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Abstract. In this paper we introduce the generalized bi-periodic Fibonacci and Lucas quaternions
which are the further generalizations of the bi-periodic Fibonacci and Lucas quaternions con-
sidered in the literature. For those quaternions, we derive the generating functions, Binet’s for-
mulas and Catalan’s identities.
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1. INTRODUCTION

As is well known, the Fibonacci sequence {Fy} is generated from the recurrence
relation Fy, = Fy—1 + F,—» (n > 2) with Fy =0, F; = 1, and the Lucas sequence
{L,} is generated from the recurrence relation L, = L,—1 + Ly—> (n > 2) with
Lo =2, L1 = 1. The Binet’s formulas for {F,,} and {L, } are respectively given by

an_an
Fp=—",
n (X—ﬁ
Ln:an'i‘,Bn,

where (> 0) and B(< 0) are roots of the equation x> —x —1 = 0.

Many authors generalized the Fibonacci and Lucas sequences by changing initial
conditions and/or recurrence relations. In particular, Edson and Yayenie [5] intro-
duced the bi-periodic Fibonacci sequence { p, } defined by

_ . | app—1+ pn—2, ifniseven
pO_O’ p1_17 Pn = { bpn—1+pn—2, ifl’liSOdd (niz) (11)
The Binet’s formula for {p,} is given by [5]
t(n+1) n__ pn
a o
= (520, (1.2)
(ab)l21\ a—p
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where (> 0) and B(< 0) are roots of the equation x> —abx —ab = 0, and Z(-) is the
parity function such that {(n) = 0 if n is even and {(n) = 1 if n is odd.

The bi-periodic Fibonacci sequence {p,} given in (1.1) includes many sequences
as special cases. Fora = b = 1, {p,} becomes the Fibonacci sequence. Fora = b =
2, { pn} becomes the Pell sequence. If a = b = k, then { p, } denotes the k-Fibonacci
sequence defined in [8], etc.

On the other hand, Bilgici [2] generalized the Lucas sequence by introducing the
bi-periodic Lucas sequence {u, } defined by

bup—1 +uy—n, ifniseven

aup—1 +uu—o, ifnisodd (n=2). (1.3)

Ug=2,uU;1=a, U, =

If a =b =1, then {u,} becomes the Lucas sequence {L,}. If a = b = k, then
{u,} becomes the k-Lucas sequence in [7].

The Binet’s formula for {u,} is given by [2]

alm

= —— (@ + "), (1.4)

(ab)l =]
where « and f are as defined in (1.2).

A quaternion ¢ is defined by

Un

q = qoeo +qi1e1 +¢gre2 +g3es,

where go,491,92.93 € R, eg = 1, and e, e, and e3 are the standard basis in R3 such
thate? = —1,i =1,2,3, and

€162 = —€2€] = €3, €263 = —€3€3 = €], €3€] = —€1€3 = €2.

As noted in the literature [1, 6,9, 20], quaternions are widely used in the fields
of engineering and physics as well as mathematics, and attracted sustained attention
from many researchers. In particular, a variety of results are available in the literature
on the properties of quaternions related to the sequences described earlier. Horadam
[13] defined the Fibonacci quaternion sequence {G, } and Lucas quaternion sequence
{Hpn} as

Gn = Fyeo+ Fyt1e1 + Fyi2e2 + Fyqzes,
Hy = Lyeo+ Lyyi1e1+ Lyyzez + Lyt3es,

where F, and L, are respectively the nth Fibonacci and Lucas numbers.

Following the work of Horadam [13], diverse results have appeared in the literat-
ure. Halici [10] obtained the generating functions, Binet’s formulas and some com-
binatorial properties of the Fibonacci and Lucas quaternions. Halici [11] also intro-
duced the complex Fibonacci quaternions. Ramirez [15] studied the properties of the
k-Fibonacci and k-Lucas quaternions. Cimen and Ipek [4], Szynal-Liana and Wtoch
[17] investigated the Pell and Pell-Lucas quaternions. Szynal-Liana and Wtoch [17]
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introduced the Jacobsthal and Jacobsthal-Lucas quaternions also. Catarino [3] con-
sidered the modified Pell and modified k-Pell quaternions. Halici and Karatag [12]
defined a general quaternion which includes several quaternions mentioned above as
special cases.

