
Gradus Vol 3, No 2(2016) 13-22
ISSN 2064-8014

Lower tail estimation with Chernoff bound and its
application for balancing electricity load by storage

admission

Rajmund Drenyovszki1∗, Lorant Kovacs1, Kalman Tornai2, Andras Olah2 and Istvan Pinter1

1Department of Information Technology, GAMF Faculty of Engineering and Computer Science, Pallas Athene
University, Izsaki ut 10, H-6000 Kecskemet, Hungary

2Faculty of Information Technology, Pazmany Peter Catholic University, Prater utca 50/a, H-1083 Budapest,
Hungary

Keywords:
Large Deviation Theory
Chernoff bound
valley filling
smart grid
Demand Side Management

Article history:
Received 08 Sept 2016
Revised 26 Sept 2016
Accepted 11 Nov 2016

Abstract
In this paper we investigate the applicability of the Chernoff in-
equality in finding an upper bound on the probability of the lower
tail of the aggregate load. The importance of Demand Side Man-
agement (DSM) programs in power networks has increased re-
cently, especially because of the new challenges like intensive
use of renewable energy sources (wind, photovoltaic) and the ex-
pected high penetration of Electric Vehicles (EV). We show that
Chernoff bound has the potential to be incorporated in DSM algo-
rithms to integrate energy storage (e.g. batteries) elements into
the power grid and facilitate load shifting.

1 Introduction

The main issue in electricity networks is keeping an almost perfect balance between electricity
supply and demand. Oversupply means waste of energy, while undersupply causes performance
degradation of the grid parameters (e.g. phase, voltage level, etc.). Additionally, there is a need to in-
crease the percentage of renewable energy sources which gives rise to uncertainty in the generation
side. The control of the supply side is difficult in many cases because of the large time constants of
the base plants (fossile and nuclear); the only feasible solution is to use expensive auxiliary genera-
tors (e.g. gas and oil). Hence, an alternative way to keep the balance is to control the demand side.
In the literature it is usually referred to as Demand Side Management (DSM) [1]. There are many
DSM tecniques, from night-time heating with load switching, through time-of-use pricing, to direct
load control, so we can say that in general DSM covers all the activities or programs undertaken by
service providers to influence the amount or timing of electricity use. The residential sector accounts
for about 30% of total energy consumption [2] and contains flexible appliances. The amount of con-
sumption involved in direct control can eliminate the error between daily prediction based generation
and actual demand. Furthermore, storage elements can be involved in electric power applications
[3]. Especially electrical energy storages (EES) are promising candidates for the power network inte-
gration [4]. The spread of electric vehicles gives an additional impetus to the developement of DSM
algorithms. In Europe cars are parked for more than 90% of the their time in average [5]; hence,
batteries of electric vehicles may be used as an ancillary storage capacity for the power grid.

In this paper we investigate the applicability of Chernoff bound on the lower tail of the aggregate
load for charging storage capacity as part of our previously proposed Consumption Admission Control
algorithm [6] for DSM. Smart metering enables us to collect appliance level statistics, hence we can
use this additional information in our methods. If we have storage elements in the system and we can
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charge them in low demand periods and use the energy in high demand periods, it will allow us to
perform peak shaving and valley filling. For the illustration of the concept of load shifting see Figure
1. We show in this paper that Chernoff bound has the potential to be incorporated in CAC algorithms
for DSM to integrate energy storage.

The rest of this paper is organized as follows. Related work is discussed in section 2. We
describe our model in section 3. The Chernoff bound is formulated in section 4. Numerical results
are explained in section 5 and some notes on the computational complexity in section 6. Finally the
conclusions can be read in section 7.

Figure 1. Valley filling and peak shaving with charging and discharging energy storage elements

2 Related work

In the literature we can find many attempts to incorporate energy storage elements into the power
grid in many ways. One type of utilization of energy storage is to mitigate the intermittancy of re-
newable energy sources (RES). The paper [7] reviews the literature of three different kinds of energy
storage technologies (pumped hydroelectricity storage, batteries and fuel cells), which have the po-
tential for the integration/management of intermittency. The state of the art energy storage technology
options for mitigating wind power intermittency is examined in [8]. Most of the literature investigates
the potential of electric vehicles for load shift and renewable energy integration. [9] examined six
European mobility studies to identify load shift potentials of electric vehicles, taking into account
country-specific driving patterns. The main findings were that possibility to charge at the work place
and controlled charging have big potential for load shifting. The vehicle-to-home (V2H) concept is
investigated in [10], using the vehicle battery to reduce the peak demand of a household. In their
simulation model an on-off controller was used to draw energy from the battery according to a tresh-
old and the charging of the battery was performed in a constant level of 3kWs. The authors of [11]
developed a mixed-integer linear program (MILP) to maximize RES utilization, scheduling optimal
power and operation time for electric vehicles and appliances. They found that for small residential,
solar powered buildings it is possible to schedule appliances and use the batteries of electric vehicles
as an energy storage so that renewable energy covers 100% of the charging of the EVs.

