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§1

The one-dimensional homogeneous problems of diophantine approximations
have a unified treatment by the algorithm of continued fractions. It is possible
to give such a geometrical interpretation of convergents and by-denominators
(Nebennenner) of continued fractions, which can be extended for the inhomo-
geneous case, and so it furnishes a parallel treatment of these cases. In
this way, e. g., it is possible to prove some simple theorems of Borel type
for the inhomogeneous case, to get new lower and upper bounds for the
Khintchine constant ¢ defined by

c=inf sup inf xlex—pB—y|.
a 8 x>0, yintegers
This last result will be treated in [5] and [6].

A similar algorithm, as we give in this paper for the inhomogeneous
case, is given in an arithmetical way by J. W. S. CasseLs [1] and used also
by R. DESCOMBES [2]. A comparison of both treatments is made in footnote®.

In §2 we give this geometrical interpretation of continued fractions for
an irrational e and the corresponding algorithm for the inhomogeneous case
giving a sequence of multipla s,(g) which corresponds to the sequence of
convergents and by-denominators of continued fractions, and further a sequence
of pairs of multipla ¢.(8), ¢+(6) which is a subsequence of s,(8) and corres-
ponds to the sequence of convergents g. of «.

In §3 we give the proof of some simple theorems of Borel type
corresponding to the inhomogeneous case. We call these theorems Borel type,
since BOREL sharpened HurwiITZ’s theorem to the effect that the inequality

(1.1 x\xa—y|<—1~

V5
is soluble with x being among any three consecutive convergents of . It is
well known that if we consider two consecutive convergents of &, we may
assert only the solubility of the inequality

0. exe—sl< ]
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among them, and the constant % cannot be diminished. For any convergent

one may assert only the inequality
(1.3) X|xe—y| <1,

and again the constant 1 is best-possible. Hurwitz's theorem gives at once
that for more than three consecutive convergents generally no inequality better
than (1. 1) can be proved. ’

Corresponding to (1.3) and what has been said above we shall prove
for the inhomogeneous case that to an irrational e and real £ the inequality

x{xa——ﬁ’——yk%

is soluble among any pairs q(8), gi(8) corresponding to «, and the constant

% is best-possible. Corresponding to (1.2) we shall prove that the inequality

o1
X|xe—pg—y|< 5
has a solution among any fwo consecutive pairs. ¢i(8), gi(8), qes1(8), i1 ()

corresponding to ¢ and again é— is best-possible.
Concerning (1.1) we remark first that a theorem corresponding to
Hurwitz’s is due to CasseLs [1] and asserts that for any real irrational e

and p==<{ne>! the inequality

— B8 [ < .2_7_ !
X ! Xo Vi 28 W + &
has infinitely many solutions (with arbitrary ¢ >0) and the constant %171__7—

is best-possible. So one would expect that for any real irrational e« and
8==<{ne)> the inequality is soluble among any three consecutive pairs gi(g),
@i (B), qe:1(8), @is1(8), gr2(B), ghs2(8) corresponding to e. It is somewhat
surprising, after what has been said above, that this is not the case. More-
over, one can show that the number #aree cannot be replaced by any universal
constant {. For any prescribed positive integer / we shall even show that
the inequality
x|xe—gF—y|<c

with any c<—% is not soluble in general among any ! consecutive pairs
e (B), qicr (B), .. ., qeu(B), gii(B) of our algorithm.

1 (x> denotes the fractional part of the real number x.
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§2

In what follows let « be irrational, 0<e <1 and 0= @< 1. Starting
in positive direction from a periphery-point O of the circle K with unity
periphery, we put up the arcs with length & and ne for n=1,2,.... We
call the endpoints of these as the “g-” and “ne-points”, respectively. As it is
easy to see, the structure of the ne-points for n=1,2, ... has the following-

PrROPERTY A. The directed distance between the me- and ne-points
for m>n is the same as that between the (m — n)e-point and the point O.

