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Abstract. The notion of CF -s-simulation function is introduced and the existence and unique-
ness of coincidence point of two self mappings in the framework of b-metric spaces is invest-
igated. An example with a corresponding numerical simulation is also provided to support the
obtained result.
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1. INTRODUCTION AND PRELIMINARIES

Fixed point theory is a widely used tool in mathematical analysis and its applica-
tions. Over the decades this field has intrigued researchers and has developed extens-
ively. Numerous authors have generalized metric spaces and contraction principle.
Bakhtin [3] and Czerwik [6] generalized the notion of metric space and introduced
the concept of b-metric space. Many mathematicians have obtained fixed point and
coincidence point results in various generalizations of metric spaces. Mleşniţe [11]
and Falset and Mleşniţe [7] studied the existence, uniqueness and Ulam-Hyers sta-
bility for the coincidence point problem of a pair of single-valued mappings. Also,
Petruşel et al. [12] investigated the existence and uniqueness of coincidence points of
a pair of operators satisfying contraction and expansion type conditions in the setting
of b-metric spaces.

Recently, Khojasteh [9] introduced the notion of simulation function and unified
several known fixed point theorems in the setting of metric spaces. In fact, Hierro et
al. [15] obtained coincidence point of two self mappings in the framework of metric
spaces by using simulation functions. Also, Yamaod and Sintunavarat [17] studied
the existence and uniqueness of fixed point of nonlinear mappings in the context of
b-metric spaces involving s-simulation functions.

The second author is supported by UGC Non-NET fellowship (Ref.No. Sch/139/Non-
NET/Math./Ph.D./2017-18/1028).
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Throughout this paper, we denote by N and R the set of natural numbers and real
numbers, respectively. The following terminologies and definitions will be used in
the sequel:

Definition 1 ([6]). A b-metric on a non-empty set X is a function d W X �X !
Œ0;1/ such that for all x;y;´ 2 X and a constant s � 1, the following conditions
hold:

(b1) d.x;y/D 0 if and only if x D y,
(b2) d.x;y/D d.y;x/,
(b3) d.x;y/� sŒd.x;´/Cd.´;y/�.

The pair .X;d/ is called a b-metric space. The number s is called the coefficient of
.X;d/.

Definition 2 ([5]). Let .X;d/ be a b-metric space. Then
(i) A sequence fxng �X converges to x 2X if and only if lim

n!1
d.xn;x/D 0.

(ii) A sequence fxng �X is called a Cauchy sequence if and only if

lim
n;m!1

d.xn;xm/D 0:

(iii) A b-metric space .X;d/ is said to be complete if every Cauchy sequence fxng �
X converges to a point x 2X such that lim

n;m!1
d.xn;xm/D 0D lim

n!1
d.xn;x/.

(iv) A mapping T W X ! X is said to be b-continuous if for fxng � X , xn! x in
.X;d/ implies that T xn! T x in .X;d/.

Remark 1. In a b-metric space .X;d/ a convergent sequence has a unique limit.

Let T;S W X ! X be self mappings on a b-metric space .X;d/. If y D T x D Sx
for some x 2 X , then x is called a coincidence point of T and S and y is called
a point of coincidence of T and S . If T x D Sx D x for some x 2 X , then x is
called a common fixed point of T and S . We say that the pair .T;S/ is compatible
if lim
n!1

d.TSxn;ST xn/ D 0 for every sequence fxng � X such that the sequences

fT xng and fSxng are convergent and have the same limit. We say that T and S
are weakly compatible if T and S commute at their coincidence points. A sequence
fxngn2N[f0g is a Picard-Jungck sequence of the pair .T;S/ (based at x0) if yn D
T xn D SxnC1 for all n 2 N[ f0g. If T .X/ � S.X/ then there exists a Picard-
Jungck sequence of .T;S/ based at any point x0 2X . The following result of Abbas
and Jungck [1] establishes the relationship between point of coincidence and common
fixed point of T and S .

Proposition 1. Let T and S be weakly compatible self mappings on a set X . If
T and S have a unique point of coincidence y D T x D Sx, then y is the unique
common fixed point of T and S .

Definition 3 ([2]). A mapping F W Œ0;1/� Œ0;1/!R is called a C-class function
if it satisfies the following conditions:
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(i) F is continuous,
(ii) F.v;u/� v for all u;v 2 Œ0;1/,
(iii) F.v;u/D v implies that either uD 0 or v D 0 for all u;v 2 Œ0;1/.

