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The one-dimensional homogeneous problems of diophantine approximations 
have a unified treatment by the algorithm of continued fractions. It is possible 
to give such a geometrical interpretation of convergents and by-denominators 
(Nebennenner) of continued fractions, which can be extended for the inhomo- 
geneous case, and so it furnishes a parallel treatment of these cases. In 
this way, e.g.,  it is possible to prove some simple theorems of Borel type 
for the inhomogeneous case, to get new lower and upper bounds for the 
Khintchine constant c defined by 

c = i n f  sup inf x l a x - - ~ - - y  I . 
a ~ x>O, y integers 

This last result will be treated in [5] and [6]. 
A similar algorithm, as we give in this paper for the inhomogeneous, 

case, is given in an arithmetical way by J. W. S. CASSELS [1] and used also 
by R. DESCOMBES [2]. A comparison of both treatments is made in footnoteS. 

In {} 2 we give this geometrical interpretation of continued fractio, ns for 
an irrational a and the corresponding algorithm for the inhomogeneous case 
giving a sequence of multipla s,,(i:r which corresponds to the sequence of 
convergents and by-denominators of continued fractions, and further a sequence 
of pairs of multipla qj,,(r qf~(5) which is a subsequence of s~(r and corres- 
ponds to the sequence of convergents qj~ of a. 

In {}3 we give the proof of some simple theorems of Borel type 
corresponding to the inhomogeneous case. We call these theorems Borel type, 
since BOReL sharpened HURWITZ'S theorem to the effect that the inequality 

1 (1.1) xlx, -yl < 

is soluble with x being among any three consecutive convergents of e. It is 
well known that if we consider two consecutive convergents of c~, we may 
assert only the solubility of the inequality 

1 
(1.2) xlx -yl< 
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1 
among them, and the constant ) -  cannot be diminished. For any convergent 

one may assert only the inequality 

(1.3) x J x a - y l  < l, 

and again the constant 1 is best-possible. I-IURWITZ'S theorem gives at once 
that for more than three consecutive convergents generally no inequality better 
than (1. l) can be proved. 

Corresponding to (1.3) and what has been said above we shall prove 
for the inhomogeneous case that to an irrational e and real fl the inequality 

2 

is soluble among any pairs qk(r q~(#) corresponding to e, and the constant 
2 . 

3 -  is best-possible. Corresponding to (1.2) we shall prove that the inequality 

1 

has a solution among any two consecutive pairs qk(r q;(/~), qk+~(fl), q'k+t(/~) 
1 

corresponding to a and again ) -  is best-possible. 

Concerning (1.1) we remark first that a theorem corresponding to 
Hu~wITZ'S is due to CASSELS [1] and asserts that for any real irrational ~z 
and /~'=;f=@a) ~ the inequality 

27 1 
xlx '- -Tl<28 

27 1 
has infinitely many solutions (with arbitrary ~ > 0) and the constant 28 V-~- 

is best-possible. So one would expect that for any real irrational cr and 
f l 4 = ( n a )  the inequality is soluble among any three consecutive pairs q~,(~), 
q;~(fl), qk+l(fl), q'k+l(~l), qk+2(fi), q'k+2(fl) corresponding to a. It is somewhat 
surprising, after what has been said above, that this is not the case. More- 
over, one can show that the number three cannot be replaced by any universal 
constant I. For any prescribed positive integer ! we shall even show that 
the inequality 

x[x   --yl<c 
1 

with any c<~-~  is not soluble in general among any l consecutive pairs 

qk§ qs247 . . . ,  qk§ q;§ of our algorithm. 

1 (x> denotes the fractional part of the real number x. 
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w 

In what follows let a be irrational, 0 < e < 1 and 0 =< f i<  1. Starting 
:in positive direction from a periphery-point O of the circle K with unity 
periphery, we put up the arcs with length r and ne for n - ~ - ~ l , 2 , . . . .  We 
.call the endpoints of these as the "fi-" and "ha-points", respectively. As it is 
.easy to see, the structure of the na-points  for n = 1, 2 , . . .  has the fo l lowing  

PROPERTY A. The directed distance between the m a -  and na-points  
for m > n is the same as that between the (m - -  n) a-point  and the point O. 