DEFINITION. We call the se-point and the corresponding multipla s
adjacent to § (corresponding to ) if there are no ne-points with O<n<s
in at least one of the two arcs determined by # and the se-point.

We shall use the following notations:

The sequence of the adjacent multipla s to @ is denoted by

51(8) = se(B) < ss(B) < --- <s(B) < ...
‘where s,(8)=s,(8) if and only if 8=0 and —;—<cz <1.?

We denote by 4,(8) the directed ‘“‘empty” arc on the circle K corre-
sponding to s,(8, which does not contain ne-points with O<n<s. 4,(8)
has positive or negative sign, according to the direction in which it starts
from the point 8. We denote the directed length of 4,(8) by J,(8) and the
absclate length of it by d,(6).

If for an index » the inequality d,(8) d,.1(6) <O holds, we call this
pair of adjacent multipla a pair of jumping multipla and denote it by
S5, 8) = q(8), $+,+:(8)=¢qi(6).? For the corresponding J,(8) we use the
netation 0y, (8)=dx(8), 0y,.1(8) == d/(6). For the sake of simplicity, in the
case =0 we use instead of s,(0), g(0) etc. only s,, g, etc., respectively.

From the definition of the adjacent multipla s,(8) it follows that for an
arbitrary positive integer x==s,(8) (r=1,2,...) there is an s,(8) < x for
which . :

0r(8) = min |s,(f) « — f—y| < min [xe — F—y|
and a fortiori " !
@ $:(8, ,(8) < x|xa— 5 — 3.

The homogeneous case. For the case #8=—0 we have proved in [3] and

4], as a simpic consequence of Property A, the following

By this convention the recursive formulae in (2. 2)—(2.4) are valid also for k=1.
L

3 Le, if the sy(6)a- and s»+1(8) e-points approach the point g from opposite sides.
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Lemma L. [f the s,e-point is adjacent to O and the s,.,a-point (I posifive
integer) among the «-,2e-,..., S,a-points is the nearest to O from the
opposite side,* then

Sp1=Su+ 8,1,
61/4-1 - 61/ + drvl .

Further, as a consequence of Lemma ! and Property A, we have proved

Lemma 1. Let a, be defined by®
‘é;lq
di |

2.2) a, = [
and let
So=¢,=0, dy==0,=—1, g1=¢, if S$=25,,

then for the above-defined quantities we have for k=1,2, ...
(2.3) Q1 = Qr-1+ Ay, Ay == 1+ ardy, iyt = di-y — ardy,
(2.4) Jrt1 di+ C]ﬂiﬁl =1,
and for O<r<ay
(2.5) Sppir =qr-1+7qx, dyrr=dy14rd, ‘?Vk+r:‘?k—1 — rd,.

As a consequence of Lemma II it follows

Lemma M. If gx < Sy < Qusa, then

(2. 6) Gri1 Cl';c+1 < Sy dy. 6

These lemmas show that the above-defined multipla ¢, are identical
with the convergents of ¢, the other multipla s, with the by-denominators
(Nebennenner) of . The numbers a, defined in (2.2) are identical with the
digits of the continued fraction of e.

From the definition of the multipla ¢» and from Lemmas I—II it
follows the

RemARK. a) The sequence d, .. ., dy, .. . has alternative signs, |d:], ..., |d, ...
is monotonically decreasing.

b) For an arbitrary N among the -, 2e-, ..., Ne-points the two_adjacent
points intercepting O have always the form with a suitable r and .

Syt =qnet, S,a=(Qr-1-Frq)e O<r=ap.

c) The (gx-1+ rgr) e-points with O <r = ax are between the g¢x e-point
and the point O, in the arc A, and with the restriction n < gz only these
ne-points are in 4,, .. '

k-17

4l e. 0pdp1 <0 and in the arc 4y -~ dp-1 there is no nae-point with 0 < n <sy».

5 [x] denotes, as usual, the integral part of the real number x.

6 1.e. Lemma III diminishes further the set of those integer x’s for which x|xe—y]| is
the “least possible”.
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The inhomogeneous case. Since in the case when 8= {(ne)> the approxima-
tion of §& by the multipla of e« is similar to the case 8=0, in the sequel we:
suppose that 83=<ne).

