

ON THE GENERALIZED BI-PERIODIC FIBONACCI AND LUCAS **QUATERNIONS**

YOUNSEOK CHOO

Received 11 April, 2019

Abstract. In this paper we introduce the generalized bi-periodic Fibonacci and Lucas quaternions which are the further generalizations of the bi-periodic Fibonacci and Lucas quaternions considered in the literature. For those quaternions, we derive the generating functions, Binet's formulas and Catalan's identities.

2010 Mathematics Subject Classification: 11B39; 11B37; 11B52

Keywords: generalized bi-periodic Fibonacci sequence, generalized bi-periodic Lucas sequence, quaternion, Binet's formula, generating function, Catalan's identity

1. Introduction

As is well known, the Fibonacci sequence $\{F_n\}$ is generated from the recurrence relation $F_n = F_{n-1} + F_{n-2}$ $(n \ge 2)$ with $F_0 = 0$, $F_1 = 1$, and the Lucas sequence $\{L_n\}$ is generated from the recurrence relation $L_n = L_{n-1} + L_{n-2}$ $(n \ge 2)$ with $L_0 = 2$, $L_1 = 1$. The Binet's formulas for $\{F_n\}$ and $\{L_n\}$ are respectively given by

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta},$$

$$L_n = \alpha^n + \beta^n,$$

where $\alpha(>0)$ and $\beta(<0)$ are roots of the equation $x^2 - x - 1 = 0$.

Many authors generalized the Fibonacci and Lucas sequences by changing initial conditions and/or recurrence relations. In particular, Edson and Yayenie [5] introduced the bi-periodic Fibonacci sequence $\{p_n\}$ defined by

$$p_0 = 0, \ p_1 = 1, \ p_n = \begin{cases} ap_{n-1} + p_{n-2}, & \text{if } n \text{ is even} \\ bp_{n-1} + p_{n-2}, & \text{if } n \text{ is odd} \end{cases} (n \ge 2).$$
 (1.1)

The Binet's formula for $\{p_n\}$ is given by [5]

$$p_n = \frac{a^{\xi(n+1)}}{(ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha^n - \beta^n}{\alpha - \beta} \right), \tag{1.2}$$

© 2019 Miskolc University Press

where $\alpha(>0)$ and $\beta(<0)$ are roots of the equation $x^2 - abx - ab = 0$, and $\zeta(\cdot)$ is the parity function such that $\zeta(n) = 0$ if n is even and $\zeta(n) = 1$ if n is odd.

The bi-periodic Fibonacci sequence $\{p_n\}$ given in (1.1) includes many sequences as special cases. For a=b=1, $\{p_n\}$ becomes the Fibonacci sequence. For a=b=2, $\{p_n\}$ becomes the Pell sequence. If a=b=k, then $\{p_n\}$ denotes the k-Fibonacci sequence defined in [8], etc.

On the other hand, Bilgici [2] generalized the Lucas sequence by introducing the bi-periodic Lucas sequence $\{u_n\}$ defined by

$$u_0 = 2, u_1 = a, u_n = \begin{cases} bu_{n-1} + u_{n-2}, & \text{if } n \text{ is even} \\ au_{n-1} + u_{n-2}, & \text{if } n \text{ is odd} \end{cases} (n \ge 2).$$
 (1.3)

If a = b = 1, then $\{u_n\}$ becomes the Lucas sequence $\{L_n\}$. If a = b = k, then $\{u_n\}$ becomes the k-Lucas sequence in [7].

The Binet's formula for $\{u_n\}$ is given by [2]

$$u_n = \frac{a^{\xi(n)}}{(ab)^{\lfloor \frac{n+1}{2} \rfloor}} (\alpha^n + \beta^n), \tag{1.4}$$

where α and β are as defined in (1.2).

A quaternion q is defined by

$$q = q_0e_0 + q_1e_1 + q_2e_2 + q_3e_3,$$

where $q_0, q_1, q_2, q_3 \in \mathbb{R}$, $e_0 = 1$, and e_1, e_2 and e_3 are the standard basis in \mathbb{R}^3 such that $e_i^2 = -1$, i = 1, 2, 3, and

$$e_1e_2 = -e_2e_1 = e_3$$
, $e_2e_3 = -e_3e_2 = e_1$, $e_3e_1 = -e_1e_3 = e_2$.

As noted in the literature [1, 6, 9, 20], quaternions are widely used in the fields of engineering and physics as well as mathematics, and attracted sustained attention from many researchers. In particular, a variety of results are available in the literature on the properties of quaternions related to the sequences described earlier. Horadam [13] defined the Fibonacci quaternion sequence $\{G_n\}$ and Lucas quaternion sequence $\{H_n\}$ as

$$G_n = F_n e_0 + F_{n+1} e_1 + F_{n+2} e_2 + F_{n+3} e_3,$$

 $H_n = L_n e_0 + L_{n+1} e_1 + L_{n+2} e_2 + L_{n+3} e_3,$

where F_n and L_n are respectively the *n*th Fibonacci and Lucas numbers.

Following the work of Horadam [13], diverse results have appeared in the literature. Halici [10] obtained the generating functions, Binet's formulas and some combinatorial properties of the Fibonacci and Lucas quaternions. Halici [11] also introduced the complex Fibonacci quaternions. Ramirez [15] studied the properties of the k-Fibonacci and k-Lucas quaternions. Çimen and İpek [4], Szynal-Liana and Włoch [17] investigated the Pell and Pell-Lucas quaternions. Szynal-Liana and Włoch [17]

introduced the Jacobsthal and Jacobsthal-Lucas quaternions also. Catarino [3] considered the modified Pell and modified k-Pell quaternions. Halici and Karataş [12] defined a general quaternion which includes several quaternions mentioned above as special cases.

Recently Tan et al. [19] introduced the bi-periodic Fibonacci quaternion sequence $\{P_n\}$ defined by

$$P_n = p_n e_0 + p_{n+1} e_1 + p_{n+2} e_2 + p_{n+3} e_3, (1.5)$$

where p_n is the nth bi-periodic Fibonacci number.