Recently Tan et al. [19] introduced the bi-periodic Fibonacci quaternion sequence
{ Py} defined by

Pn = pneo+ pnt1€1+ Pnt26e2+ pnyzes, (L.5)

where pj, is the nth bi-periodic Fibonacci number.
The Binet’s formula for { P, } is given by [19]

*x N__R*AN . .
1 (”‘“ B*p ), if n is even

L4] a—pB
p, =14 (b2 (1.6)
1 a**an_ﬂ**ﬂn . .
LT ( =B ) if n is odd

where « and S are as defined in (1.2), and

3 td+1)
a = a - ale;,
1=o (ab)!2]

3 t(l+1)
pr=Y 4 ple.
Pt (ab)LzJ

3 40
a** = —al dley,
= @)t
40
*% a l
=Y ———Bley.
! l=o(ab)L7H2rlJlB '

Tan et al. [18] also introduced the bi-periodic Lucas quaternion sequence {U, } as
follows:

Un = uneo +upt1€1 +upt2ez +uyi3es, (L.7)

where u;, is the nth bi-periodic Lucas number.

The Binet’s formula for {U, } is given by [ 18]

ﬁ(a**a" + B**p™), ifniseven
Un = (ab)l : * N * i i

—(a¥a 4+ ¥ "), if n is odd
@)t
where «, § are as defined in (1.2), and «*, B*, «** and ** are as defined in (1.6).

If we use the initial condition Py = e; +e2 +2e3 and P = eg + e1 + 2¢5 + 3e3
in (1.5), then { P, } is the same as the generalized Fibonacci quaternion sequence con-
sidered in [14]. Also if we set Py = 2eg+e1 +3e2 +4e3 and Py =eg+3eq +4er +

(1.8)
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7es3in (1.5), then { P, } is the same as the generalized Lucas quaternion sequence con-
sidered in [14].

In this paper we introduce the generalized bi-periodic Fibonacci and Lucas qua-
ternion sequences which include {P,} and {U,} as special cases. For those qua-
ternions, we derive the generating functions, Binet’s formulas and Catalan’s identit-
ies.

2. MAIN RESULTS
2.1. Generalized bi-periodic Fibonacci quaternion

Consider the generalized bi-perioodic Fibonacci sequence {g,} defined by Sahin
[16] and Yayenie [21] as

_ _ | aqn—1+cqn—, ifniseven
90 =0 q1=1, ¢n = { bgn—1+dqn—>, ifnisodd (n=2). @D
The Binet’s formula for {g, } is given by [21]
atetD (sl @+ d —c)y 121 —gLal(B +d — )~ L3]
= o , (2.2)
(ab)L2! a—p

where a(> 0) and B(< 0) are roots of the equation x? — (ab +c —d)x —abd = 0.

dn

Definition 1. We define the generalized bi-periodic Fibonacci quaternion sequence
1On} by
On =qneo+qn+1€1 +qni2€2 +qnizes, (2.3)
where ¢y, is the nth generalized bi-periodic Fibonacci number.

If c =d =1, then {Q,} becomes the bi-periodic Fibonacci quaternion sequence
given in (1.5).

Ifa=b=1and c =d =2, then {Q,} becomes the Jacobsthal quaternion se-
quence defined in [17].

In the rest of the paper, we will use the following identities [21] whenever neces-
sary: ) e+ B =ab+c—d, (il) af = —abd, (iii)) e(e +d —c) = ab(a+d), (iv)
B(B+d—c)=ab(B+d), V) (a+d)(B+d)=cd.