THEOREM 1. For every 0 < 3 <1 one can determine uniquely a sequence
of integers b, ..., by, ... with the property
2.7 l<bhh=a+1, 0=b,=a (k=2,3,..)),

bii=0 only if by=a,
so that the sequence of the adjacent multipla s, () is identical with the numbers
(2.8) g+ -+ bage1d-rgn
Jor O<r=b, (k=1,2,...).

Proor. In what follows we give a process for the determination of the
numbers b, (k=1,2,...) from which the statement of the theorem follows.

Determination of b,. The e-, 2e-, ..., (a;+ 1) ae-points split the periphery
of K into a1 disjunct arcs.

Case 1. 1f 8 lies in the arc with length ¢ ==d, bordered by the (r—1)e-
and re-points with O<r =a,+1, then let b, ==r.

Case 2. 1f 8 is in the arc with length d, bordered by the (a,+1)a-
and e-points, then let b,=a,+ 1. From the definition of & in both cases
obviously follows that the re-points (0 <r=b,) — and with the restriction
n=a,+1 only these — are adjacent to 4.

In Case 1 (b,—1)e and bye are jumping multipla, i.e. in this case

QI(ﬂ):bl—lz(bl_l)qu qll(ﬂ):bljblql-

Next we determine b, supposing that by, ..., bx-1 are already determined..

Case k—1.1. If 8 is in an arc with length d;, bordered by the
(b1ql 44 (bk_1—-1)q;.~,_1) a- and (b1q1 4.4 b;b-‘lqkq) cc—points, then we
consider the points with multipla

bigit -+ bea@ir+rge (0<I‘§(1k)-
According to Remark ¢) and Property A, these — and with the restriction:
n=bigi+ -+ +bagiitarg: only these — points are in this arc with
length d;.;. We determine b, in a similar way as b, by distinguishing two
cases:

Case k. 1. If the point # is in one of the arcs with length d; bor-
dered by the (biqi+ -+ +bragra+(—1)gs)e- and (biqi+ -+ -+ bp1gu-1+
-+ rgi) e-points with 0 < r = ax, then let by=r.

Case k.2. If the point § is in the arc bordered by the (bigi+----
+ b1 1+ argiya- and (bigi+ - -+ + (b1 —1)gi1) e-points with length di_1,.
then let &, —ax.
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Case k—1.2. If § is in the arc with length &) bordered by the
"(b1(]1 —}— <o+ bkﬁqu@ + akﬁlqk,l)a— and (b1£]1 + .. —J~(bk-g——1)qk¥2)cc-points,
then let b, =0. (Since the first point with smallest multiplum which lies in
the arc bordered by these points, is the (b1q1+ -+ + @r-1Gx-1 + gr-1) @-point.)

From the definition of &, it follows, according to Remark c) and Pro-
perty A, that the (b:g:+ -+ 4 bx 1Gi-1 + rq)e-points (0 <r = b)) — and with
the restriction bigi+ -+ F-bx-1ge1 < n < bigi+ -+« + 011G %1 + g only these
— are adjacent to 8.7

CoroLLARY. From the determination of the numbers &, it follows that
if be1=0, then s,(8)=b1qi+ - +bi1qu1+(br—1)gc and s,.1(6)=
=b1q1+ -+ +beqr form a pair of jumping multipla, i. e. with a suitable /
{2.9) ¢:(B)=bigi + - +(br—1)q, ¢gi(B)=b1qi+ -+ brgs.

If b1 =0, then it is suitable fo call also the pair of multipla
(2. 10) G(B)=s,(8)=brg1+ -+ +bqr, qi(8)=5,(8)—qin
a pair of jumping multipla. ’

From Property A it follows that for every index » the distance between
the s, (8)e-point and the point O has the form
(2. 11) {sp(B)e>=bidi+ -+ + by iy 1y O <r=b).