The Binet's formula for $\{P_n\}$ is given by [19]

$$P_{n} = \begin{cases} \frac{1}{(ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha^{*}\alpha^{n} - \beta^{*}\beta^{n}}{\alpha - \beta} \right), & \text{if } n \text{ is even} \\ \frac{1}{(ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha^{**}\alpha^{n} - \beta^{**}\beta^{n}}{\alpha - \beta} \right), & \text{if } n \text{ is odd} \end{cases}$$
(1.6)

where α and β are as defined in (1.2), and

$$\alpha^* = \sum_{l=0}^{3} \frac{a^{\xi(l+1)}}{(ab)^{\lfloor \frac{l}{2} \rfloor}} \alpha^l e_l,$$

$$\beta^* = \sum_{l=0}^{3} \frac{a^{\xi(l+1)}}{(ab)^{\lfloor \frac{l}{2} \rfloor}} \beta^l e_l,$$

$$\alpha^{**} = \sum_{l=0}^{3} \frac{a^{\xi(l)}}{(ab)^{\lfloor \frac{l+1}{2} \rfloor}} \alpha^l e_l,$$

$$\beta^{**} = \sum_{l=0}^{3} \frac{a^{\xi(l)}}{(ab)^{\lfloor \frac{l+1}{2} \rfloor}} \beta^l e_l.$$

Tan et al. [18] also introduced the bi-periodic Lucas quaternion sequence $\{U_n\}$ as follows:

$$U_n = u_n e_0 + u_{n+1} e_1 + u_{n+2} e_2 + u_{n+3} e_3, (1.7)$$

where u_n is the *n*th bi-periodic Lucas number.

The Binet's formula for $\{U_n\}$ is given by [18]

$$U_n = \begin{cases} \frac{1}{(ab)^{\lfloor \frac{n+1}{2} \rfloor}} (\alpha^{**}\alpha^n + \beta^{**}\beta^n), & \text{if } n \text{ is even} \\ \frac{1}{(ab)^{\lfloor \frac{n+1}{2} \rfloor}} (\alpha^*\alpha^n + \beta^*\beta^n), & \text{if } n \text{ is odd} \end{cases}$$
(1.8)

where α , β are as defined in (1.2), and α^* , β^* , α^{**} and β^{**} are as defined in (1.6). If we use the initial condition $P_0 = e_1 + e_2 + 2e_3$ and $P_1 = e_0 + e_1 + 2e_2 + 3e_3$

in (1.5), then $\{P_n\}$ is the same as the generalized Fibonacci quaternion sequence considered in [14]. Also if we set $P_0 = 2e_0 + e_1 + 3e_2 + 4e_3$ and $P_1 = e_0 + 3e_1 + 4e_2 + 4e_3 + 4e_4 + 4e_5 +$

 $7e_3$ in (1.5), then $\{P_n\}$ is the same as the generalized Lucas quaternion sequence considered in [14].

In this paper we introduce the generalized bi-periodic Fibonacci and Lucas quaternion sequences which include $\{P_n\}$ and $\{U_n\}$ as special cases. For those quaternions, we derive the generating functions, Binet's formulas and Catalan's identities.

2. Main results

2.1. Generalized bi-periodic Fibonacci quaternion

Consider the generalized bi-perioodic Fibonacci sequence $\{q_n\}$ defined by Sahin [16] and Yayenie [21] as

$$q_0 = 0, q_1 = 1, q_n =$$

$$\begin{cases} aq_{n-1} + cq_{n-2}, & \text{if } n \text{ is even} \\ bq_{n-1} + dq_{n-2}, & \text{if } n \text{ is odd} \end{cases} (n \ge 2).$$
(2.1)

The Binet's formula for $\{q_n\}$ is given by [21]

$$q_{n} = \frac{a^{\zeta(n+1)}}{(ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha^{\lfloor \frac{n}{2} \rfloor} (\alpha + d - c)^{n - \lfloor \frac{n}{2} \rfloor} - \beta^{\lfloor \frac{n}{2} \rfloor} (\beta + d - c)^{n - \lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} \right), \tag{2.2}$$

where $\alpha(>0)$ and $\beta(<0)$ are roots of the equation $x^2 - (ab + c - d)x - abd = 0$.

Definition 1. We define the generalized bi-periodic Fibonacci quaternion sequence $\{Q_n\}$ by

$$Q_n = q_n e_0 + q_{n+1} e_1 + q_{n+2} e_2 + q_{n+3} e_3, (2.3)$$

where q_n is the nth generalized bi-periodic Fibonacci number.

If c = d = 1, then $\{Q_n\}$ becomes the bi-periodic Fibonacci quaternion sequence given in $\{1.5\}$.

If a = b = 1 and c = d = 2, then $\{Q_n\}$ becomes the Jacobsthal quaternion sequence defined in [17].

In the rest of the paper, we will use the following identities [21] whenever necessary: (i) $\alpha + \beta = ab + c - d$, (ii) $\alpha\beta = -abd$, (iii) $\alpha(\alpha + d - c) = ab(\alpha + d)$, (iv) $\beta(\beta + d - c) = ab(\beta + d)$, (v) $(\alpha + d)(\beta + d) = cd$.

Theorem 1 (Generating function). The generating function for the generalized bi-periodic Fibonacci quaternion sequence is

$$G(x) = \frac{\left(1 - (ab+d)x^2 + bcx^3\right)Q_0 + x(1 + ax - cx^2)Q_1}{1 - (ab+c+d)x^2 + cdx^4}.$$
 (2.4)

Proof. We can show that $\{Q_n\}$ satisfies the same recurrence relation as $\{q_n\}$ with the initial condition

$$Q_0 = q_0 e_0 + q_1 e_1 + q_2 e_2 + q_3 e_3$$

= $e_1 + ae_2 + (ab + d)e_3$,

$$Q_1 = q_1e_0 + q_2e_1 + q_3e_2 + q_4e_3$$

= $e_0 + ae_1 + (ab+d)e_2 + a(ab+c+d)e_3$,

and

$$Q_{2n} = (ab+c+d)Q_{2n-2} - cdQ_{2n-4},$$

$$Q_{2n+1} = (ab+c+d)Q_{2n-1} - cdQ_{2n-3}.$$

Then, proceeding as in the proof of [21, Theorem 7], we can obtain (2.4).