DEFINITION. We call the sa-poin t  and the corresponding multipla s 
adjacent to ~ (corresponding to g) if there are no na-points  with 0 < n < s 
in  at least one of the two arcs determined by r and the s~z-point. 

We shall use the following notations: 
The sequence of the adjacent multipla s to # is denoted by 

sl( ) _-< < < . . .  < < . . .  

1 
where  Sl(fl) : s2(d) if and only if d =  0 and ~ -  < e < 1. ~- 

We denote by d~(~) the directed "empty" arc on the circle K corre- 
:sponding to s~,(~ ~, which does not contain na-points  with 0 < n < s . .4 , , (8 )  
has positive or negative sign, according to the direction in which it starts 
from the point d. We denote the directed length of z/~(fl) by d~,(8) and the 
absolate  length of it by d~,(~). 

If for an index r the inequality d, ,(d)d~+~(fl)<0 holds, we call this 
pair of adjacent multipla a pair of jumping multipla and denote it by 
.S,,k(r ), S,.~+i(fi)=q'k(~). ~ For the corresponding d~,(b') we use the 
notation d~k(fl)-~-da.(fl),d~,~+l(/3):clT:(fl ,. For the sake of simplicity, in the 
case  ~ 0  we use instead of s~(0), qk(0) etc. only s~,, q~r etc., respectively. 

From the definition of tile adjacent multipla s~,(d) it follows that for an 
arbitrary positive integer x@s~,(~) ( r =  1, 2 , . . . )  there is an s~,(#)< x for 
which 

&,(~) = min ]s~(/2) cr - -  ~ - -  y[ < rain Ixcz - -  ,~--  y[ 
g Y 

and a fortiori 

(2 .1 )  s,,(g d,(~) < x l x a - -  ~ - -  y[. 

The homogeneous case. For the case , ~ =  0 we have proved in [3] and 
.[4], as a simple consequence of Property A, the following 

-~ By this convention the recursive formulae in (2, 2)--(2.4) are valid also for k ~ l .  
3 I.e., if the s~,(~)a- and s,,+l(fl)~z-points approach the point ~ from opposite sides. 
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LEMMA I. I f  the s~,a-point is adjacent to 0 and the s~_za-point (l positive 
integer) among the c~-, 2a-, . . . ,  s,,a-points is the nearest to 0 from the 
opposite side, ~ then 

SV+I : S~. ~f- Sr  ~, 

Further, as a consequence of Lemma I and Property A, we have proved 

LEMMA II. Let ak be defined by 5 

and let 
s o = q o = O ,  d o = - d o = - - l ,  q~-~q.2 i f  s~-=s2, 

then for the above-defined quantities we have for k == 1, 2, . . .  

As a consequence of Lemma II it follows 

LEMMA Ill. I f  q~ < s~ < qk+~, then 

(2.6) q~,+~ d~+! < s~ 3~. 
These lemmas show that the above-defined multipla qk are identical 

with the convergents of a, the other multipla s~, with the by-denominators 
(Nebennenner) of co. The numbers ak defined in (2. 2) are identical with the 
digits of the continued fraction of e. 

From the definition of the multipla q~ and from Lemmas I - - l l  it 
follows the 

R~MA~K. a) The sequence d ,  . . . ,  dk . . . .  has alternative signs, Idol, . . . ,  ]dk ! , . . .  
is monotonically decreasing. 

b) For an arbitrary N among the e-, 2a- ,  . . . ,  Na-poin ts  the two adjacent 
points intercepting O have always the form with a suitable r and k. 

s~, za~-qka, s~a=(qk-~+rqk)a  ( O < r - -  ak). 

c) The (qk_~+rqk)a-points with O<  r ~ ak are between the qk_~a-point 
and the point O, in the arc A~k_~, and with the restriction n < qk+~ only these 
na-points  are in A~k_ 1. 