Theorem 1 (Generating function). The generating function for the generalized
bi-periodic Fibonacci quaternion sequence is

(1—(ab+d)x?+bcx3) Qo+ x(1+ax—cx?)Q;
1—(ab+c+d)x?+cdx* '

Proof. We can show that {Q,} satisfies the same recurrence relation as {g, } with
the initial condition

G(x) = 2.4)

Qo = qgoeo +q1e1 +q2e2 +q3e3
=e14aex+ (ab+d)es,
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Q1 =q1e0+qg2e1 +qzez +qaes
=eo+aey +(ab+d)ex+a(ab+c+d)es,

and
Q2n = (ab+c+d)Q2n—2—cdQop—4,
Oon+1=(ab+c+d)02p—1—cdQ2n-3.
Then, proceeding as in the proof of [21, Theorem 7], we can obtain (2.4). O

Ifa =5 and ¢ = d, then
(1—ax)Qo+x0;

1—ax—cx?
_xegter+(atx)ea+ (a%>+c+acx)es
N l—ax —cx2 '

G(x) =

Hence, fora = b = ¢ =d = 1, we get the generating function for the Fibonacci
quaternion
xeg+er+(1+x)ex+ 2+ x)es

l—x—x2 ’
asin [10], and, fora = b = k and ¢ = d = 1, we obtain the generating function for
the k-Fibonacci quaternion

xeo+e1 + (k+x)ea + (k2 +1+kx)es
1 —kx—x2 '

G(x)=

G(x) =
which is given in [15].

Theorem 2 (Binet’s formula). The Binet’s formula for the generalized bi-periodic
Fibonacci quaternion sequence is

1 (aeaL%J(a+d—c)"*L%J—ﬂe,3L%J(ﬂ+d—c)”*t%i

), if nis even

On = (ab)'?] N anje—ﬂ N N
1 a2 (a+d—c)" 21,82 (B+d—c)" "2 o
(ab)L3] ( a—p ), if nis odd
(2.5)
where
3 L+
Qe = a : aléj(a—i—d—c)LH—TlJel,

1=0 (ab)l2!

3¢+
a

’Be - Z I_LJ

1= (ab)‘2

280

= @bl %]

BLal(B+d —c)l T ey,

0o = aLHTIJ(a-l—d—c)L%Jel,
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3. 40

-3

+1 L
mﬂt 2 J(,B+d—C)L2J€1.
1=0 (@ 2

Proof. Firstly we note that | 5] = #
(From (2.2) and (2.3), we have
at et (o3l @+ d—c)"~121—gLal(B+d — )~ L3]
= n €0
(ab)!2] a—p
at® (af(")(a+d—c)f(”ﬂ)ochJ(a—i—d—c)”_LgJ

On

- (ab)t ™ (ab)!2] oa—p
BEM (B +d —c)sr+DLEI(B 1 d _C)n—LZJ)
_ " el
a* D o(@+d—c)alz(@+d—c)~12]
+ n
ab(ab)Lz! a—p
_B(B+d —o)pt2l(B+d —c)nL3] )ez

a—p

- (ab)1+5 (ab)l2] a—p

BIHEM (B1d—c) 1 HE@+D L3 (B4 d—c)n—L5] )
- es,
a—p

or

0n=— (anam(Hd_c)"“—ﬁnﬂt’ii(ﬁ+d_c)n—L3J)
n 9

 (ab)l3] oa—p
where
atMat@ (4 g — )t
(ab)t™
at@ g (o +d —c) At @ IHE®) (o 4 g — )1 +E@+D)
ab c2 (ab) I +E@)
abm Bt (B d —c)fntD
(ab)t™
aé‘(n-i—l)lg(ﬁ_i_d_c) aé‘(n)IBH-E(n)(ﬂ+d_c)1+§(n+1)
ab ¢ (ab) 1@

ap = at @t ey + e1

es,

+

Bn =ab " Deq + el

es.