Since the ne-points are everywhere dense on the periphery of K, the
g-point is the limit of the s,(@)e-points, and so, according to (2. 10),

{2.12) ﬁ-——gbkdk.
From (2. 10) and (2. 11) we obtain for » > »,
(2.13) 0, (8) = <5,(8)e>—B—=rd,— Zk bod, >

The following theorem gives an analogous result as (2.5) for the in-
homogeneous case: -

Lemma IV, Lef b1 =0, b > 1, O<r<b,—1 and
(2. 14) 5, (8)=b1g1+ -+ + bir@e-1 -+ (be—1)qx (=q:(8)), Sy (8) =S5, (8)—1qs;

7 It follows directly from the definition of the numbers b, that for every index »
$,,1(8)—s,(8) =g, with a suitable 7 Using this remark, b, could have been defined as
the number of indices with the property s, (8)—s,(5)=0,.

8 The difference between the treatment of CasseLs—Descompes and that given above
for the inhomogeneous case lies in the fact that the mentioned authors start from an
arithmetical definition of the numbers ¢,(8) and deduce from it the minimum properties,
while we start from the minimum properties and deduce their arithmetical properties.
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then we have
(2.15) $o(8)0,(8) < $4-»(8) Oy (8).

/f bk+1:0, (b;g:a’k), let O<r<b, and

$(B)=01q1+ -+ 4+ b1 Qi+ Ongi. (= qu(6)), Sw-r(ﬁ):sy(/@)_rQIc,
then we have
(2. 16) 5,(8)04(8) < 51-r(8) - (8).

Proor. From the definition of the numbers &, it follows that
0,(8)0,_,(8) >0 and, consequently, from (2.13) and (2. 12)

3,(8) = (&) —rdk.
From this and (2. 13)

(2.17) S0+ () :(1—r—q’“—)(1 pr )
$7(8)0,(8) sv(8) d, (8
(2. 14) gives s,(8) > (bx—1)qy. Further, from the definition of b and b1 54=0
it follows that 8 is in the arc with length d, bordered by the s,(8)e- and
(s»(8) + gx) e-points. Consequently,
(2.18) . 0,(8) < di.
Using these in (2. 16), we obtain
Sv-r(8)0ur (8) (1_ o
31/(16))6—1/(46)) b—1
The proof of (2. 15) runs analogously as the above proof of (2. 14).

)(1+r)§ 1.

§3
For the proof of theorems of Borel type we need the following
Lemma V. If bu=0, then for

3.1 @(B) =biqi+ -+ g, G(6) = q () —qins
we have
3.2) min (@) (@), GHAEE®) < 5

PrOOF. Using the recursive formulae (2.3) and (2.7), we have

3.3) g =@+Dg+ -+ aqe=qu+q, @) =q..

From the definition of the numbers b and br=0 it follows that 8 is
in the arc with length di.; bordered by the ¢;(8)e- and (:(8)—qus1)e-points.

% The same lemma occurs in Cassers’ paper [1]
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Therefore
(3.4) di(8) + a1 (8) = dis1.
Let ¢ be defined by
(@rs1 + gt = @ (des—1).
Obviously, from (3. 3) and (3. 4), using also (2.4) we get

min (g:(8)d(8), ¢i (6)di(8)) = min (g1 + ) (8), idss —di(8)) =

Qe t+qn Qi t+q 1
= =" g d =
_‘(qk+1+qk) Qk+1+2¢]/c G Q1 < Qk+1+2qk Gri1 g ds
S L T
_ Qi1 A1
Since 0< T <1, NN 1, it follows that
qrv1 (1981
. — - i 1
min (g:(8)di(8), qi(8)di(8)) < qqkl W <3
et 142 &
qr+1

From this proof it is easy to see that the constant —:])? is best-possible.

THEOREM 1. For every pair of jumping multipla we have

— - 2
(3.5) min (¢:(8)di(8), ¢i(B)di(8)) <7~

Proor. Owing to Lemma V we may suppose that the pair of jumping
multipla ¢:(8), ¢:(8) has the form as in (2.9). Similarly as in (3. 3), we have
q(8) = grs1, qi1(6) = g1 +Gx.

