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Abstract. The authors present some new oscillation criteria for second order nonlinear difference
equations with a nonlinear nonpositive neutral term of the form

�
�
a.t/

�
�
�
x.t/�p.t/x˛.t �k/

��
�
Cq.t/xˇ .tC1�m/D 0;

with positive coefficients. Examples are given to illustrate the main results.
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1. INTRODUCTION

This paper deals with the oscillatory behavior of solutions of the nonlinear second
order difference equations with a nonlinear nonpositive neutral term

�
�
a.t/

�
�
�
x.t/�p.t/x˛.t �k/

��
�
Cq.t/xˇ .tC1�m/D 0; t � t0; (1.1)

where �x.t/D x.tC1/�x.t/ and:
(i) ˛, 
 , and ˇ are the ratios of positive odd integers with 
 � ˇ and 0 < ˛ � 1;

(ii) fa.t/g, fp.t/g and fq.t/g are positive real sequences for t � t0, and 0 <
p.t/ < p0 < 1;

(iii) k is a positive integer and m is a nonnegative integer;
(iv) h.t/D t �mCkC1� t , i.e., m� kC1.

We set

A.v;u/D

vX
sDu

1

a1=
 .s/
for v � u� t0;

and assume that
A.t; t0/!1 as t !1: (1.2)
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Let � D maxfk;m�1g. By a solution of equation (1.1), we mean a real sequence
fx.t/g defined for all t � t0� � that satisfies equation (1.1) for all t � t0. A solu-
tion of equation (1.1) is called oscillatory if its terms are neither eventually positive
nor eventually negative; otherwise, it is called nonoscillatory. If all solutions of the
equation are oscillatory, then the equation itself is called oscillatory.

In recent years there has been a great deal of research activity on the oscillation
and asymptotic behavior of solutions of various classes of difference equations; for
example, see the monographs [1, 2, 5, 6], and the papers listed below. There are
numerous results for second order neutral functional difference equations due to their
increasing use as models in the natural sciences and in theoretical studies. Some such
recent results on the oscillatory and asymptotic behavior of second order difference
equations can be found in [3, 4, 7–22]. However, there does not appear to be any
known results on the oscillation of second order difference equations of the type (1.1).
Our aim here is to present some new sufficient conditions that ensure all solutions of
(1.1) are oscillatory.

2. MAIN RESULTS

For t � T for any T � t0, we let

�.t/D a1=
 .t/A.t;T / and Q.t/D

1X
sDt

q.s/:

For any constant c > 0, we set

gc.t/D

(
1; if ˇ D 
;
cA.ˇ�
/=
 .t/; if ˇ < 
:

(2.1)

We begin with the following new result.

Theorem 1. Let conditions (i)–(iv) and (1.2) hold. Assume there exists a positive
nondecreasing sequence f�.t/g such that for any constant c > 0,

limsup
t!1

 
�.t/Q.t/C

tX
sDt2

"
�.s/q.s/�





.1C
/
C1
a.t �m/

.ˇgc.s//


�
.��.s//
C1

�
 .s/

�#!
D1;

(2.2)

limsup
t!1

tX
sDh.t/

Aˇ=˛ .h.t/;h.s//q.s/ > 1 if ˇ D ˛
; (2.3)

and

limsup
t!1

tX
sDh.t/

Aˇ=˛ .h.t/;h.s//q.s/D1 if ˇ < ˛
: (2.4)

Then equation (1.1) is oscillatory.
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Proof. Let x.t/ be a nonoscillatory solution of equation (1.1), say x.t/ > 0, x.t �
mC 1/ > 0, and x.t �k/ > 0 for t � t1 for some t1 � t0. Then with y.t/D x.t/�
p.t/x˛.t �k/, it follows from (1.1) that

�
�
a.t/.�y.t//


�
D�q.t/xˇ .t �mC1/� 0: (2.5)

Hence, a.t/.�y.t//
 is nonincreasing and eventually of one sign. That is, there
exists t2 � t1 such that �y.t/ > 0 or �y.t/ < 0 for t � t2. We claim that �y.t/ > 0
for t � t2. To see this, assume that �y.t/ < 0 for t � t2. Then,

a.t/.�y.t//
 � �c < 0 for t � t2;

where c D�a.t2/.�y.t2//
 < 0, so

y.t/� y.t2/� c
1=


tX
sDt2

a�1=
 .s/:

In view of (1.2), limt!1y.t/D�1. Now, we consider the following two cases.
Case 1. If x.t/ is unbounded, then there exists an increasing sequence ftng such

that limn!1 tnD1 and limn!1x.tn/D1where x.tk/Dmaxfx.s/ W t0� s� tkg.
This implies

x.tn�mC1/�maxfx.s/ W t0 � s � tng D x.tn/:

Therefore, since fx.tn/g !1 and (ii) holds for all large n,

y.tn/D x.tn/�p.tn/x
˛.tn�k/� x.tn/�p.tn/x

˛.tn/

�

�
1�

p.tn/

x1�˛.tn/

�
x.tn/ > 0:

which contradicts the fact that limt!1y.t/D�1.
Case 2. If x.t/ is bounded, then y.t/ is also bounded, which contradicts

limt!1y.t/ D �1. This completes the proof of the claim so we conclude that
�y.t/ > 0 for t � t2.

Next, we have two possibilities to consider: (I) y.t/ > 0 or (II) y.t/ < 0 for t � t2.
If (I) holds, then in view of (2.5) and the fact that x.t/� y.t/, we have

�
�
a.t/.�y.t//


�
� �q.t/yˇ .t �mC1/� 0: (2.6)

Summing �y from t2 to t gives

y.t/D y.t2/C

tX
sDt2

�
a.s/.�y.s//


�1=

a1=
 .s/

� a1=
 .t/�y.t/

tX
sDt2

a�1=
 .s/ WD �.t/�y.t/: (2.7)
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Summing (2.6) from t to u, letting u!1, and using the fact that y.t/ is increasing,
we have

a.t/.�y.t//
 �

1X
sDt

q.s/yˇ .s�mC1/

� yˇ .t �mC1/

1X
sDt

q.s/ WDQ.t/yˇ .t �mC1/

�Q.t/yˇ .t �m/: (2.8)

Define

w.t/D �.t/
a.t/ .�y.t//


yˇ .t �m/
> 0 for t � t2: (2.9)

Then, it follows that w.t/ > 0 and

w.t/D �.t/
a.t/ .�y.t//


yˇ .t �m/
� �.t/

1X
sDt

q.s/: (2.10)

Now,

�w.t/D�

�
�.t/

yˇ .t �m/

�
a.tC1/.�y.tC1//


C�
�
a.t/.�y.t//


�� �.t/

yˇ .t �m/

�
� ��.t/q.t/C

�
��.t/

�.tC1/

�
w.tC1/

�

�
�.t/

�.tC1/

�
�yˇ .t �m/

yˇ .t �m/
w.tC1/: (2.11)

By the Generalized Mean Value Theorem for Derivatives,

ˇyˇ�1.t �mC1/�y.t �m/��yˇ .t �m/� ˇyˇ�1.t �m/�y.t �m/:

Using this in (2.11) gives

�w.t/� ��.t/q.t/C

�
��.t/

�.tC1/

�
w.tC1/

�ˇ

�
�.t/

�.tC1/

�
yˇ�1.t �m/�y.t �m/

yˇ .t �m/
w.tC1/: (2.12)

Since a.t/.�y.t//
 is decreasing and y.t/ is increasing, we have

�y.t �m/

�y.t/
�

�
a.t/

a.t �m/

�1=

and

w.tC1/

�.tC1/
�
w.t/

�.t/
: (2.13)
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Using (2.13) in (2.12), we obtain

�w.t/� ��.t/q.t/C

�
��.t/

�.tC1/

�
w.tC1/

�ˇ

�
�.t/

�.tC1/

��
a.t/

a.t �m/

�1=
 �y.t/

y.t �m/
w.tC1/:

Now,
�y.t/

yˇ=
 .t �m/
D ��1=
 .t/a�1=
 .t/w1=
 .t/

� ��1=
 .t/a�1=
 .t/

�
�.t/

�.tC1/

�1=

w1=
 .tC1/:

Thus,

�w.t/� ��.t/q.t/C

�
��.t/

�.tC1/

�
w.tC1/

�
ˇ

a1=
 .t �m/

�
�.t/

�1C1=
 .tC1/

�
w1C1=
 .tC1/y.ˇ�
/=
 .t �m/;

and so,

�w.t/� ��.t/q.t/C

�
��.t/

�.tC1/

�
w.tC1/

�
ˇ�.t/

a1=
 .t �m/�1C1=
 .tC1/
w1C1=
 .tC1/y.ˇ�
/=
 .t �m/:

For the case ˇ D 
 , we see that y.ˇ�
/=
 .t/ D 1 while for the case ˇ < 
 , since
a.t/.�y.t//
 is decreasing, there exists a constant c1 > 0 such that

a.t/.�y.t//
 � c1 for t � t2:

Summing this inequality from t2 to t , we have

y.t/� y.t2/CA.t; t2/� c2A.t; t2/

for t � t3 for some c2 > 0 and t3 � t2. Thus,

y.ˇ�
/=
 .t/� c
.ˇ�
/=

2 A.ˇ�
/=
 .t; t2/ WD c

�A.ˇ�
/=
 .t; t2/;

where c� D c.ˇ�
/=
2 . Combining the two cases on ˇ and the definition of gc�.t/

gives

�w.t/� ��.t/q.t/C

�
��.t/

�.tC1/

�
w.tC1/

�
ˇ�.t/

a1=
 .t �m/�1C1=
 .tC1/
gc�.t/w1C1=
 .tC1/: (2.14)
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Setting

B WD
��.t/

�.tC1/
and C WD

ˇ�.t/gc�.t/

a1=
 .t �m/�1C1=
 .tC1/
;

and using the inequality (see [7])

Bu�Cu.1C
/=
 �




.1C
/
C1

�
B
C1

C 


�
;

with uD w.tC1/, we have

�w.t/� ��.t/q.t/C




.1C
/
C1
a.t �m/

.ˇgc�.t//


 
.��.t//
C1

�
 .t/

!
:

Summing this inequality from t2 to t gives

w.t/� w.t2/�

tX
sDt2

"
�.s/q.s/�





.1C
/
C1
a.t �m/

.ˇgc�.s//


 
.��.s//
C1

�
 .s/

!#
:

Taking into account (2.8), we see that

w.t2/� �.t/Q.t/C

tX
sDt2

"
�.s/q.s/�





.1C
/
C1
a.t �m/

.ˇgc�.s//


 
.��.s//
C1

�
 .s/

!#
:

Taking the limsup of both sides in the above inequality as t !1, we obtain a con-
tradiction to condition (2.2).

Now consider Case (II). If we set ´.t/ D �y.t/ > 0 for t � t2, then �´.t/ D
��y.t/ < 0, and from equation (1.1),

�
�
a.t/.�´.t//


�
D q.t/xˇ .t �mC1/� 0: (2.15)

Moreover,

´.t/D�y.t/D p.t/x˛.t �k/�x.t/� p.t/x˛.t �k/;

so
x˛.t �k/� ´.t/ or ´1=˛.tCk/� x.t/:

Using this inequality in (1.1), we have

�
�
a.t/.�´.t//


�
� q.t/´ˇ=˛.t �mCkC1/ WD q.t/´ˇ=˛.h.t//: (2.16)

For t2 � u� v, we may write

´.u/�´.v/D�

vX
sDu

a�1=
 .s/
�
a.s/.�´.s//


�1=

� A.v;u/

�
�
�
a.v/.�´.v//


�1=
�
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for t � s � t2. Setting uD h.s/ and v D h.t/ in the above inequality gives

´.h.s//� A.h.t/;h.s//
�
�
�
a.h.t//.�´.h.t///


�1=
�
:

Summing inequality (2.16) from h.t/� t2 to t , we find that

Z.t/ W D �a.h.t//.�´.h.t///


�
�
�a.h.t//.�´.h.t///


�ˇ=˛
 tX
sDh.t/

Aˇ=˛ .h.t/;h.s//q.s/

DZˇ=˛
 .t/

tX
sDh.t/

Aˇ=˛ .h.t/;h.s//q.s/;

and hence

Z1�ˇ=˛
 .t/�

tX
sDh.t/

Aˇ=˛ .h.t/;h.s//q.s/:

Taking the limsup of both sides of this inequality as t!1, we arrive at a contradic-
tion to (2.3) if ˇD ˛
 . Since�Z.t/� 0 by (2.15),Z.t/ is bounded, and so we obtain
a contradiction to (2.4) if ˇ < ˛
 . This completes the proof of the theorem. �

Remark 1. We note that Theorem 1 holds if Q.t/ <1 so the presence of the ad-
ditional term �.t/Q.t/ in condition (2.2) may improve some of well-known existing
results in the literature.