+
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If n is even, then

ac(a+d—c) a(a+d—c)?
ey + 4

ap =aeg+ (x+d—c)ey + p p 3
3,00+
= a - ozLéJ(a—i-d—c)LHTlJel,
= (ab)LzJ
a +d—c +d—c¢)?
Bn=aeo+ (B+d—c)er + 'B(ﬂab )ez—l-'B('B " ) e3
3 td+1)
=Yl rd—o)l e
= (ab)LjJ
Similarly, if # is odd, then
3 40)
a I+1
Oy = Zwal‘TJ(O{ +d—C)I‘%J€],
1=o (ab)' 2
3 40)
a I+1 L
o= —— B Brd—o)le,
1=o (ab)' 2
and the proof is completed. U

If c = d =1, then (2.5) becomes the Binet’s formula for the bi-periodic Fibonacci
quaternion given in (1.6).

Theorem 3 (Catalan’s identity). The Catalan’s identity for the generalized bi-
periodic Fibonacci quaternion sequence is

Q% - Qn+2r Qn—2r

n—2r (aeﬁe ((@+d)> ~(cd)" )+Beac ((ﬁ+d)2"—(cd)r)) ifniseven

(cd) 2 @5)2

n—2r— oBo d) — d2r 0o d)’ — d2r . .
abe(cd) 2 l(aﬂ((c) (o+ )(a):f)za ((c) (B+d) ))’ if nisodd.

(2.6)
Proof. Firstly, assume that # is even, and let
X1 = (@—B)*(ab)" Q7.
Xo = (@ —B)*(ab)" Qns2r On—2r.
Then
n n n n 2
X, = (aea2(a+d—c)2 —BBE(B +d—c)2)
=" (@+d—c)" + BB " (B+d—c)"
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—(@eBe+ Bette)a 2 (@+d —c)2 B2 (B+d —c)2,
= 2o (@ +d—c)"+B2B"(B+d—c)

— (dtePe + Pette) (ab)" (@ +d) 2 (B+d)2,
=ala"(@+d—c)"+ BB (B+d—c)"

— (ctePe + Pette)(ab)" (cd)?,

and
Xz—(oceoc B w+d > BB —c)"“’)

x (e F (@ +d =) B p"3 2’(/3+d )
X oe"(a—}—d )"+ BB (B+d—c)
—ae,Beoc 5 (oz—i-d—c)iﬂn 2r(,B—l—al
—ﬂeaeaT(a—l—d
=a2a" (e +d— c)"+,33,3"(,3+d—c)”
—defe(ab)” (Ol‘i‘d)
— Bette(ab)”
=oZa"(@+d— c)”+ﬁ ﬁ”(ﬂ+d—c)”
—dePe(ab)(cd)”
— Beate(ab)"(cd)" 7" (B+d)?.

Hence

X1 —X2 = oze,Be(ab)" '

En ((a rd)? - (cd)’)
T ((B+d)¥ —(cd)),
( )

and the proof is completed for the case where 7 is even.
When 7 is odd, we can proceed similarly, and details are omitted.

+ Beate(ab)”

Ifc=d =1, then @®> = ab(a + 1) and
(ab)?" (a +1)?" — (ab)?*"
(ab)2r
4r _ (ab)Zr
= (ab)Zr ’

(@+ 1) —1=
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Similarly

'34r _ (ab)Zr

2r _
B+ —1=— 5

and Theorem 3 reduces to [19, Theorem 5].

2.2. Generalized bi-periodic Lucas quaternion

Consider the generalized bi-periodic Lucas sequence {v, } defined by Bilgici [?]
as

L_dtl
0= 74

The Binet’s formula for {v,} is given by [2]

at® ((a+d+1)aL"21J(a+d—c)LgJ—(ﬁ+d+1)ﬁL"21J(,B+d—c)L3J

bvy—1 +dv,—>, ifniseven
avy—1 +cvy—n, ifnisodd

, V1 =4a, vp = { (n>2). 2.7)

vV, =

" (ab)L%J a—p ’

(2.8)
where « and f are as defined in (2.2).
Definition 2. The generalized bi-periodic Lucas quaternion sequence {V}, } is defined
by
Vi = vpeo+ vnt1€1 + Unt2€2 + Upt3e3, (2.9
where vy, is the nth generalized bi-periodic Lucas number.