Definition 4 ([10]). A mapping F W Œ0;1/� Œ0;1/! R is said to satisfy property
CF , if there exists CF � 0 such that

(i) F.v;u/ > CF implies that v > u,
(ii) F.u;u/� CF for all u 2 Œ0;1/.

Some examples of C -class functions having property CF are:
(i) F.v;u/D v�u, CF D r , where r 2 Œ0;1/,
(ii) F.v;u/D v

1Cu
, CF D 1;2,

(iii) F.v;u/D kv
1Cu

, 0 < k < 1, CF D 1;k.
For more examples of C -class functions having property CF see [10, 14]. Liu et
al. [10] generalized the simulation function introduced by Khojasteh et al. [9] using
C -class function as follows:

Definition 5. A CF -simulation function is a mapping � W Œ0;1/� Œ0;1/! R
satisfying the following conditions:

(i) �.0;0/D 0,
(ii) �.u;v/ < F.v;u/ for all u;v > 0, where F W Œ0;1/� Œ0;1/!R is a C -class

function satisfying property CF ,
(iii) if fung and fvng are sequences in .0;1/ such that lim

n!1
un D lim

n!1
vn > 0

and un < vn, then limsup
n!1

�.un;vn/ < CF .

Yamaod and Sintunavarat [17] defined the concept of s-simulation function as
follows:

Definition 6. Let s � 1 be a given real number. A function � W Œ0;1/� Œ0;1/!R
is said to be an s-simulation function if it satisfies the following conditions:

(i) �.u;v/ < v�u for all u;v > 0,
(ii) if fung and fvng are sequences in .0;1/ such that

0 < liminf
n!1

un � s
�

limsup
n!1

vn

�
� s2

�
liminf
n!1

un

�
<1

and
0 < liminf

n!1
vn � s

�
limsup
n!1

un

�
� s2

�
liminf
n!1

vn

�
<1;

then limsup
n!1

�.un;vn/ < 0.

If we take sD 1 then � is a simulation function in the sense of Khojasteh [9] if and
only if � is an s-simulation function.

Liu et al. [10] and RadenoviKc and Chandok [14] generalized the simulation func-
tion defined by Khojasteh et al. [9]. Motivated by them we have generalized the
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s-simulation function introduced by Yamaod and Sintunavarat [17] using C -class
functions having property CF . We have generalized the fixed point results proved
in [17] to the coincidence point case. We introduce the notion of CF -s-simulation
function. It is observed that every s-simulation function is a CF -s-simulation func-
tion but the converse is not true in general. Our concept has broadened the family of
s-simulation functions. The main objective of the paper is to establish the existence
and uniqueness of point of coincidence of a pair of self mappings in the setting of
b-metric spaces via CF -s-simulation function, covering the case of commuting and
compatible mappings. This approach enables us to study several coincidence point
and fixed point problems from a common perspective. The purpose is to unify, gen-
eralize and improve several existing results in b-metric spaces. We underline that
our approach has generalized the main results of [13, 17]. An example with a cor-
responding numerical simulation is also provided to demonstrate the utility of the
results.

2. MAIN RESULTS

In this section, we establish the existence and uniqueness of coincidence point and
common fixed point in the context of b-metric spaces. We begin with the following
definition:

Definition 7. Let s � 1 be a given real number. A CF -s-simulation function is a
mapping � W Œ0;1/� Œ0;1/! R satisfying the following conditions:

(i) �.u;v/ < F.v;u/ for all u;v > 0, where F W Œ0;1/� Œ0;1/! R is a C -class
function satisfying property CF ,

(ii) if fung and fvng are sequences in .0;1/ such that

0 < liminf
n!1

un � s
�

limsup
n!1

vn

�
� s2

�
liminf
n!1

un

�
<1

and
0 < liminf

n!1
vn � s

�
limsup
n!1

un

�
� s2

�
liminf
n!1

vn

�
<1;

then limsup
n!1

�.un;vn/ < CF .

Let ZFs
be the family of all CF -s-simulation functions. Every s-simulation func-

tion is a CF -s-simulation function but the converse may not be true in general. This
can be illustrated by taking F.v;u/D v�u and CF D 0 in Example 3.3 of [15] in
which k 2 R be such that k < 1 and � W Œ0;1/� Œ0;1/! R be defined as

�.u;v/D

�
2.v�u/; if v < u;
kv�u; otherwise.