In case Q.t/ does not exist as t !1, we see that condition (2.2) can be replaced
by

limsup
t!1

tX
sDt2

�
�.s/q.s/�





.1C
/
C1
a.t �mC1/

.ˇgc.s//


�
.��.s//
C1

�
 .s/

��
D1 (2.17)

and the conclusion of Theorem 1 still holds.
For the non-neutral equation, i.e., equation (1.1) with p.t/� 0, and q.t/ is either

nonnegative or nonpositive for all large t , equation (1.1) reduces to

�
�
a.t/.�.x.t///


�
C ıq.t/xˇ .tC1�m/D 0; (2.18)

where ı D˙1. From Theorem 1, we extract the following immediate results.

Corollary 1. Let conditions (i)–(iii) and (1.2) hold. If there exists a positive se-
quence f�.t/g with ��.t/ � 0 such that condition (2.2) holds, then equation (2.18)
with ı D˙1 is oscillatory.

Proof. The proof is contained in the proof of Case (I) in Theorem 1 and hence is
omitted. �
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We note that Corollary 1 is related to some of the results in [3–5, 12–16, 19] and
the references cited therein.

Corollary 2. Let conditions (i)–(iv) and (1.2) hold. If condition (2.3) or (2.4)
holds, then every bounded solution of equation (2.18) with ı D˙1 is oscillatory.

Proof. The proof is contained in the proof of Case (II) of Theorem 1 and hence is
omitted. �

The following example illustrates the above theorem.

Example 1. Consider the neutral equation

�

 
�

�
x.t/�

1

2
x1=3.t �3/

�3!
C8x.t �7/D 0: (2.19)

Here, k D 3 and mD 8, so h.t/D t �4. All conditions of Theorem 1 with �.t/� 1
and condition (2.2) replaced by (2.17) are satisfied, so equation (2.19) is oscillatory.

Our next result follows directly from Theorem 1.

Theorem 2. Let the hypotheses of Theorem 1 hold with ��.t/ � 0 for t � t0 and
condition (2.2) replaced by

limsup
t!1

"
�.t/Q.t/C

tX
sDt0

�.s/q.s/

#
D1: (2.20)

Then equation (1.1) is oscillatory.

In the following theorem we employ a different approach to replacing condition
(2.2) in Theorem 1.

Theorem 3. Let the hypotheses of Theorem 1 hold with condition (2.2) replaced
by

limsup
t!1

"
�.t/Q.t/C

tX
sDt0

�.s/q.s/�
a1=
 .s�m/.��.s//2

4ˇgc.s/�.s/Q.1=
/�1.sC1/

#
D1: (2.21)

Then equation (1.1) is oscillatory.

Proof. Let x.t/ be a nonoscillatory solution of equation (1.1), say x.t/ > 0, x.t �
mC1/ > 0, and x.t �k/ > 0 for t � t1 for some t1 � t0. Proceeding as in the proof
of Theorem 1, we conclude that�y.t/ > 0 for t � t2 and y.t/ satisfies either Case (I)
or Case (II) for t � t2. If (I) holds, then as in the proof of Theorem 1, we again obtain
(2.12). Since a.t/.�y.t//
 is nonincreasing and y.t/ is nondecreasing, we have

a1=
 .t�m/�y.t�m/� a1=
 .tC1/�y.tC1/ and 1=y.t�m/� 1=y.t�mC1/;
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so