If c =d =1, {V,,} becomes the bi-periodic Lucas quaternion sequence given in
(1.7).

Theorem 4 (Generating function). The generating function for the generalized
bi-periodic Lucas quaternion sequence is

(1—(ab+c)x* +adx?)Vo+x(1+bx —dx?*)V;
1—(ab+c+d)x?+cdx* '

Proof. Replacing Qg, Q1, a, b, c and d by Vy, V1, b, a, d and ¢ in (2.4), we
obtain (2.10). O

H(x) =

(2.10)

Ifa =5 and ¢ = d, then
(1—ax)Vo+xW
l1—ax—cx2
C'HT_”eo +(a+ (c+Dx)er + (@*+c+1+acx)es
l—ax—cx?
(a®+2ac+a+ (@*+c?+1)x)es
l—ax—cx? ’

H(x) =
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Hence, for a = b = k and ¢ = d = 1, we obtain the generating function for the
k-Lucas quaternion
(2—kx)eo+(k+2x)er +(k?+2 +kx)er+ (k3 +3k + (k* +2)x)es

H =
) 1—kx—x2

asin [15].

Theorem 5 (Binet’s formula). The Binet’s formula for the generalized bi-periodic
Lucas quaternion sequence is

Vie, ifniseven

ﬁ
_ (ab)L ] )
Vn TVY,O’ lfn is odd ( 11)
(ad)

where
.  aplatd+1)als Natd—c) BB, (B+d+1) LT (B+d—c) L5
ne — o— ﬂ
o _ velatdDal’s otd—) B po(prd+1)pl"Z ”(ﬂﬂH)L :
no — o — 13 ’

with tte, Be, 0o and B, as defined in (2.5).

Proof. Using the Binet’s formula for {v,} and proceeding as in the proof of The-
orem 2, we can easily obtain (2.11). ]

Ifc =d =1, then
(« —|—2)05L%J+L%J = (a+2)a"!

- (1 + z)a”

2p
=(1-25)"
_ (a=p)a"
ab
and

(B+2)pl"7 1+15] = (B42)p"!

= (1+ B)ﬂ”
()
_ B-—o)p"

- ab



GENERALIZED BI-PERIODIC FIBONACCI AND LUCAS QUATERNIONS 817

Hence (2.11) reduces to the Binet’s formula for the bi-periodic Lucas quaternion
given in (1.8).
We verify (2.11) for n = 1. From (2.7) and the definition of {V},}, we have
V1 =vieg+v2e1 +v3ex +v4e3

=aeyp+ (ab+d+1)ey+al@b+c+d+1)es

+ (a®b? + abc 4+ 2abd +ab + d* + d)es.
On the other hand, if n = 1, then (2.11) becomes
_elat+d+1)—Be(B+d+1)
= - i

In this case, «, and B, respectively can be written as

41

Qe =aeo+ (+d—cley+al@+d)er+(a@+d)(a+d—c)es,
Be =ae,+(B+d—c)er+a(B+d)ea+ (B+d)(B+d—c)es.
Let
de(a+d+1)—Be(B+d+1) = Egeg + Ere1 + Ezex + Ezes.
Then
Eo =a(a—p),
Ei=(a+d+D)a+d—c)—(B+d+1)(B+d—c)
=(@+d)’—B+d)>—(c—D@—p)
=(@+p+2d)(a—p)—(c—D(—p)
=(ab+d+1)(a—p),
Ex=a((@+d)(a+d—c)—(B+d)(B+d—c))
=a((@+d)*—(B+d)>+(@—p))
=a((@+p+2d)a—pB)+(@—p))
=a(ab+c+d+1)(a—p),
Es=(@+d)(a+d+1)(a+d—c)—(B+d)B+d+1D(B+d—c)
=(@+d)’—B+d)’—(c—D((@+d)’—(B+d)*)—cl@—p)
=((@+B+2d)*—(a+d)(B+d))(a—p)
—(c—=D(a+B+2d)(a—pB)—c(a—p)
= ((ab+c+d)*—cd)(@—B)—(c—1)(ab+c+d)(a—p)—c(a—p)
= (a®’b® +abc +2abd +ab +d* +d)(a—p).