Definition 8. Let .X;d/ be a b-metric space and T;S WX !X be self mappings.
Then T is called a .ZFs

;S/-contraction if there exists � 2ZFs
such that

�.d.T x;Ty/;d.Sx;Sy//� CF (2.1)
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for all x;y 2X with Sx ¤ Sy.

Theorem 1. Let .X;d/ be a b-metric space with coefficient s � 1, T;S W X ! X

be self mappings and T be a .ZFs
;S/-contraction. Assume that T .X/ � S.X/ and

atleast one of the following conditions hold:
(i) .T .X/;d/ or .S.X/;d/ is complete,
(ii) .X;d/ is complete, S is b-continuous and .T;S/ is compatible,
(iii) .X;d/ is complete, S is b-continuous and T and S are commuting.

Then T and S have a unique point of coincidence.

Proof. Since T .X/� S.X/, there exists a Picard-Jungck sequence fxng such that
ynD T xnD SxnC1, where n2N[f0g. If yn0

D yn0C1 for some n0 2N[f0g, then
T xn0

D Sxn0C1 D yn0
D yn0C1 D T xn0C1 D Sxn0C2. This implies that T and S

have a point of coincidence. Therefore, suppose that yn ¤ ynC1 for all n 2N[f0g.
Putting x D xnC1 and y D xnC2 in (2.1) we get,

CF � �.d.ynC1;ynC2/;d.yn;ynC1//

< F.d.yn;ynC1/;d.ynC1;ynC2//:

By (i) of Definition 4, d.yn;ynC1/ > d.ynC1;ynC2/. Then fd.yn;ynC1/g is a
decreasing sequence of non-negative real numbers therefore, it is convergent. Let
lim
n!1

d.yn;ynC1/D L� 0. Suppose that L > 0 then 0 < L� sL� s2L <1. This
implies that

0 < liminf
n!1

d.ynC1;ynC2/� s
�

limsup
n!1

d.yn;ynC1/
�

� s2
�

liminf
n!1

d.ynC1;ynC2/
�
<1

and

0 < liminf
n!1

d.yn;ynC1/� s
�

limsup
n!1

d.ynC1;ynC2/
�

� s2
�

liminf
n!1

d.yn;ynC1/
�
<1:

Using (ii) of Definition 7 we have CF � �.d.ynC1;ynC2/;d.yn;ynC1// < CF , a
contradiction. Therefore, lim

n!1
d.yn;ynC1/ D 0. Now we prove that fyng is a

Cauchy sequence in .X;d/. Assume that fyng is not Cauchy in .X;d/. Then there
exists �0 > 0 for which we can find two subsequences fyni

g and fymi
g of fyng such

that ni is the smallest integer for which

ni >mi > i; d.ymi
;yni

/� �0: (2.2)

This means

d.ymi
;yni�1/ < �0: (2.3)
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Since �0 � d.ymi
;yni

/ � sd.ymi
;yni�1/C sd.yni�1;yni

/ < s�0C sd.yni�1;yni
/.

Taking limit superior as i !1 we get,

�0 � limsup
i!1

d.ymi
;yni

/� s�0: (2.4)

Similarly, we have

�0 � liminf
i!1

d.ymi
;yni

/� s�0: (2.5)

Putting x D xmi
and y D xni

in (2.1) we get,

CF � �.d.ymi
;yni

/;d.ymi�1;yni�1// < F.d.ymi�1;yni�1/;d.ymi
;yni

//:

By (i) of Definition 4 we have d.ymi
;yni

/ < d.ymi�1;yni�1/. Therefore, �0 �
d.ymi

;yni
/ < d.ymi�1;yni�1/ � sd.ymi�1;ymi

/ C sd.ymi
;yni�1/ <

sd.ymi�1;ymi
/C s�0. Taking limit superior as i !1 we get,

�0 � limsup
i!1

d.ymi�1;yni�1/� s�0: (2.6)

Similarly, we have

�0 � liminf
i!1

d.ymi�1;yni�1/� s�0: (2.7)

Using (2.4), (2.5), (2.6) and (2.7) we have

0 < liminf
i!1

d.ymi
;yni

/� s�0 � s
�

limsup
i!1

d.ymi�1;yni�1/
�

� s2�0 � s
2
�

liminf
i!1

d.ymi
;yni

/
�
<1

and

0 < liminf
i!1

d.ymi�1;yni�1/� s�0 � s
�

limsup
i!1

d.ymi
;yni

/
�

� s2�0 � s
2
�

liminf
i!1

d.ymi�1;yni�1/
�
<1:

By (ii) of Definition 7 we have CF � �.d.ymi
;yni

/;d.ymi�1;yni�1// < CF , a con-
tradiction. Therefore, fyng is a Cauchy sequence in .X;d/.