�w.t/� ��.t/q.t/C

�
��.t/

�.tC1/

�
w.tC1/

�
ˇ�.t/

�.tC1/

a1=
 .tC1/�y.tC1/

a1=
 .t �m/y.t �mC1/
w.tC1/

� ��.t/q.t/C

�
��.t/

�.tC1/

�
w.tC1/

�
ˇ�.t/

�1C1=
 .tC1/

y
ˇ�


 .t �mC1/

a1=
 .t �m/
w1C1=
 .tC1/

� ��.t/q.t/C

�
��.t/

�.tC1/

�
w.tC1/

�
ˇ�.t/

�1C1=
 .tC1/

gc�.t/

a1=
 .t �m/
w1C1=
 .tC1/:

From (2.10) we see that w1�1=
 .tC1/=�1�1=
 .tC1/�Q1�1=
 .tC1/, so

�w.t/� ��.t/q.t/C

�
��.t/

�.tC1/

�
w.tC1/

�
ˇ�.t/

a1=
 .t �m/�2.tC1/
gc�.t/Q1=
�1.tC1/w2.tC1/:

Completing the square on the second and third terms on the right gives

�w.t/� ��.t/q.t/CC
a1=
 .t �m/.��.t//2

4ˇgc�.t/�.t/Q.1=
/�1.tC1/
:

The remainder of the proof is similar to that of Theorem 1 and is omitted. �

Example 2. Consider the neutral equation

�

 
t3�

�
x.t/�

1

3
x1=3.t �2/

�3!
C

1

ln t
x.t �3/D 0; t > 1: (2.22)

Here, k D 2, mD 4, ˛ D 1=3, and 
 D 3. All conditions of Theorem 3 are satisfied
with �� 1 and hence equation (2.22) is oscillatory.

Next, we present some new and easily verifiable oscillation criteria for equation
(1.1).

Theorem 4. Let ˛ D 1 and conditions (i)–(iv) and (1.2) hold. Assume that condi-
tion (2.3) holds and

limsup
t!1

Aˇ .t �m;t0/Q.t/ > 1 (2.23)
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if ˇ D 
 , and condition (2.4) holds and

limsup
t!1

Aˇ .t �m;t0/Q.t/D1 (2.24)

if ˇ < 
 . Then equation (1.1) is oscillatory.

Proof. Let x.t/ be a nonoscillatory solution of equation (1.1), say x.t/ > 0, x.t �
mC1/ > 0, and x.t �k/ > 0 for t � t1 for some t1 � t0. Proceeding as in the proof
of Theorem 1, we conclude that �y.t/ > 0 for t � t2 and y.t/ satisfies either (I) or
(II) for t � t2. If (I) holds, then as in the proof of Theorem 1, we obtain (2.7) and
(2.8). Using the fact that a.t/.�y.t//
 is decreasing, we have

w.t/ WD a.t/.�y.t//
 �Q.t/�ˇ .t �m/.�y.t �m//ˇ

DQ.t/�ˇ .t �m/
�
a�ˇ=
 .t �m/

��
a.t �m/.�y.t �m//


�ˇ=

�Q.t/�ˇ .t �m/

�
a�ˇ=
 .t �m/

��
a.t/.�y.t//


�ˇ=

DQ.t/�ˇ .t �m/

�
a�ˇ=
 .t �m/

�
wˇ=
 .t/;

or

w1�ˇ=
 .t/�Q.t/�ˇ .t �m/
�
a�ˇ=
 .t �m/

�
DQ.t/

 
t�mX
sDt2

a�1=
 .s/

!ˇ
D Aˇ .t �m;t2/Q.t/:

Taking limsup of both sides of this inequality as t !1, we arrive at a contradiction
to condition (2.23) if ˇ D 
 and to condition (2.24) and the boundedness of w.t/ if
ˇ < 
 . The proof of Case (II) is similar to that in the proof of Theorem 1 and is
omitted. �

Remark 2. We may note that corollaries similar to Corollaries 1 and 2 can be also
drawn from Theorems 2–4. The details are left to the reader.

In conclusion, we would like to point out that our results in this paper can be
extended to higher order equations of the form

�
�
a.t/

�
�n�1 .x.t/�p.t/x.t �k//

�
�
Cq.t/xˇ .tC1�m/D 0;

where n is a positive integer. Also, it would be of interest to study equation (1.1) in
the case where ˇ > 
 .
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