If a = b and c = d, then

$$G(x) = \frac{(1-ax)Q_0 + xQ_1}{1-ax-cx^2}$$
$$= \frac{xe_0 + e_1 + (a+x)e_2 + (a^2 + c + acx)e_3}{1-ax-cx^2}.$$

Hence, for a = b = c = d = 1, we get the generating function for the Fibonacci quaternion

$$G(x) = \frac{xe_0 + e_1 + (1+x)e_2 + (2+x)e_3}{1 - x - x^2}$$

as in [10], and, for a = b = k and c = d = 1, we obtain the generating function for the k-Fibonacci quaternion

$$G(x) = \frac{xe_0 + e_1 + (k+x)e_2 + (k^2 + 1 + kx)e_3}{1 - kx - x^2},$$

which is given in [15].

Theorem 2 (Binet's formula). *The Binet's formula for the generalized bi-periodic Fibonacci quaternion sequence is*

$$Q_{n} = \begin{cases} \frac{1}{(ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha_{e} \alpha^{\lfloor \frac{n}{2} \rfloor} (\alpha + d - c)^{n - \lfloor \frac{n}{2} \rfloor} - \beta_{e} \beta^{\lfloor \frac{n}{2} \rfloor} (\beta + d - c)^{n - \lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} \right), & if n \text{ is even} \\ \frac{1}{(ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha_{o} \alpha^{\lfloor \frac{n}{2} \rfloor} (\alpha + d - c)^{n - \lfloor \frac{n}{2} \rfloor} - \beta_{o} \beta^{\lfloor \frac{n}{2} \rfloor} (\beta + d - c)^{n - \lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} \right), & if n \text{ is odd} \end{cases}$$

$$(2.5)$$

where

$$\begin{split} &\alpha_e = \sum_{l=0}^3 \frac{a^{\xi(l+1)}}{(ab)^{\lfloor \frac{l}{2} \rfloor}} \alpha^{\lfloor \frac{l}{2} \rfloor} (\alpha + d - c)^{\lfloor \frac{l+1}{2} \rfloor} e_l, \\ &\beta_e = \sum_{l=0}^3 \frac{a^{\xi(l+1)}}{(ab)^{\lfloor \frac{l}{2} \rfloor}} \beta^{\lfloor \frac{l}{2} \rfloor} (\beta + d - c)^{\lfloor \frac{l+1}{2} \rfloor} e_l, \\ &\alpha_o = \sum_{l=0}^3 \frac{a^{\xi(l)}}{(ab)^{\lfloor \frac{l+1}{2} \rfloor}} \alpha^{\lfloor \frac{l+1}{2} \rfloor} (\alpha + d - c)^{\lfloor \frac{l}{2} \rfloor} e_l, \end{split}$$

$$\beta_o = \sum_{l=0}^{3} \frac{a^{\zeta(l)}}{(ab)^{\lfloor \frac{l+1}{2} \rfloor}} \beta^{\lfloor \frac{l+1}{2} \rfloor} (\beta + d - c)^{\lfloor \frac{l}{2} \rfloor} e_l.$$

Proof. Firstly we note that $\lfloor \frac{n}{2} \rfloor = \frac{n - \zeta(n)}{2}$. ¿From (2.2) and (2.3), we have

$$\begin{split} Q_{n} &= \frac{a^{\xi(n+1)}}{(ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha^{\lfloor \frac{n}{2} \rfloor} (\alpha + d - c)^{n - \lfloor \frac{n}{2} \rfloor} - \beta^{\lfloor \frac{n}{2} \rfloor} (\beta + d - c)^{n - \lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} \right) e_{0} \\ &+ \frac{a^{\xi(n)}}{(ab)^{\xi(n)} (ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha^{\xi(n)} (\alpha + d - c)^{\xi(n+1)} \alpha^{\lfloor \frac{n}{2} \rfloor} (\alpha + d - c)^{n - \lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} - \frac{\beta^{\xi(n)} (\beta + d - c)^{\xi(n+1)} \beta^{\lfloor \frac{n}{2} \rfloor} (\beta + d - c)^{n - \lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} \right) e_{1} \\ &+ \frac{a^{\xi(n+1)}}{ab(ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha(\alpha + d - c)\alpha^{\lfloor \frac{n}{2} \rfloor} (\alpha + d - c)^{n - \lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} - \frac{\beta(\beta + d - c)\beta^{\lfloor \frac{n}{2} \rfloor} (\beta + d - c)^{n - \lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} \right) e_{2} \\ &+ \frac{a^{\xi(n)}}{(ab)^{1+\xi(n)} (ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha^{1+\xi(n)} (\alpha + d - c)^{1+\xi(n+1)} \alpha^{\lfloor \frac{n}{2} \rfloor} (\alpha + d - c)^{n - \lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} \right) e_{3}, \end{split}$$

or

$$Q_n = \frac{1}{(ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha_n \alpha^{\lfloor \frac{n}{2} \rfloor} (\alpha + d - c)^{n - \lfloor \frac{n}{2} \rfloor} - \beta_n \beta^{\lfloor \frac{n}{2} \rfloor} (\beta + d - c)^{n - \lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} \right),$$

where

$$\alpha_{n} = a^{\xi(n+1)}e_{0} + \frac{a^{\xi(n)}\alpha^{\xi(n)}(\alpha + d - c)^{\xi(n+1)}}{(ab)^{\xi(n)}}e_{1}$$

$$+ \frac{a^{\xi(n+1)}\alpha(\alpha + d - c)}{ab}e_{2} + \frac{a^{\xi(n)}\alpha^{1+\xi(n)}(\alpha + d - c)^{1+\xi(n+1)}}{(ab)^{1+\xi(n)}}e_{3},$$

$$\beta_{n} = a^{\xi(n+1)}e_{0} + \frac{a^{\xi(n)}\beta^{\xi(n)}(\beta + d - c)^{\xi(n+1)}}{(ab)^{\xi(n)}}e_{1}$$

$$+ \frac{a^{\xi(n+1)}\beta(\beta + d - c)}{ab}e_{2} + \frac{a^{\xi(n)}\beta^{1+\xi(n)}(\beta + d - c)^{1+\xi(n+1)}}{(ab)^{1+\xi(n)}}e_{3}.$$