Suppose that (i) holds. Assume that .S.X/;d/ (or .T .X/;d/) is complete. Then
there exists w 2 S.X/ such that lim

n!1
d.Sxn;w/ D 0. Since T xn D SxnC1 for all

n 2N[f0g, lim
n!1

d.T xn;w/D 0. Let ´ 2X such that S´D w. We shall show that

´ is a coincidence point of T and S . We have CF � �.d.T xn;T ´/;d.Sxn;S´// <
F.d.Sxn;S´/;d.T xn;T ´//. Therefore, d.T xn;T ´/ < d.Sxn;S´/ which implies
that lim

n!1
d.T xn;T ´/D 0. Since limit of a convergent sequence in a b-metric space

is unique, T ´D S´D w. Thus, w is a point of coincidence of T and S .
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Suppose that (ii) holds. Since .X;d/ is complete, there exists w0 2 X such that
lim
n!1

d.Sxn;w
0/ D 0. Therefore, lim

n!1
d.T xn;w

0/ D 0. As S is b-continuous,

lim
n!1

d.ST xn;Sw
0/D 0 and lim

n!1
d.SSxn;Sw

0/D 0. We have

CF � �.d.TSxn;T w
0/;d.SSxn;Sw

0// < F.d.SSxn;Sw
0/;d.TSxn;T w

0//:

Therefore, d.TSxn;T w0/ < d.SSxn;Sw0/ which gives lim
n!1

d.TSxn;T w
0/ D 0.

Consider

d.Tw0;Sw0/� sd.Tw0;TSxn/C sd.TSxn;Sw
0/

� sd.Tw0;TSxn/C s
2d.TSxn;ST xn/C s

2d.ST xn;Sw
0/:

Taking limit as n!1 and using .T;S/ is compatible we have Tw0 D Sw0. There-
fore, w0 is a coincidence point of T and S .

Finally, suppose that (iii) holds. Since T and S are commuting then
lim
n!1

d.TSxn;ST xn/ D 0. The proof is similar to the case when (ii) holds. Let
w1 and w2 be two distinct point of coincidence of T and S . Then there exists
´1, ´2 2 X such that w1 D T ´1 D S´1 and w2 D T ´2 D S´2. We have CF �
�.d.T ´1;T ´2/;d.S´1;S´2// < F.d.w1;w2/;d.w1;w2//. Using (i) of Definition
4 we have d.w1;w2/ < d.w1;w2/, a contradiction. Hence, T and S have a unique
point of coincidence. �

The following example illustrates the efficiency of Theorem 1 by establishing the
existence and uniqueness of the solution of a nonlinear equation.

Example 1. Let X D Œ0;1/ and d WX �X ! Œ0;1/ be defined as

d.x;y/D

�
.xCy/2; if x ¤ y;

0; if x D y;

for all x;y 2 X . Then .X;d/ is a complete b-metric space with coefficient s D 2.
Define T;S WX !X as T x D 2x and Sx D exC6x�1. Take �.u;v/D 1

3
.v�7u/,

F.v;u/D v�u and CF D 0. Consider

�.d.T x;Ty/;d.Sx;Sy//D
1

3
f.exC6xC eyC6y�2/2�7.2xC2y/2g

�
1

3
f.6xC6y/2�28.xCy/2g> 0:

Therefore, T is a .ZFs
;S/-contraction. Also, we observe that T .X/ � S.X/ and

both .T .X/;d/ and .S.X/;d/ are complete. Hence, by Theorem 1 T and S have
a unique coincidence point 0. For an initial point x0 D 0:2;0:5;1;1:5, the Picard-
Jungck iterations are listed below. Also, the behavior of the process is shown by a
graph.
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TABLE 1. Picard-Jungck iterations

yi x0 D 0:2 x0 D 0:5 x0 D 1:0 x0 D 1:5

y0 0:4000000000 1:0000000000 2:0000000000 3:0000000000

y1 0:1138141813 0:2827202137 0:5591451924 0:8288366299

y2 0:0324804548 0:0805423810 0:1588304694 0:2347627942

y3 0:0092770515 0:0229931547 0:0453062682 0:0669133785

y4 0:0026503351 0:0065679304 0:0129386562 0:0191050307

y5 0:0007572181 0:0018764257 0:0036962706 0:0054575155

y6 0:0002163463 0:0005361113 0:0010560375 0:0015592033

y7 0:0000618131 0:0001531738 0:0003017217 0:0004454795

y8 0:0000176608 0:0000437638 0:0000862059 0:0001272792

y9 0:0000050459 0:0000125039 0:0000246302 0:0000363654

y10 0:0000014417 0:0000035725 0:0000070372 0:0000103901

y11 0:0000004119 0:0000010207 0:0000020106 0:0000029686

y12 0:0000001176 0:0000002916 0:0000005744 0:0000008481

y13 0:0000000336 0:0000000833 0:0000001641 0:0000002423

y14 0:0000000096 0:0000000238 0:0000000468 0:0000000692

y15 0:0000000027 0:0000000068 0:0000000133 0:0000000197

y16 0:0000000007 0:0000000019 0:0000000038 0:0000000056

y17 0:0000000002 0:0000000005 0:0000000010 0:0000000016

y18 0:0000000000 0:0000000001 0:0000000003 0:0000000004

y19 0:0000000000 0:0000000000 0:0000000000 0:0000000001
:::

:::
:::

:::
:::

0 2 4 6 8 10 12 14 16 18 20

Iteration number

0

0.5

1

1.5

2

2.5

3

V
a
lu

e
 o

f 
y n

initial point x
0
=0.2

initial point x
0
=0.5

initial point x
0
=1

initial point x
0
=1.5

FIGURE 1. Behavior of iteration process
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In the following results we see that several existing results in the literature can
be obtained via the CF -s-simulation function. We observe that the main result of
[17, Theorem 4.4] can be easily deduced from Theorem 1.

Corollary 1. Let .X;d/ be a complete b-metric space with coefficient s � 1 and
T WX !X be a mapping satisfying

�.d.T x;Ty/;d.x;y//� 0

for all x;y 2 X , where � W Œ0;1/� Œ0;1/! R is an s-simulation function. Then T
has a unique fixed point in X .

Proof. Take F.v;u/D v�u, CF D 0 and S D I , where I WX!X is the identity
mapping in Theorem 1. Then the results follows. �

The well-known Banach contraction principle in the framework of b-metric spaces
[8, Theorem 3.3] can be deduced as follows:

Corollary 2. Let .X;d/ be a complete b-metric space with coefficient s � 1 and
T WX !X be a mapping satisfying

d.T x;Ty/� �d.x;y/

for all x;y 2X , where � 2
h
0; 1
2

�
. Then T has a unique fixed point in X .

Proof. Define the mappings �1;F W Œ0;1/� Œ0;1/! R by �1.u;v/D �v�u and
F.v;u/D v�u. Take CF D 0 and S be the identity mapping on X then �1 2ZFs

.
The desired result follows by taking � D �1 in Theorem 1. �

Corollary 3 (Rhoades Type). Let .X;d/ be a complete b-metric space with coef-
ficient s � 1 and T WX !X be a mapping satisfying

d.T x;Ty/� d.x;y/��.d.x;y//

for all x;y 2X , where � W Œ0;1/! Œ0;1/ is a lower semi-continuous function such
that �.t/D 0 if and only if t D 0. Then T has a unique fixed point in X .

Proof. Define the mappings �2;F W Œ0;1/� Œ0;1/! R by �2.u;v/D v��.v/�
su and F.v;u/ D v�u. Take CF D 0 and S be the identity mapping on X then
�2 2 ZFs

. Taking � D �2 in Theorem 1 we get that T has a unique fixed point in
X . �

Berinde [4] introduced the notion of b-comparison function as follows:

Definition 9. Let s � 1 be a given real number. A function  W Œ0;1/! Œ0;1/ is
called a b-comparison function if it satisfies

(i)  is monotonically increasing,
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(ii) there exists n0 2 N, � 2 .0;1/ and a convergent series of non-negative terms
1P
nD1

an such that for all n� n0 and t > 0 we have

snC1 nC1.t/� �sn n.t/Can:

Remark 2 ([13]). If  is a b-comparison function, then  .t/ < t for all t > 0.