4 I.e. 6r~r-z < 0 and in the arc A v - / A r  z there is no ha-point with 0 < n < sv. 
[x] denotes, as usual, the integral part of the real number x. 
I.e. Lemma Ill diminishes further the set of those integer x's for which x ]xa--y[ is 

the "least possible". 

(2.3) qk+l=qk-l-[-akq~:, dk+l--=dk-~+a~dk, dk+l-- -s  

(2.4) q~:+l d~ + qk~+~ : 1, 

and for O < r < a k  

(2.5) s~+,.=qk_~+rqk, d,,~+r--=-dk_~-+-rd~, d, ,~+r~dk_~--rd~. 
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The inhomogeneous case. Since in the case when 8 - -  <ne~ the approxima-  
tion of fl by the multipla of e is similar to the case f i x O ,  in the sequel we. 
s u p p o s e  that fl=~ Lna~. 

THEOREM I. For every 0 < ~ < 1 one can determine uniquely a sequence 
of  integers bl . . . .  , b~, . . ,  with the property 

(2.7)  l < b l ~ a l q - 1 ,  0 ~ b k ~ a k  (k~---2,3 . . . .  ), 

bk+l -~- 0 only i f  bk ~ ak, 

so that the sequence of  the adjacent multipla s,,(~) is identical with the numbers 

(2.8)  blql q- . . .  -k bJ~-,qk 1-~- rqk 

for  O < r ~ b k  ( k : l , 2  . . . .  ). 

PROOF. In what follows we give a process for the determination of the  
numbers bk ( k :  1, 2 , . . . )  from which the statement of the theorem follows. 

Determination of  bl. The e-, 2 e '  . . . .  , (alq- 1) e-points  split the periphery 
of K into a l -k  1 disjunct arcs. 

Case 1. If ~ lies in the arc with length a--=d~ bordered by the ( r - - 1 ) a -  
and re-poin ts  with 0 < r ~ a~-}- 1, then let b~ - -  r. 

Case 2. If ~ is in the arc with length d2 bordered by the (a~-k 1) e -  
and e-points,  then let b ~ : a ~ q - 1 .  From the definition of b~ in both cases  
obviously follows that the re-points  (0 < r ~ b~) - -  and with the restriction 
n ~ a~q-1 only these - -  are adjacent to ;.  

In Case 1 ( b ~ - - l ) e  and b~a are jumping multipla, i .e.  in this case  

q ~ ( f l ) ~ b ~ - - l : ( b ~ - - l ) q ~ ,  q~( f l )J -b~b~q~.  

Next we determine bk supposing that hi, . . . ,  b~-~ are already determined.  

Case k - -1 .1 .  If fl is in an arc with length d~l  bordered by the 
(blql-~- . . .  q-(bk_~--l)q~-~)e- and (blql-~- . . .  ~-bk-lqz~-l) a-points,  then w e  
consider the points with multipla 

b~ q x -]- �9 �9 �9 ~- bk_ lqk-1 -I- r qj~ (0 < r ~ Ok). 

According to Remark c) and Property A, these - -  and with the restriction~ 
n_<--_b,q~+...-kbk-,qk-z-kakqk only these - -  points are in this arc with 
length dk-~. We determine bk in a similar way as b~ by distinguishing two  
cases : 

Case k. 1. If the point fl is in one of the arcs with length dk bo r -  
dered by the (b~q1-i- . . .~bk~q~_14-(r--1)qk)e-  and (blq~-t-...-}-b~-~q~-l-}- 
-~-rq~)e-points with O <  r =  < a~:, then let bk~-r. 

Case k.2.  If the point # is in the arc bordered by the (b~q14-...-i- 
-k b~_~q~_~-k okq~)e- and (b~ql -j- . . .  ~ (b~,_~--l)q~:_~)a-points with length d~ i,~ 
then let b ~ a ~ .  
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Case k - - l . 2 .  If ~ is in the arc with length d~ bordered by the 
( b l q l + . . "  +bk-2qk-2+ak-lqk 1)e- and ( b l q l + .  +(bk-2--1)qk-2)c~-points, 
then let b k = 0 .  (Since the first point with smallest multiplum which lies in 
the arc bordered by these points, is the ( b l q l §  . . .+ak_lqk_i§ 