If n is even, then

$$\alpha_{n} = ae_{0} + (\alpha + d - c)e_{1} + \frac{a\alpha(\alpha + d - c)}{ab}e_{2} + \frac{\alpha(\alpha + d - c)^{2}}{ab}e_{3}$$

$$= \sum_{l=0}^{3} \frac{a^{\xi(l+1)}}{(ab)^{\lfloor \frac{l}{2} \rfloor}} \alpha^{\lfloor \frac{l}{2} \rfloor} (\alpha + d - c)^{\lfloor \frac{l+1}{2} \rfloor} e_{l},$$

$$\beta_{n} = ae_{0} + (\beta + d - c)e_{1} + \frac{a\beta(\beta + d - c)}{ab}e_{2} + \frac{\beta(\beta + d - c)^{2}}{ab}e_{3}$$

$$= \sum_{l=0}^{3} \frac{a^{\xi(l+1)}}{(ab)^{\lfloor \frac{l}{2} \rfloor}} \beta^{\lfloor \frac{l}{2} \rfloor} (\beta + d - c)^{\lfloor \frac{l+1}{2} \rfloor} e_{l}.$$

Similarly, if n is odd, then

$$\alpha_n = \sum_{l=0}^{3} \frac{a^{\xi(l)}}{(ab)^{\lfloor \frac{l+1}{2} \rfloor}} \alpha^{\lfloor \frac{l+1}{2} \rfloor} (\alpha + d - c)^{\lfloor \frac{l}{2} \rfloor} e_l,$$

$$\beta_n = \sum_{l=0}^{3} \frac{a^{\xi(l)}}{(ab)^{\lfloor \frac{l+1}{2} \rfloor}} \beta^{\lfloor \frac{l+1}{2} \rfloor} (\beta + d - c)^{\lfloor \frac{l}{2} \rfloor} e_l,$$

and the proof is completed.

If c = d = 1, then (2.5) becomes the Binet's formula for the bi-periodic Fibonacci quaternion given in (1.6).

Theorem 3 (Catalan's identity). The Catalan's identity for the generalized biperiodic Fibonacci quaternion sequence is

$$= \begin{cases} (cd)^{\frac{n-2r}{2}} \left(\frac{\alpha_e \beta_e \left((\alpha+d)^{2r} - (cd)^r \right) + \beta_e \alpha_e \left((\beta+d)^{2r} - (cd)^r \right)}{(\alpha-\beta)^2} \right), & if \ n \ is \ even, \\ abc \left(cd \right)^{\frac{n-2r-1}{2}} \left(\frac{\alpha_o \beta_o \left((cd)^r - (\alpha+d)^{2r} \right) + \beta_o \alpha_o \left((cd)^r - (\beta+d)^{2r} \right)}{(\alpha-\beta)^2} \right), & if \ n \ is \ odd. \end{cases}$$

Proof. Firstly, assume that n is even, and let

$$X_1 = (\alpha - \beta)^2 (ab)^n Q_n^2,$$

$$X_2 = (\alpha - \beta)^2 (ab)^n Q_{n+2r} Q_{n-2r}.$$

Then

$$X_{1} = \left(\alpha_{e}\alpha^{\frac{n}{2}}(\alpha + d - c)^{\frac{n}{2}} - \beta_{e}\beta^{\frac{n}{2}}(\beta + d - c)^{\frac{n}{2}}\right)^{2}$$
$$= \alpha_{e}^{2}\alpha^{n}(\alpha + d - c)^{n} + \beta_{e}^{2}\beta^{n}(\beta + d - c)^{n}$$

$$\begin{split} &-(\alpha_{e}\beta_{e}+\beta_{e}\alpha_{e})\alpha^{\frac{n}{2}}(\alpha+d-c)^{\frac{n}{2}}\beta^{\frac{n}{2}}(\beta+d-c)^{\frac{n}{2}},\\ &=\alpha_{e}^{2}\alpha^{n}(\alpha+d-c)^{n}+\beta_{e}^{2}\beta^{n}(\beta+d-c)^{n}\\ &-(\alpha_{e}\beta_{e}+\beta_{e}\alpha_{e})(ab)^{n}(\alpha+d)^{\frac{n}{2}}(\beta+d)^{\frac{n}{2}},\\ &=\alpha_{e}^{2}\alpha^{n}(\alpha+d-c)^{n}+\beta_{e}^{2}\beta^{n}(\beta+d-c)^{n}\\ &-(\alpha_{e}\beta_{e}+\beta_{e}\alpha_{e})(ab)^{n}(cd)^{\frac{n}{2}}, \end{split}$$