PMacurar in [13] obtained fixed point results of contraction mappings involving b-
comparison function. We observe that the main result of [13, Theorem 4] can be
inferred in the following way:

Corollary 4. Let .X;d/ be a complete b-metric space with coefficient s � 1 and
T WX !X be a mapping satisfying

d.T x;Ty/�  .d.x;y//

for all x;y 2 X , where  is a b-comparison function. Then T has a unique fixed
point in X .

Proof. Define the mappings �3;F W Œ0;1/� Œ0;1/! R by �3.u;v/D  .v/� su
and F.v;u/ D v�u. Take CF D 0 and S be the identity mapping on X then �3 2
ZFs

. Taking � D �3 in Theorem 1 we get the desired result. �

The following theorem is a direct consequence of Theorem 1 and Proposition 1.

Theorem 2. Let .X;d/ be a b-metric space with coefficient s � 1, T;S W X ! X

be self mappings and T be a .ZFs
;S/-contraction. Assume that T .X/ � S.X/ and

atleast one of the following conditions hold:
(i) .T .X/;d/ or .S.X/;d/ is complete,
(ii) .X;d/ is complete, S is b-continuous and .T;S/ is compatible,
(iii) .X;d/ is complete, S is b-continuous and T and S are commuting.

Moreover, assume that T and S are weakly compatible. Then T and S have a unique
common fixed point in X .

In the sequel, we generalize several known results in the context of b-metric spaces
via CF -s-simulation functions.

Theorem 3. Let .X;d/ be a b-metric space with coefficient s � 1 and T;S WX !
X be self mappings. Suppose that � 2ZFs

and satisfies

�
�
d.T x;Ty/;max

n
d.Sx;Sy/;d.T x;Sx/;d.Ty;Sy/;

d.T x;Sy/Cd.Sx;Ty/

2s

o�
� CF

(2.8)

for all x;y 2 X with Sx ¤ Sy. Assume that T .X/ � S.X/ and atleast one of the
following conditions hold:

(i) .T .X/;d/ or .S.X/;d/ is complete,
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(ii) .X;d/ is complete, S is b-continuous and .T;S/ is compatible,
(iii) .X;d/ is complete, S is b-continuous and T and S are commuting.

Then T and S have a unique point of coincidence. Moreover, if T and S are weakly
compatible, then T and S have a unique common fixed point in X .

Proof. Proceeding similar to Theorem 1 we get a Picard-Jungck sequence fxng
such that yn D T xn D SxnC1, where n 2N[f0g. Putting x D xnC1 and y D xnC2
in (2.8) we get,

CF � �
�
d.ynC1;ynC2/;max

n
d.yn;ynC1/;d.ynC2;ynC1/;

d.yn;ynC2/

2s

o�
< F

�
max

n
d.yn;ynC1/;d.ynC1;ynC2/;

d.yn;ynC2/

2s

o
;d.ynC1;ynC2/

�
:

Therefore, d.ynC1;ynC2/ <max
n
d.yn;ynC1/;d.ynC1;ynC2/;

d.yn;ynC2/
2s

o
.

If d.ynC1;ynC2/ < d.ynC1;ynC2/, a contradiction. If d.ynC1;ynC2/ <
d.yn;ynC2/

2s

�
d.yn;ynC1/C.ynC1;ynC2/

2
, then d.ynC1;ynC2/ < d.yn;ynC1/. Following the lines

in the proof of Theorem 1 and Theorem 2 we get the desired result. �

Corollary 5. Let .X;d/ be a b-metric space with coefficient s � 1 and T;S WX!
X be self mappings satisfying

s3d.T x;Ty/� kmax
n
d.Sx;Sy/;d.T x;Sx/;d.Ty;Sy/;

d.T x;Sy/Cd.Sx;Ty/

2s

o
for all x;y 2 X , where k 2 Œ0;1/. Assume that T .X/� S.X/ and atleast one of the
following conditions hold:

(i) .T .X/;d/ or .S.X/;d/ is complete,
(ii) .X;d/ is complete, S is b-continuous and .T;S/ is compatible,
(iii) .X;d/ is complete, S is b-continuous and T and S are commuting.