Similarly as we obtained (2. 17), we have

d(8)+di(8) = d.
Therefore, if ¢ is defined by
Grer1 = (Gr -+ Grs1) (ak_’ t),
we have
Qrr1+ G
2qu1 - qx

From this, taking (2.4) and quk <1 into account, it follows the
+1

statement of the theorem, and also the fact that the constant % is best-possible.

TueoremM . For any two consecutive pairs of jumping multipla the
inequality

min (g(AE@), GAEE), 4:2() s (B gL (AT () < o

min (g.(8)d(8), gi(B)di(8)) = Quart = Grsa .

holds.
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By other words, the inequality x|ex—g—y|< %has a solution among

any two consecutive pairs of jumping multipla.

ProoOF. Owing to Lemma V we may suppose that both pairs of jumping
multipla have the form as in (2.9), i.e.
¢(B) =bigi+ -+ +be1Gir + (0r—1D) g, qi(8) =a.(8) +qx,
@1(8) =qi(8) + (b — 1) qrn1, q11(8) = q1(8) + brs1 Qicsr -

Similarly as in (3. 3), we have
7:(8) = g, qi(8) = Qurr + i,
§1(8) = @+ b1 i,  ¢ia(8) = g+ (b + 1) Grst -

Let u be defined by d@/1(8)=—=udi.. According to (2.17)° 0<u<1
holds.

From (2.13), taking into account that the sequence di,...,ds,... has
alternative signs, we have

(—12(26)) :Elc—(blc+l_‘u)&;c+l ’ E;(ﬁ) == (bk+1 —U)CYI:»H;

(3.6)

3.7 — — - —
@.7) a1 (8) = (1—u) dis1, ai1(8) = udps1.
With the notation x= #dk , y= L , = b,y we have from
A1 Grst

(3.6) and (3.7), using (2.4), ,
: (z@)a((@) =G (Ek"‘“(blﬁ—l —")Ekn) = rc+1 Ezm k Edk —'(blc+1 —r)) =

T+l

— L (Fk —(bw—u))‘,

qx dy diert

qr+1 * Eml
(3.9) Q@ EE) = 1 (= b+ S F(x, 3, b, )
Similarly ‘

— 1
(3.9) GOTE) = 5 (143 (0—0) ©F(x, 3,6, ),
(3.10) Gt (B) o1 (8) = —1— (b +9) (1 — ) € Fy(x, 3, b, u),
x+y

@3.11) G (B)Fa(3) = 5 1+ b+ D) Fi(x, 3, 0,0)

W 8 is in the arc with length d, 4+ bordered by the g, (8)e- and g{ , (8)a-points.
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where
(3.12) (<x<ax+1, O<y<l1, O0<b=ax, b integer).

Since from (3.12) we get (1+yp)(b—u) = (b+y)(1—u) and conse-
quently F, = F;, for the proof of the theorem we have to show that with the
restriction given in (3.12) for (x,y, b, 1)

sup min(F,, F;, Fy) =

x, 4, b, u
holds. It follows obviously from (3. 8)—(3.11) that if for a value of (x, y, b, u}
for any pair i=F k also F;=EF., then one may change the value of # so that
min (Fy, F;, Fy) increases. This is the fact also in the case when F,=F, < F;.
So for the determination of sup min (F;; F;, F;) we have to investigate the

following two cases only: e
. Fi=FR=F,
2. F3:F4:F1.
Case 1. From Fl:VF3 it follows x—b+r=(y-+b)(1+7),
pyt2o—x , _ x—b+1
y+o+1"7 y+o+1"

and consequently in this case
x—b4-1 y+2b x
. = , 146
(3.13) Fi=F,— x+y(b+ Nyxor1r D ery( TN T
and, since F, = F, = F,, therefore (b+y)(x—b+1) =(4+b4»)(y+2b+x),
i.e