and

$$\begin{split} X_2 &= \left(\alpha_e \alpha^{\frac{n+2r}{2}} (\alpha + d - c)^{\frac{n+2r}{2}} - \beta_e \beta^{\frac{n+2r}{2}} (\beta + d - c)^{\frac{n+2r}{2}}\right) \\ &\times \left(\alpha_e \alpha^{\frac{n-2r}{2}} (\alpha + d - c)^{\frac{n-2r}{2}} - \beta_e \beta^{\frac{n-2r}{2}} (\beta + d - c)^{\frac{n-2r}{2}}\right) \\ &= \alpha_e^2 \alpha^n (\alpha + d - c)^n + \beta_e^2 \beta^n (\beta + d - c)^n \\ &- \alpha_e \beta_e \alpha^{\frac{n+2r}{2}} (\alpha + d - c)^{\frac{n+2r}{2}} \beta^{\frac{n-2r}{2}} (\beta + d - c)^{\frac{n-2r}{2}} \\ &- \beta_e \alpha_e \alpha^{\frac{n-2r}{2}} (\alpha + d - c)^{\frac{n-2r}{2}} \beta^{\frac{n+2r}{2}} (\beta + d - c)^{\frac{n+2r}{2}}, \\ &= \alpha_e^2 \alpha^n (\alpha + d - c)^n + \beta_e^2 \beta^n (\beta + d - c)^n \\ &- \alpha_e \beta_e (ab)^n (\alpha + d)^{\frac{n-2r}{2}} (\beta + d)^{\frac{n-2r}{2}}, \\ &= \alpha_e^2 \alpha^n (\alpha + d - c)^n + \beta_e^2 \beta^n (\beta + d - c)^n \\ &- \alpha_e \beta_e (ab)^n (cd)^{\frac{n-2r}{2}} (\alpha + d)^{2r} \\ &- \beta_e \alpha_e (ab)^n (cd)^{\frac{n-2r}{2}} (\beta + d)^{2r}. \end{split}$$

Hence

$$X_1 - X_2 = \alpha_e \beta_e (ab)^n (cd)^{\frac{n-2r}{2}} \Big((\alpha + d)^{2r} - (cd)^r \Big)$$

+ $\beta_e \alpha_e (ab)^n (cd)^{\frac{n-2r}{2}} \Big((\beta + d)^{2r} - (cd)^r \Big),$

and the proof is completed for the case where n is even.

When n is odd, we can proceed similarly, and details are omitted.

If
$$c = d = 1$$
, then $\alpha^2 = ab(\alpha + 1)$ and

$$(\alpha + 1)^{2r} - 1 = \frac{(ab)^{2r}(\alpha + 1)^{2r} - (ab)^{2r}}{(ab)^{2r}}$$
$$= \frac{\alpha^{4r} - (ab)^{2r}}{(ab)^{2r}}.$$

Similarly

$$(\beta+1)^{2r} - 1 = \frac{\beta^{4r} - (ab)^{2r}}{(ab)^{2r}},$$

and Theorem 3 reduces to [19, Theorem 5].

2.2. Generalized bi-periodic Lucas quaternion

Consider the generalized bi-periodic Lucas sequence $\{v_n\}$ defined by Bilgici [2] as

$$v_0 = \frac{d+1}{d}, \ v_1 = a, \ v_n = \begin{cases} bv_{n-1} + dv_{n-2}, & \text{if } n \text{ is even} \\ av_{n-1} + cv_{n-2}, & \text{if } n \text{ is odd} \end{cases} \quad (n \ge 2). \tag{2.7}$$

The Binet's formula for $\{v_n\}$ is given by [2]

$$v_{n} = \frac{a^{\zeta(n)}}{(ab)^{\lfloor \frac{n-1}{2} \rfloor}} \left(\frac{(\alpha+d+1)\alpha^{\lfloor \frac{n-1}{2} \rfloor}(\alpha+d-c)^{\lfloor \frac{n}{2} \rfloor} - (\beta+d+1)\beta^{\lfloor \frac{n-1}{2} \rfloor}(\beta+d-c)^{\lfloor \frac{n}{2} \rfloor}}{\alpha-\beta} \right), \tag{2.8}$$

where α and β are as defined in (2.2).

Definition 2. The generalized bi-periodic Lucas quaternion sequence $\{V_n\}$ is defined by

$$V_n = v_n e_0 + v_{n+1} e_1 + v_{n+2} e_2 + v_{n+3} e_3, (2.9)$$

where v_n is the *n*th generalized bi-periodic Lucas number.

If c = d = 1, $\{V_n\}$ becomes the bi-periodic Lucas quaternion sequence given in (1.7).

Theorem 4 (Generating function). The generating function for the generalized bi-periodic Lucas quaternion sequence is

$$H(x) = \frac{\left(1 - (ab + c)x^2 + adx^3\right)V_0 + x(1 + bx - dx^2)V_1}{1 - (ab + c + d)x^2 + cdx^4}.$$
 (2.10)

Proof. Replacing Q_0 , Q_1 , a, b, c and d by V_0 , V_1 , b, a, d and c in (2.4), we obtain (2.10).

If a = b and c = d, then

$$H(x) = \frac{\frac{(1-ax)V_0 + xV_1}{1-ax-cx^2}}{\frac{c+1-ax}{c}e_0 + (a+(c+1)x)e_1 + (a^2+c+1+acx)e_2}{1-ax-cx^2} + \frac{\frac{(a^3+2ac+a+(a^2+c^2+1)x)e_3}{1-ax-cx^2}}{1-ax-cx^2}.$$

Hence, for a = b = k and c = d = 1, we obtain the generating function for the k-Lucas quaternion

$$H(x) = \frac{(2-kx)e_0 + (k+2x)e_1 + (k^2+2+kx)e_2 + (k^3+3k+(k^2+2)x)e_3}{1-kx-x^2},$$
as in [15].

Theorem 5 (Binet's formula). *The Binet's formula for the generalized bi-periodic Lucas quaternion sequence is*

$$V_{n} = \begin{cases} \frac{1}{(ab)^{\lfloor \frac{n-1}{2} \rfloor}} V_{ne}, & \text{if } n \text{ is even} \\ \frac{1}{(ab)^{\lfloor \frac{n-1}{2} \rfloor}} V_{no}, & \text{if } n \text{ is odd} \end{cases}$$
 (2.11)

where

$$\begin{split} V_{ne} &= \frac{\alpha_o(\alpha+d+1)\alpha^{\lfloor\frac{n-1}{2}\rfloor}(\alpha+d-c)^{\lfloor\frac{n}{2}\rfloor} - \beta_o(\beta+d+1)\beta^{\lfloor\frac{n-1}{2}\rfloor}(\beta+d-c)^{\lfloor\frac{n}{2}\rfloor}}{\alpha-\beta}, \\ V_{no} &= \frac{\alpha_e(\alpha+d+1)\alpha^{\lfloor\frac{n-1}{2}\rfloor}(\alpha+d-c)^{\lfloor\frac{n}{2}\rfloor} - \beta_e(\beta+d+1)\beta^{\lfloor\frac{n-1}{2}\rfloor}(\beta+d-c)^{\lfloor\frac{n}{2}\rfloor}}{\alpha-\beta}, \end{split}$$

with α_e , β_e , α_o and β_o as defined in (2.5).

