principle. IEEE
transactions on evolutionary computation, 6(3), 239-251.

[2] E.H. Guechi, J. Lauber, M. Dambrine, G. Klančar and S. Blažič (2010): PDC control design for non-holonomic
wheeled mobile robots with delayed outputs, Journal of Intelligent and Robotic Systems, vol. 60, no. 3-4, pp.
395-414, Dec. 2010.

 Software implementation of automatic fuzzy system generation and optimization

 139

[3] J.H. Holland, Genetic Algorithms, Scientific American, July 1992, pp 66-72.
[4] Z.C Johanyák: New Initial Fuzzy System Generation Features in the SFMI Toolbox, 5th IEEE International

Symposium on Logistics and Industrial Informatics (LINDI 2013), Wildau, Germany, September 5-7, 2013, pp.
29-34.

[5] Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. in Proceedings of IEEE International
Conference on Neural Networks IV., Perth, 1995, 1942–1948.

[6] Larsen, P. M.: Industrial application of fuzzy logic control, in International Journal of Man Machine Studies, Vol.
12(4), 1980, pp. 3-10.

[7] Mamdani, E. H. and Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller, in
International Journal of Man Machine Studies, Vol. 7, 1975, pp. 1-13.

[8] R.-E. Precup, M.-C. Sabau, and E. M. Petriu, Nature-inspired optimal tuning of input membership functions of
Takagi-Sugeno-Kang fuzzy models for anti-lock braking systems, Applied Soft Computing, vol. 27, pp. 575-589,
Feb. 2015.

[9] R.-E. Precup, R.-C. David, and E. M. Petriu, Grey wolf optimizer algorithm-based tuning of fuzzy control
systems with reduced parametric sensitivity, IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 527-
534, Jan. 2017.

[10] Raj, Ashish, Evolutionary Optimization Algorithms for Nonlinear Systems (2013). All Graduate Theses and
Dissertations. Paper 1520. 22-31.

[11] I. Škrjanc and S. Blažič (2005): Predictive functional control based on fuzzy model: design and stability study,
Journal of Intelligent and Robotic Systems, vol. 43, no. 2-4, pp. 283-299, Aug. 2005.

[12] Takagi, T. and Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control, in IEEE
Transactions on System, Man and Cybernetics, Vol. 15, 1985, pp. 116-132.

[13] Tan, Y., & Zhu, Y. (2010, June). Fireworks algorithm for optimization. In International Conference in Swarm
Intelligence. Springer Berlin Heidelberg. 355-364

[14] Ján Vaščák (2012): Adaptation of fuzzy cognitive maps by migration algorithms, In: Kybernetes, Vol. 41, no. 3/4,
Mar. 2012, pp. 429-443, ISSN 0368-492X.

[15] Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes, IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 3, No. 1, Jan. 1973, pp. 28-44.