From the definition of bh. it follows, according to Remark c) and Pro- 
perty A, that the (blqz + . . .  -t-bk ~qk l + rqk)a-points (0 < r <= bk) - -  and with 
the restriction b~q~-? .. .  + bk-lq~_~ < n < biq~ + . . .  + bk ~qk-~ + aT~qk only these 
- -  are adjacent to #.7 

COROLLARY. From the determination of the numbers bl~ it follows that 
if bk+~=~O, then s~,(r and s,,+l(#)--- 
=-bxql+ ...  +bkqk form a pair of jumping multipla, i. e. with a suitable l 

(2 .9 )  q~(~)-~b~q~+. . .+(bk- -1)qk ,  q~(~)~--b~q~+...+b~qk. 

If b~+~:O, then it is suitable to call als0 the pair of multipla 

{2. 10) q ~ ( f l ) ~ s ~ ( f l ) : b ~ q z + . . .  +bkqk, q~(fi)~-S~,(fl)--qz~+e 
a pair of jumping multipla. 

From Property A it follows that for every index v the distance between 
the s,dfl)a-point and the point O has the form 

(2. l l )  (s, ,(fl)e)=bld~-[-. . .-}-bk_~dk_~@rdk (O<r<=b~,). 

Since the na-points  are everywhere dense on the periphery of K, the 
~-point is the limit of the s,,(fl)a-points, and so, according to (2. 10), 

co 

.(2. 12) fl---~ ~ bk d,~. 
k=J_ 

From (2. I0) and (2. I I )  we obtain for r > r2 

{2. ]3) = rd -- 
r162 

T h e  following theorem gives an analogous resuff as (2.5) for the in- 
homogeneous case" 

LEMMA IV. Let b~+~ @ 0, bk > 1, 0 < r < b~--I  and 

{2. 14) s~(fl)--b~q~ + . . .  + b)'~-lqk-i ~ -  (bk--l)q~ (=q~(fl)), Sv-r([~)=Sv([2')--I'qk; 

It follows directly from the definition of the numbers b~ that for every index 
s~,+~(fl)--%,(fl)~q~ with a suitable l. Using this remark, .b~ could have been defined as 
the number of indices with the property Sv+l(3)--sr(3)--q, ' 

8 The difference between the treatment of Cass~s 'D~sco~s  and that given above 
for the inhomogeneous case lies in the fact that the mentioned authors start from an 
arithmetical definition of the numbers q~(fl) and deduce from it the minimum properlies, 
while we start from the minimum properties and deduce their arithmetical ,properties. 
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then we have 

(2.15) s,,(~)o-~(~) < s,,_~(~) & ~ ( f l ) .  

I f  bl~+l ~- O, (Ok = a~,), let 0 < r < Ok and 

s~(fl) --- blq~ + . . .  § b~_~q~,_~ + bkq,~ (-~ r  s~,_,(y) ~ s , ( f ) - - rq ,~ ,  

then we have 

(2. 16) s,,(fl)d,,(#) < s~_~(#) d,,_,(#). 

PROOF. From the definition of the numbers b~ it follows that 
d,,(~)d,,_,(fl)>O and, consequently, from (2. 13) and (2.12) 

From this and (2. 13) 

(2.14) gives s, ,(f l)> (bk--l)qk. Further, from the definition of bk and b~==~O 
it follows that fl is in the arc with length & bordered by the s~(fl)a- and 
(s~(r + q~r Consequently, 

(2.18) o-,,(~') < s 
Using these in (2.16), we obtain 

s .... (~)d,,_~(~) > ( ) = 1 r ( ~ + r ) = >  ~. 
s~,(fl)d~({~) b,~-- 1 

The proof of (2.15) runs analogously as the above proof of (2. 14). 

w 

For the proof of theorems of Borel type we need the following 

LEMMA V. I f  bk+l ~ O, then for  

(3. 1) r  = blq~ + . . .  + &,q~, q~(fl) = q~(Y)--qk+~ 

we have 

(3.2) rain (q~.(#)d~(fl), " -' 1 
q,(~)ai(~) ) < 5 

PROOF. Using the recursive formulae (2.3) and (2. 7), we have 

(3.3) q~(fl)<~(a~-? l ) q ~ §  q z ( f l ) ~ q k .  