Proof. Using the Binet's formula for $\{v_n\}$ and proceeding as in the proof of Theorem 2, we can easily obtain (2.11).

If c = d = 1, then

$$(\alpha + 2)\alpha^{\lfloor \frac{n-1}{2} \rfloor + \lfloor \frac{n}{2} \rfloor} = (\alpha + 2)\alpha^{n-1}$$

$$= \left(1 + \frac{2}{\alpha}\right)\alpha^{n}$$

$$= \left(1 - \frac{2\beta}{ab}\right)\alpha^{n}$$

$$= \frac{(\alpha - \beta)\alpha^{n}}{ab},$$

and

$$(\beta + 2)\beta^{\lfloor \frac{n-1}{2} \rfloor + \lfloor \frac{n}{2} \rfloor} = (\beta + 2)\beta^{n-1}$$

$$= \left(1 + \frac{2}{\beta}\right)\beta^{n}$$

$$= \left(1 - \frac{2\alpha}{ab}\right)\beta^{n}$$

$$= \frac{(\beta - \alpha)\beta^{n}}{ab}.$$

Hence (2.11) reduces to the Binet's formula for the bi-periodic Lucas quaternion given in (1.8).

We verify (2.11) for n = 1. From (2.7) and the definition of $\{V_n\}$, we have

$$V_1 = v_1 e_0 + v_2 e_1 + v_3 e_2 + v_4 e_3$$

= $ae_0 + (ab + d + 1)e_1 + a(ab + c + d + 1)e_2$
+ $(a^2b^2 + abc + 2abd + ab + d^2 + d)e_3$.

On the other hand, if n = 1, then (2.11) becomes

$$V_1 = \frac{\alpha_e(\alpha + d + 1) - \beta_e(\beta + d + 1)}{\alpha - \beta}.$$

In this case, α_e and β_e respectively can be written as

$$\alpha_e = ae_o + (\alpha + d - c)e_1 + a(\alpha + d)e_2 + (\alpha + d)(\alpha + d - c)e_3,$$

$$\beta_e = ae_o + (\beta + d - c)e_1 + a(\beta + d)e_2 + (\beta + d)(\beta + d - c)e_3.$$

Let

$$\alpha_e(\alpha+d+1) - \beta_e(\beta+d+1) = E_0e_0 + E_1e_1 + E_2e_2 + E_3e_3.$$

Then

$$E_{0} = a(\alpha - \beta),$$

$$E_{1} = (\alpha + d + 1)(\alpha + d - c) - (\beta + d + 1)(\beta + d - c)$$

$$= (\alpha + d)^{2} - (\beta + d)^{2} - (c - 1)(\alpha - \beta)$$

$$= (\alpha + \beta + 2d)(\alpha - \beta) - (c - 1)(\alpha - \beta)$$

$$= (ab + d + 1)(\alpha - \beta),$$

$$E_{2} = a((\alpha + d)(\alpha + d - c) - (\beta + d)(\beta + d - c))$$

$$= a((\alpha + d)^{2} - (\beta + d)^{2} + (\alpha - \beta))$$

$$= a((\alpha + \beta + 2d)(\alpha - \beta) + (\alpha - \beta))$$

$$= a(ab + c + d + 1)(\alpha - \beta),$$

$$E_{3} = (\alpha + d)(\alpha + d + 1)(\alpha + d - c) - (\beta + d)(\beta + d + 1)(\beta + d - c)$$

$$= (\alpha + d)^{3} - (\beta + d)^{3} - (c - 1)((\alpha + d)^{2} - (\beta + d)^{2}) - c(\alpha - \beta)$$

$$= ((\alpha + \beta + 2d)^{2} - (\alpha + d)(\beta + d))(\alpha - \beta)$$

$$- (c - 1)(\alpha + \beta + 2d)(\alpha - \beta) - c(\alpha - \beta)$$

$$= ((ab + c + d)^{2} - cd)(\alpha - \beta) - (c - 1)(ab + c + d)(\alpha - \beta) - c(\alpha - \beta)$$

$$= (a^{2}b^{2} + abc + 2abd + ab + d^{2} + d)(\alpha - \beta).$$

Hence (2.11) is true for n = 1.

Theorem 6 (Catalan's identity). The Catalan's identity for the generalized biperiodic Lucas quaternion sequence is

$$V_{n}^{2} - V_{n+2r} V_{n-2r}$$

$$= \begin{cases} \frac{(cd)^{\frac{n-2r}{2}} (d\alpha - \beta - cd + d^{2}) (d\beta - \alpha - cd + d^{2})}{d^{2}} \\ \times \left(\frac{\alpha_{o}\beta_{o}\left((\alpha + d)^{2r} - (cd)^{r}\right) + \beta_{o}\alpha_{o}\left((\beta + d)^{2r} - (cd)^{r}\right)}{(\alpha - \beta)^{2}}\right), & if \ n \ is \ even, \\ \frac{(cd)^{\frac{n-2r-1}{2}} (d\alpha - \beta - cd + d^{2}) (d\beta - \alpha - cd + d^{2})}{abd} \\ \times \left(\frac{\alpha_{e}\beta_{e}\left((cd)^{r} - (\alpha + d)^{2r}\right) + \beta_{e}\alpha_{e}\left((cd)^{r} - (\beta + d)^{2r}\right)}{(\alpha - \beta)^{2}}\right), & if \ n \ is \ odd. \end{cases}$$