Then T and S have a unique point of coincidence. Moreover, if T and S are weakly
compatible, then T and S have a unique common fixed point in X .

Proof. Define the mappings �4;F W Œ0;1/� Œ0;1/! R by �4.u;v/ D kv� s3u
and F.v;u/D v�u. Take CF D 0 then �4 2ZFs

. By taking � D �4 in Theorem 3
we get the result. �

Indeed, a result of Yamaod and Sintunavarat [16, Corollary 3.6] can be obtained
by considering S to be the identity mapping on X in the above result.

The following theorem can be proved on the similar lines of Theorem 1.

Theorem 4. Let .X;d/ be a b-metric space with coefficient s � 1, T;S W X ! X

be self mappings and G W Œ0;1/! Œ0;1/ be a mapping satisfying G.0/ D 0 and
0 < G.t/� t for all t > 0. Suppose that � 2ZFs

and satisfies

�.d.T x;Ty/;G.d.Sx;Sy///� CF
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for all x;y 2 X with Sx ¤ Sy. Assume that T .X/ � S.X/ and at least one of the
following conditions hold:

(i) .T .X/;d/ or .S.X/;d/ is complete,
(ii) .X;d/ is complete, S is b-continuous and .T;S/ is compatible,
(iii) .X;d/ is complete, S is b-continuous and T and S are commuting.

Then T and S have a unique point of coincidence. Moreover, if T and S are weakly
compatible, then T and S have a unique common fixed point in X .

Theorem 5. Let .X;d/ be a b-metric space with coefficient s � 1 and T;S WX !
X be self mappings. Suppose that � 2ZFs

and satisfies

�.d.T x;Ty/;�maxfd.Sx;Sy/;d.T x;Sx/;d.Ty;Sy/;

d.T x;Sy/;d.Ty;Sx/g/� CF
(2.9)

for all x;y 2 X with Sx ¤ Sy and � 2
�
0; 1
2s

�
. Assume that T .X/ � S.X/ and at

least one of the following conditions hold:
(i) .T .X/;d/ or .S.X/;d/ is complete,
(ii) .X;d/ is complete, S is b-continuous and .T;S/ is compatible,
(iii) .X;d/ is complete, S is b-continuous and T and S are commuting.

Then T and S have a unique point of coincidence. Moreover, if T and S are weakly
compatible, then T and S have a unique common fixed point in X .

Proof. Following the lines in the proof of Theorem 1 we get a Picard-Jungck se-
quence fxng such that yn D T xn D SxnC1, where n 2 N[f0g. Putting x D xnC1
and y D xnC2 in (2.9) we get,

CF � �.d.ynC1;ynC2/;�maxfd.yn;ynC1/;d.ynC1;ynC2/;d.yn;ynC2/g/

< F.�maxfd.yn;ynC1/;d.ynC1;ynC2/;d.yn;ynC2/g;d.ynC1;ynC2//:

Therefore, d.ynC1;ynC2/ < �maxfd.yn;ynC1/;d.ynC1;ynC2/;d.yn;ynC2/g. If
d.ynC1;ynC2/ < �d.ynC1;ynC2/ < d.ynC1;ynC2/, a contradiction.
If d.ynC1;ynC2/ < �d.yn;ynC2/ � �sd.yn;ynC1/C �sd.ynC1;ynC2/. Then
d.ynC1;ynC2/ �

�s
1��s

d.yn;ynC1/ < d.yn;ynC1/. Proceeding as in the proof of
Theorem 1 we establish the existence of coincidence point of T and S . Let w1 and
w2 be two distinct point of coincidence of T and S . Then there exists ´1, ´2 2 X
such that w1 D T ´1 D S´1 and w2 D T ´2 D S´2. We have

CF � �.d.T ´1;T ´2/;�maxfd.S´1;S´2/;

d.T ´1;S´1/;d.T ´2;S´2/;d.T ´1;S´2/;d.T ´2;S´1/g/

D �.d.w1;w2/;�d.w1;w2//:

Therefore, d.w1;w2/ < d.w1;w2/, a contradiction. Hence, T and S have a unique
point of coincidence. By Theorem 2, it follows that T and S have a unique common
fixed point. �
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