3 Model

In a modern power network the smart meter can determine the individual pdfs of the installed
appliances. As a consequence, we can build bottom-up consumption models in the smart meters,
or based on aggregating the data of the smart meters, for much larger consumption districts as
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well. Based on the bottom-up model Large Deviation Theory (LDT) bounds can be used for the
estimation of the tail probabilities. We use the following appliance model. There are N appliances
that are connected to a smart meter. The consumption of the nth appliance at time instant k is
Xn[k]. The random variables Xn[k] are assumed to be independent for a given k. (Note, that the
statistical descriptors are mostly time dependent, but the random variables are independent, e.g. the
probability of turning on the light in House A is correlated with the date and hour of the day, but
independent from the behavior of House B). In a domestic environment most of the appliances can
be modeled by two states (i.e. ON-state and OFF-state), so in addition to the independence, we
assume two-state appliance models. For the sake of mathematical convenience we further assume
time independence, resulting in a mathematical model for the appliances as a two-state Bernoulli
independent identically distributed (iid) random variable sequence. The basic benefit of the Bernoulli
iid model is its simplicity; however, it cannot represent the severe auto-correlation of real consumption
time series. The aggregate consumption at a given time instant k is

X [k] =

N∑
n=1

Xn [k] (1)

where N is the number of appliances. Note, that the time dependence will be omitted, if it is not
relevant (e.g. in the case of Bernoulli iid sequences).

Electricity networks system operators have optimal operation costs when the load is close to
constant (pdf of the aggregate load is close to Dirac delta function). However, we cannot set the load
to constant level, as a more realistic goal, we can keep the pdf as narrow as possible, i.e. the mass
of the pdf lies between a lower and an upper limit. For the sake of an even more realistic model,
we allow the tail probabilities to be non-zero but smaller than a predefined probability. In our model,
p is the probability that the aggregate consumption X is greater or equal to the allowed maximum
consumption Cmax level (upper tail), while r is the probability that the aggregate consumption X is
less or equal to the allowed minimum consumption Cmin level (lower tail).

p = Pr [X ≥ Cmax] = 1− Pr [X ≤ Cmax] (2)

r = Pr [X ≤ Cmin] = 1− Pr [X ≥ Cmin] (3)

Figure 2. Probability and capacity parameters

The probabilities r and p can be calculated based on the probability density function fX (x) of the
aggregate consumption. The pdf of the aggregate consumption can be calculated analytically by the
convolution of the individual pdfs of all appliances:

fX (x) = Pr

 M∑
i=1

ni∑
j=1

Xij = x

 = fX11 (x) ∗ fX12 (x) ∗ fX13 (x) ∗ . . . ∗ fXMni
(x) . (4)

where M is the number of appliance classes, and ni is the number of appliances in class j, and
M∑
i=1

ni

is the total number of enabled appliances (An appliance class means a set of appliances that have the
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same statistical descriptors). Because of the independence assumption of the Xij random variables,

the expected value of the aggregate consumption X can be expressed as µ = E {X} =
M∑
i=1

ni∑
j=1

µij ;

and the variance as σ2 = E
{

(X − µ)2
}

=
M∑
i=1

ni∑
j=1

σ2ij . The convolution operation in (4) can be

very time consuming in the case of high number of appliances and/or classes, so it is suggested to
estimate the probability in terms of inequalities of Large Deviation Theory (LDT) bounds. We can
define bounds as follows: lower L̆(Cmin) and upper bound

_

L(Cmin) on the probability of the lower tail
(r), and lower Ŭ(Cmin) and upper bound

_

U(Cmin) on the probability of the upper tail (p).

L̆(Cmin) ≤ Pr [X ≤ Cmin] ≤
_

L(Cmin) (5)

Ŭ(Cmax) ≤ Pr [X ≥ Cmax] ≤
_

U(Cmax) (6)

From an application point of view, upper bounds are more frequently used, because service providers
try to guarantee the quality of their services (QoS), so a maximum allowable probability for the mass
of the lower and upper tail is preferred. In our previous paper [15] we showed the applicability of
Markov, Chebisev, Bennett, Hoeffding and Chernoff inequalities for upper bounds of the upper tail.
Now in the next section we are going to introduce Chernoff’s inequality for the lower tail.