$$(2.12)$$

Proof. Assume that *n* is even, and let

$$Y_1 = (\alpha - \beta)^2 (ab)^{n-2} V_n^2,$$

$$Y_2 = (\alpha - \beta)^2 (ab)^{n-2} V_{n+2r} V_{n-2r}.$$

Then

$$Y_{1} = \left(\alpha_{o}(\alpha + d + 1)\alpha^{\frac{n-2}{2}}(\alpha + d - c)^{\frac{n}{2}} - \beta_{o}(\beta + d + 1)\beta^{\frac{n-2}{2}}(\beta + d - c)^{\frac{n}{2}}\right)^{2}$$

$$= \alpha_{o}^{2}(\alpha + d + 1)^{2}\alpha^{n-2}(\alpha + d - c)^{n} + \beta_{o}^{2}(\beta + d + 1)^{2}\beta^{n-2}(\beta + d - c)^{n}$$

$$- (\alpha_{o}\beta_{o} + \beta_{o}\alpha_{o})(\alpha + d + 1)(\beta + d + 1)\alpha^{\frac{n-2}{2}}(\alpha + d - c)^{\frac{n}{2}}\beta^{\frac{n-2}{2}}(\beta + d - c)^{\frac{n}{2}},$$

and

$$\begin{split} Y_2 &= \left(\alpha_o(\alpha + d + 1)\alpha^{\frac{n + 2r - 2}{2}}(\alpha + d - c)^{\frac{n + 2r}{2}} - \beta_o(\beta + d + 1)\beta^{\frac{n + 2r - 2}{2}}(\beta + d - c)^{\frac{n + 2r}{2}}\right) \\ &\times \left(\alpha_o(\alpha + d + 1)\alpha^{\frac{n - 2r - 2}{2}}(\alpha + d - c)^{\frac{n - 2r}{2}} - \beta_o(\beta + d + 1)\beta^{\frac{n - 2r - 2}{2}}(\beta + d - c)^{\frac{n - 2r}{2}}\right), \\ &= \alpha_o^2(\alpha + d + 1)^2\alpha^{n - 2}(\alpha + d)^n + \beta_o^2(\beta + d + 1)^2\beta^{n - 2}(\beta + d - c)^n \\ &- \alpha_o\beta_o(\alpha + d + 1)(\beta + d + 1)\alpha^{\frac{n + 2r - 2}{2}}(\alpha + d - c)^{\frac{n + 2r}{2}}\beta^{\frac{n - 2r - 2}{2}}(\beta + d - c)^{\frac{n - 2r}{2}}, \\ &- \beta_o\alpha_o(\alpha + d + 1)(\beta + d + 1)\alpha^{\frac{n - 2r - 2}{2}}(\alpha + d - c)^{\frac{n - 2r}{2}}\beta^{\frac{n + 2r - 2}{2}}(\beta + d - c)^{\frac{n + 2r}{2}}. \end{split}$$

Hence

$$Y_1 - Y_2 = \alpha_0 \beta_0 A_1 + \beta_0 \alpha_0 A_2$$

where

$$\begin{split} A_1 &= (\alpha + d + 1)(\beta + d + 1) \left(\alpha^{\frac{n+2r-2}{2}}(\alpha + d - c)^{\frac{n+2r}{2}}\beta^{\frac{n-2r-2}{2}}(\beta + d - c)^{\frac{n-2r}{2}} - \alpha^{\frac{n-2}{2}}(\alpha + d - c)^{\frac{n}{2}}\beta^{\frac{n-2}{2}}(\beta + d - c)^{\frac{n}{2}}\right) \\ A_2 &= (\alpha + d + 1)(\beta + d + 1) \left(\alpha^{\frac{n-2r-2}{2}}(\alpha + d - c)^{\frac{n-2r}{2}}\beta^{\frac{n+2r-2}{2}}(\beta + d - c)^{\frac{n+2r}{2}} - \alpha^{\frac{n-2}{2}}(\alpha + d - c)^{\frac{n}{2}}\beta^{\frac{n-2}{2}}(\beta + d - c)^{\frac{n}{2}}\right). \end{split}$$

Since $\alpha\beta = -abd$ and $\alpha + \beta = ab + c - d$, we have

$$(\alpha + d + 1) = \left(1 + \frac{d+1}{\alpha}\right)\alpha$$

$$= \left(1 - \frac{(d+1)\beta}{abd}\right)\alpha$$

$$= \left(\frac{(\alpha + \beta)d - d(c-d) - (d+1)\beta}{abd}\right)\alpha$$

$$= \frac{(d\alpha - \beta - cd + d^2)\alpha}{abd}.$$

Similarly

$$(\beta + d + 1) = \frac{(d\beta - \alpha - cd + d^2)\beta}{ahd}.$$

Then

$$\begin{split} A_{1} &= \frac{(d\alpha - \beta - cd + d^{2})(d\beta - \alpha - cd + d^{2})\alpha^{\frac{n}{2}}(\alpha + d - c)^{\frac{n}{2}}\beta^{\frac{n}{2}}(\beta + d - c)^{\frac{n}{2}}}{(abd)^{2}} \\ &\times \left(\frac{\alpha^{r}(\alpha + d - c)^{r}}{\beta^{r}(\beta + d - c)^{r}} - 1\right) \\ &= \frac{(ab)^{n-2}(cd)^{\frac{n}{2}}(d\alpha - \beta - cd + d^{2})(d\beta - \alpha - cd + d^{2})}{d^{2}} \\ &\times \frac{\alpha^{2r}(\alpha + d - c)^{2r} - \alpha^{r}(\alpha + d - c)^{r}\beta^{r}(\beta + d - c)^{r}}{\alpha^{r}(\alpha + d - c)^{r}\beta^{r}(\beta + d - c)^{r}} \\ &= \frac{(ab)^{n-2}(cd)^{\frac{n-2r}{2}}(d\alpha - \beta - cd + d^{2})(d\beta - \alpha - cd + d^{2})((\alpha + d)^{2r} - (cd)^{r})}{d^{2}}. \end{split}$$

Similarly we have

$$A_2 = \frac{(ab)^{n-2}(cd)^{\frac{n-2r}{2}}(d\alpha - \beta - cd + d^2)(d\beta - \alpha - cd + d^2)\big((\beta + d)^{2r} - (cd)^r\big)}{d^2}$$

and the proof is completed for the case where n is even.