Hence (2.11) is true for n = 1.
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Theorem 6 (Catalan’s identity). The Catalan’s identity for the generalized bi-
periodic Lucas quaternion sequence is

2
v, —Vn+2r Vn 2r

(cd
aaﬂo(<a+d)2r (cd)r)+ﬂoao(<ﬂ+d>2r—(cd)) L
_ x( s ) if niseven, 212
(cd) (doz B—cd+d?*)(dB—a—cd+d?)
abd
aeﬂe((cd)’—(a+d)2’)+ﬂeae((cd)’—(ﬂ+d>2r) L
x( @) ) ifnisodd.

Proof. Assume that n is even, and let
= (a—B)*(ab)" V2,
Y2 = (@ —B)*(ab)" > Voszr Va—or.
Then

Y) = (ao(a+d+1)a P (@4d—)—Bo(B+d+1)B" T (B+d—c)? )
= oZ(a+d +1)* " 2 (a+d—c)"+B2(B+d+1)*B"2(B+d—c)"
— (@oBo+Boto)a+d+1)(B+d+1)a"? (a+d—c)3 "2 (B+d—c)3,

and
Y, = <oto(a+d+1)o¢ —c) —,80( = )
(ozo (@4d+1)a"2 2B, (B+d+1)B" )

= o2(a+d+1) %" > (a+d)" +2(B+d +1) ﬂ”‘z(ﬂ +d—c)"

— o Bo(atd+1)(B+d+1)a" 5 =

— Botto(atd+1)(B+d+1)a" "2 =B
Hence

Y1-Y,= 0‘0:30141 + ﬂoaoAZ,
where
(oz+d+1)(/3+d+1)( 7 (akd—c) "
—a”%(aw—c)% gz (,B+d—c)%)
Ay = (a+d+1)(;3+d+1)(a"‘2z‘ — T (Brd—)" 5"

—a"2 (a+d—c)2 B2 (ﬂ+d—c)%).
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Since aff = —abd and a + B = ab +c—d, we have
d+1
(@+d+1)= (1+L)a
o
(- d+1)p o
B abd
(@+pB)d—d(c—d)—(d+1)B
= o
abd
_ (da—B—cd +d?*)a
B abd ’
Similarly
dp—a—cd +d?
Brd+1y= dPza-cd+dDp
abd
Then
(da—B—cd +d*)(dB—a—cd +d*)az(a+d—c)2BZ(B+d—c)2
A =
(abd)?
r _ r
y (a (x+d—c) _1)
Br(B+d—c)
. (ab)"_z(cd)% (da—B—cd+d?)(dB—a—cd+d?)
= P
8 a?(a+d—c)? —a"(a+d—c)' B (B+d—c)
a'(a+d—c)'Br(B+d—c)
(ab)"2(cd)" 7" (da—B—cd+d?)(dp—a—cd+d?)((a + d)¥ —(cd)")
= d2 .
Similarly we have
4 @) ed) "5 (da—p—cd+d?)(dp—a—cd+d?)((B + d)* —(cd)")
2= ;
d?
and the proof is completed for the case where n is even.
Using the same procedure, we can also prove (2.12) for the case where n is odd.
g

If c = d =1, then Theorem 6 reduces to [18, Theorem 5].

3. CONCLUSIONS

In this paper we introduced the generalized bi-periodic Fibonacci and Lucas qua-
ternions which are the further generalizations of the bi-periodic Fibonacci and Lucas
quaternions considered in the literature. For those quaternions, we obtained the gen-
erating functions, Binet’s formulas and Catalan’s identities.
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