4 Chernoff bound

4.1 Markov’s inequality

Markov’s inequality gives an upper bound for the probability that a random variable is greater than
or equal to an arbitrary positive constant. If X is a non-negative random variable and ε > 0, then

Pr [X ≥ ε] ≤ E [X]

ε
(7)

Proof for discrete case

E [X] =
∑
i

xipi ≥
∑
xi≥ε

xipi ≥ ε
∑
xi≥ε

pi = ε Pr [X ≥ ε] (8)

In our case, we have the sum of independent random variables as the aggregate load which must be
less or equal to the maximum consumption.

4.2 Chernoff’s inequality applied for lower tail upper bound

Although Markov’s inequality is not enough sharp, hence it cannot be applied for practical prob-
lems, it is the base of better inequalities [12]. To sharpen it, we can use the property of Markov’s
inequality, that it holds for monotonically increasing functions as well:

Pr [X ≥ Cmax] = Pr [f (X) ≥ f (Cmax)] =
E [f(X)]

f(Cmax)
(9)

Based on Markov’s inequality using f (x) = esx function we can formulate Chernoff’s inequality [13]:

Pr
[
esX ≥ esCmax

]
≤
E
[
esX
]

esCmax
(10)

This formula is expressing the inequality for the upper tail:

Pr [X ≤ Cmin] ≤
_

L(Cmin) (11)
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Our aim is to have the sharpest possible upper bound on the lower tail of the pdf. Using the reciprocal
of both sides in the inequality inside the probability we have

Pr [X ≤ Cmin] = Pr
[
esX ≤ esCmin

]
= Pr

[
e−sX ≥ e−sCmin

]
(12)

Now using Chernoff’s inequality introduced in (10) we can derive the following expression:

Pr
[
e−sX ≥ e−sCmin

]
≤
E
[
e−sX

]
e−sCmin

(13)

As X is the sum of the independent random variables:

E
[
e−sX

]
= E

[
e
−s
∑
i
Xi
]

= E

[∏
i

e−sXi

]
=
∏
i

E
[
e−sXi

]
(14)

The moment generation function is formulated as follows in the case of Bernoulli iid random variables:

E
[
e−sXi

]
= pie

−s1 + (1− pi)e−s0 = pie
−s + (1− pi) = 1− pi + pie

−s (15)

Substituting the moment generation function into the inequality:

Pr
[
e−sX > e−sCmin

]
<

∏
i {1− pi + pie

−s}
e−sCmin

= e
log

{∏
i{1−pi+pie

−s}
e−sCmin

}
= (16)

= e
log

{∏
i
{1−pi+pie−s}−e−sCmin

}
= e

log

{∏
i
{1−pi+pie−s}

}
+sCmin

= e

∑
i
log{1−pi+pie−s}+sCmin

(17)

where log is the natural logarithm. Now we can write the formula in a more compact way by using the
logarithmic moment generation function ψi:

ψi (−s) = log
{

1− pi + pie
−s} (18)

The upper bound on the probability of the lower tail can be expressed as follows. Note that from now
on we will refer to it simply as Chernoff bound.

Pr [X ≤ Cmin] ≤ e
∑
i
ψi(−s)+sCmin

(19)

The tightest bound is accomplished with the optimal s∗ parameter that satisfies:

s∗ : inf
s>0

∑
i

ψi (−s) + sCmin (20)

5 Numerical results

In the numerical experiments the computation of the lower tail of probability functions were on
the Chernoff bound (19) and for the sake of comparability by a modified convolution algorithm as
well. It is known that the probability function of the sum of random variables can be calculated by the
convolution of the individual probability functions (4). This operation is time consuming, however it
is possible to speed up the calculation. Assuming two-state appliance model (consisting of ON-state
and OFF-state) the vectors of the individual probability functions are sparse and the fact of sparsity
can be advantageously used in the convolution algorithm. Our modified convolution algorithm is
based on [17], and we will refer to it as Analytic computation from now on.

We have conducted two types of numerical experiments: one with only one appliance type (1000
instances of washer dryer), and the second one with several appliance types. Additionally two sce-
narios are considered in the second case: first one with 1000 pieces of each appliances and the
second one with the number of appliances normalized to the same expected value.
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Figure 3 shows the result of 1000 instances of washer dryer, with the parameters of pON = 0.0012
(ON-state probability) and h = 800W (ON-state consumption). Analytic cdf and Chernoff bound is
on top, the error expressed as the difference of Analytic and Chernoff result is on the bottom. The
expected value (9600W) is highlighted with a vertical line. The marginal left side of the cdf (depicted
in bigger in Figure 4) is the region of our special interest, because Chernoff bound, being as an LDT
bound, is effective on the tails only. (Here we do not have enough space to show the experiments
with all appliance types, but they show very similar results.)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1
N=1000 h=800 pON=0.012 EX=9600 var=2754.6034