Using the same procedure, we can also prove (2.12) for the case where n is odd.

If c = d = 1, then Theorem 6 reduces to [18, Theorem 5].

3. CONCLUSIONS

In this paper we introduced the generalized bi-periodic Fibonacci and Lucas quaternions which are the further generalizations of the bi-periodic Fibonacci and Lucas quaternions considered in the literature. For those quaternions, we obtained the generating functions, Binet's formulas and Catalan's identities.

ACKNOWLEDGEMENT

The author thanks to the anonymous reviewer for helpful comments which led to improved presentation of the paper.

REFERENCES

- S. L. Adler, Quaternionic quantum mechanics and quantum fields. New York: Oxford University Press, 1994.
- [2] G. Bilgici, "Two generalizations of Lucas sequence." Appl. Math. Comp., vol. 245, pp. 526–538, 2014, doi: 10.1016/j.amc.2014.07.111.
- [3] P. Catarino, "The modified Pell and the modified *k*-Pell quaternions and octonions." *Adv. Appl. Clifford Algebras*, vol. 26, no. 2, pp. 577–590, 2016, doi: 10.1007/s00006-015-0611-4.
- [4] C. B. Çimen and A. İpek, "On Pell quaternions and Pell-Lucas quaternions." Adv. Appl. Clifford Algebras, vol. 26, pp. 39–51, 2016, doi: 10.1007/s00006-015-0571-8.
- [5] E. Edson and O. Yayenie, "A new generalization of Fibonacci sequences and extended Binet's formula." *Integers*, vol. 9, pp. 639–654, 2009, doi: 10.1515/INTEG.2009.051.
- [6] T. A. Ell, N. L. Bihan, and S. J. Sangwine, Quaternion Fourier transforms for signal processing and image processing. John Wiley & Sons, 2014.
- [7] S. Falcón, "On the k-Lucas numbers." Int. J. Contempt. Math. Sci., vol. 6, no. 21-24, pp. 1039–1050, 2011, doi: 10.12988//ijcms.
- [8] S. Falcón and A. Plaza, "On the Fibonacci *k*-numbers." *Chaos, Solitons and Fractals*, vol. 32, no. 5, pp. 1615–1624, 2007, doi: 10.1016//j.chaos.2006.09.022.
- [9] K. Gürlebeck and W. Sprössig, *Quaternionic and Clifford calculus for physicists and engineers*. New York: Wiley, 1997.
- [10] S. Halici, "On Fibonacci quaternions." Adv. Appl. Clifford Algebras, vol. 22, no. 2, pp. 321–327, 2012, doi: 10.1007/s00006-011-0317-1.
- [11] S. Halici, "On complex Fibonacci quaternions." Adv. Appl. Clifford Algebras, vol. 23, no. 1, pp. 105–112, 2013, doi: 10.1007/s00006-012-0337-5.
- [12] S. Halici and A. Karataş, "On a generalization for Fibonacci quaternions." Chaos, Solitons and Fractals, vol. 98, pp. 178–182, 2017, doi: http://dx.doi.org/10.1016/j.chaos.2017.03.037.
- [13] A. F. Horadam, "Complex Fibonacci numbers and Fibonacci quaternions." *Amer. Math. Monthly*, vol. 70, no. 3, pp. 289–291, 1963, doi: https://about.jstor.org/terms.
- [14] E. Polatli, "A generalization of Fibonacci and Lucas quaternions." Adv. Appl. Clifford Algebras, vol. 26, no. 2, pp. 719–730, 2016, doi: 10.1007/s00006-015-0626-x.
- [15] J. L. Ram irez, "Some combinatorial properties of the *k*-Fibonacci and the *k*-Lucas quaternions." *An Şt. Univ. Ovidius Constanta*, vol. 23, no. 2, pp. 201–212, 2015, doi: 10.1515/auom-2015-0037.
- [16] M. Sahin, "The Gelin-Cesàro identity in some conditional sequences." *Hacet. J. Math. Stat.*, vol. 40, no. 6, pp. 855–861, 2011.
- [17] A. Szynal-Liana and I. Włoch, "A note on Jacobsthal quaternions." Adv. Appl. Clifford Algebras, vol. 26, no. 1, pp. 441–447, 2016, doi: 10.1007/s00006-015-0622-1.
- [18] E. Tan, S. Yilmiz, and M. Sahin, "A note on bi-periodic Fibonacci and Lucas quaternions." Chaos, Solitons and Fractals, vol. 85, pp. 138–142, 2016, doi: http://dx.doi.org/10.1016/j.chaos.2016.01.025.
- [19] E. Tan, S. Yilmiz, and M. Sahin, "On a new generalization of Fibonacci quaternions." *Chaos, Solitons and Fractals*, vol. 82, pp. 1–4, 2016, doi: http://dx.doi.org/10.1016/j.chaos.2015.10.021.
- [20] J. P. Ward, Quaternions and Cayley numbers: algebra and applications. London: Kluwer Academic Publisher, 1997.

[21] O. Yayenie, "A note on generalized Fibonacci sequences." *Appl. Math. Comp.*, vol. 217, no. 12, pp. 5603–5611, 2011, doi: 10.1016/j.amc.2010.12.038.

Author's address

Younseok Choo

Hongik University, Department of Electronic and Electrical Engineering, 2639 Sejong-Ro, 30016 Sejong, Republic of Korea

E-mail address: yschoo@hongik.ac.kr