_ (y+oy

From b =1 it follows that

F g X=b+1 bty :{L_y+””j bty
U x4y 140ty x+y J14+b+y

is monotonically increasing in x. Putting therefore in (3. 13) the upper bound
of x, from (3. 14), we get

(3.15) F—F= 2

CyFbFl 1

=
y+36+1 = 2°
In Case 2 we can obtain in a quite analogous way the same expres-
sion of y and & as an upper bound for the minimum in question. These:
together prove the theorem.
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From the proof it follows that for the values

b = bk+] = ],

y T 9 (ax large),
Gr+1

X = _d’“ ~ % @ea=1, a2=3, ans large),
i1

gL

3
we have F,=F,=F,~ —;— , i.e. the constant % is best-possible.

THEOREM V. For every positive infeger [ there exists a suitable irrational’
« and a real §=={ne)> so that with arbitrary ¢ >0 for an infinity of k, the
inequality

. = -, 1
0 ke Tt V5
holds.
By other words, the inequality x|lex—g—y|< _1_ —& cannot be sa-

V5
tisfied among the / consecutive pairs of jumping muitipla and, according to-
Lemma 1V, also among the numbers x with g, (8) < x < gi+2(8).

Proor. The theorem follows easily from the following

LEMMA. Letf & be an. arbitrary small positive number and the integer M
sufficiently large. If for an « and ¢ and for k—2M =v =k+2M (k > 2M).
we have

(3.16) a,—=b,=1,
then putting
qx(B) = qi-1(8) = b1+ - - + by 1 gx1,

1,
V5
holds.

PROOF OF THE LEMMA. Using the recursive formulae (2.3), we obtain:
according to (3. 16)

the inequality
s (I@)Ek (ﬂ) >

k-1 k-1 k-
17 qu(8) =bigi+ -+ +br1 i1 < Z byqy= Z qy= Z Ar(y =
(3- ) v=k-2M y=k-2M y=k-ZM
k-1 :

= ZM (Gra— v 1) = @+ Q-1 — Qr-221— Qr-221-1 == Qi1 — Qoars1 > Qrsr (1 — &)

y—=h~2

where & is arbitrary small if M is large enough.
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Similarly, for d.(8) we have from (2. 3) and (3.16)

o} k42371 @
di(s) =di+ D bdy= D d+ D b.d,.
r=k+1 =k v=k+2M
Since
k42001 k2M-1 B2 -1
Z; d,= Z; a,d,= Z; (@1 —dp 1) =—0py — i+ oy + doyr =

== — 41 + doary

.and

} > b.d, ] = Z ak+2M+2v3k+2M+2w: Ek+2M—1 ,
v=Kk+2M =0
we have
(3.18) d; 3) > Aot — Drsorr1— Aroanr > drs (1—&")

where &7 is arbitrary small if M is large enough.
From (3.17) and (3. 18) we get

" o ’ "z 1 ” ’
G (8)dr (8) > qri1 Qi (1 — &Y (1 —&") = —~—————{_j——(] —&)(1—&").
k k
» Gr+1 Exm
Since the first 2M digits of the continued fractions of % and _d’”"
are the same as those for the numbers it i
/5—1 1 1 V5—1 1 1
B vk DL S Sl S pnoed
respectively, we obtain
1 1 1
{3.19 — > = = 1—&" )y =-— (1—¢").
@19 g, G V5~1+1+V5-1( ) Vs( )
qk+1 Ekﬂ 2 2

From (3. 19) the Lemma follows if M is so large that
(1—&)(1—&")(1—&") > (1—s).
Theorem IV is a simple consequence of this. Namely, if in the sequence
ar (k=1,2,...) we have for an infinity of indices »
Ay = Qpi1 ==+ == Apyoy1 == 1;
this means that the conditions of the Lemma are fulfilled for / consecutive
indices k+1,..., k,+ 1 and for infinitely many &,. Further, if for infinitely

many w-indices a, = 1 and b,==a,, b.==0, then, as one can see from the
definition of the numbers by, 8==ne).

(Received 6 March 1958)
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