EX

Load [W]

P
(X

<
C

)

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

EX

Load [W]

di
ffe

re
nc

e

 

 

Analytic
Chernoff

Chernoff − Analytic

Figure 3. 1000 instances of washer dryer, Analytic cdf and Chernoff bound (top), Error expressed as
the difference of Analytic and Chernoff result (bottom)
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Figure 4. 1000 instances of washer dryer, Analytic cdf and Chernoff bound

As we can see in Figure 4, the difference between the actual cdf value (from Analytic computation)
and the estimation (from Chernoff Computation) is less than half of a magnitude. For instance if we
are interested in the probability that the consumption is equal or less than 3200W, the Chernoff
computation gives 0.02631, but it is actually 0.007348. However, the difference seems a bit big for
the first sight, in one hand we can state that according to our knowledge the Chernoff bound is the
tightest from all the bounds. In the other hand, examining the result from an engineering perspective,
notably the number of appliances needed to satisfy a certain value of probability, the results are
promising. For the value of 3200W we found with the Analytic computation that the probability of
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underconsumption is 7.348× 10−3. In this case we had 1000 washer dryers. If we calculate the
number of appliances needed to reach the same probability (or less) with Chernoff bound, we find
that it is 1153 to reach the probability of 7.339× 10−3. It means a 15.3% increase (we need 115.3%
of the original number of appliances).

Table 1. Performance of Chernoff bound

Cmin 1600W 2400W 3200W 4000W
No. af appl. Analytic 1000 1000 1000 1000

No. af appl. Chernoff 1113 1134 1153 1172

probability (r) Analyitic 4.962× 10−4 2.197× 10−3 7.339× 10−3 1.981× 10−2

probability (r) Chernoff 4.921× 10−4 2.194× 10−3 7.348× 10−3 1.967× 10−2

Our purpose is to determine storage capacity in situations when the desired probability of under-
consumption r cannot be satisfied in a certain capacity limit Cmin. Let us explain the concept with
the help of Figure 4. If for instance we have a target probability of 1× 10−2 to keep the consumption
above the limit of 2400W, than we can draw the conclusion from both Chernoff and Analytic compu-
tation that it is achievable. If the limit is 3200W and the target probability is the same 1× 10−2, than
the Analytic result is satisfactory but Chernoff bound is not because of the error (labelled with "error
in W" in Figure 4). Inversely, if we have a target consumption of 5600W on 1× 10−2 probability, we
can draw the inference that we need 3200W storage capacity.

In the followings two more scenarios are considered: first one with 1000 pieces of five appliance
types and the second one with the number of appliances normalized to the same expected value.
The appliance types with the parameters are depicted in (Table 1).

Table 2. Appliances types and parameters

washer dryer microwave oven dishwasher refrigerator lighting
ON-state power consumption 800W 1500W 500W 200W 80W

Probability of ON state 0.012 0.016 0.044 0.254 0.335
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Figure 5. 5 appliance types, 1000 instances for each one, Analytic cdf and Chernoff bound
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Figure 6. The number of appliances normalized to the same expected value, Analytic cdf and Cher-
noff bound

6 Computation time

The computation time of discrete convolution to calculate the pdf of the aggregate consumption
depends highly on the implementation of the discrete convolution algorithm. However, discrete con-
volution can be faster with additional implementation tricks (e.g. utilizing more than one CPUs by
parallelization parts of the algorithm), it remains a computationally intensive task. Instead of the
discrete convolution formula, we used the concept based on the the algorithm presented in [17]. It
avoids all of the zero term computations in the construction of the pdf of the aggregate as well as
eliminates same computations by constructing binary tree from the individual pdfs and pairing the
same types. Figure 7 depicts an experimental result of computation times both with Analytic and
Chernoff computation.

Figure 7. Computation time in the case of Analytic and Chernoff computation

Applying regression analysis on the trends of the computation times, we derived that in the case
of Analytic computation the dependence of the computation time on the number of the appliances is
quadratic, while in the case of Chernoff estimation it is linear.
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7 Conclusion

Utilization of storage technologies in Demand Side Management is a promising way to facilitate
load shifting (peak shaving and valley filling). In this paper we formulated the Chernoff inequality in
finding an upper bound on the probability of the lower tail of the aggregate load. Instead of computing
the probability function of the aggregate load directly with convolution we use Chernoff bound as
an estimation because it is computationally more feasible. However we should consider, that the
estimation introduces some error, it seems from the numerical results that from an engineering point
of view it can be kept under control in storage admission applications. In our future work we would like
to incorporate storage admission in our earlier proposed Consumption Admission Control algorithm
based on appliance level statistical information and the Chernoff bound introduced in this paper.
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