From the definition of the numbers bk and b k + ~ 0  it follows that fl is 
in the arc with length d~+~ bordered by the qz(fl)~- and (qz(fl)--q~+~)a-points. 

9 "Ele same lemma occurs in C.~SSELS' paper [11 
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Therefore 

(3.4) ~(~)  + d~' (#) = d-~+~. 

Let t be defined by 
(qk+~ +q~)t = q,~ (dk_~ - - t ) .  

Obviously, from (3. 3) and (3.4), using also (2. 4) we get 

min (qz(fl)ddfl), q~(COd~(~)) ~ rain ((qk+~ +q,,)~(fl), q~(d~+~--dz(fl)) 

--< (qk+~ q- q~) t - -  q~+l + q~ q~ c/~+a < q~+~ + q~ q~: 1 
- -  qk+~ + 2q~, q~+~ + 2 %  q~+~ q~ ~_ dk_~ 

ql~+l &+l 

Since O< qk < t ,  _dk >1 ,  it follows that 
qk+l &+l 

qk 1 < 1_. 
rain (q~(fl)&(fl), q~(fl)~(fl)) < qk+~ 1 + 2  qk 

qk+l 

1 
From this proof it is easy to see that the constant --~ is best-possible. 

THEOREM If. For every pair of jumping mullipla we have 

2 
(3.5) rain (qdfl)cli(fl), " -s, < 7 "  

P~OOF. Owing to Lemma V we may suppose that the pair of jumping 
multipla qdfl), q[(fl) has the form as in (2. 9). Similarly as in (3. 3), we have 

Similarly as we obtained (2. 17), we have 
- ,  

+ = :  

Therefore, if t is defined by 

q~+, t = (q~ + q,~+l) (3~-- t), 
we have 

rain (qz(fl)clz(fl), q~(fl)~(fl)) <= qk+l t - -  q~+~ +qk qk+~-dk. 
2 qk+~ + q~ 

From this, taking (2.4) and q~ < 1 into account, it follows the 
q1~+1 2 

statement of the theorem, and also the fact that the constant 3 -  is best-possible. 

THEOREM III. For any two consecutive pairs of jumping multipla the 
inequal#y 

- - ' d; 1 rain (q~(fl)d: (fl), q; (,~)d;(#), q;+~ (fl)~+~ (#), qz+~ (~) z+, (fl)) < 2- 
holds. 
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1 
By other words, the inequality x l e x - - f l - - y  I < 2 has a solution among 

any two consecutive pairs of jumping multipla. 

PROOF. Owing to Lemma V we may suppose that both pairs of jumping 
multipla have the form as in (2.9), i.e. 

q~(fl) = blq~ + . . .  + bT~-~ q~+l + (b,~--l)qk, qi(fl) = q~(~) + qk, 

Similarly as in (3.3), we have 

q~(fl) = < q~+~, qi(fl) = < qk+~ + qk, 
(3. 6) q~+~(fl) <= q,~+bk+~q~+~, q[+~(fl) ~ qk+(b~,+~+ 1)qk+~. 

Let u be defined by ~+~(# )=u f+~ .  According to (2.17) ~~ O< u < 1 
holds. 

From (2.13), taking into account that the sequence d~ , . . . ,  & . . . .  has 
alternative signs, we have 

&(#)=-Jj~--(b,~,+~--u)&~+~, d'~(fl)=(b~,+~--u)d-~+~, 
(3 .  7 )  ~+.1 (/~) = ( ~ - -  U ) ~ , I ,  ~ - 1  (/~) = //d/k+l �9 

With the notation x =  _d~ , y ~ q ~  , b:b~+~ we have from 
dk+~ q~+~ 

(3.6) and (3.7), using (2.4), 

q~(fl)~(~)<=q~+~(-d~--(bk+~--r)d~+l)=q~+~d~+~( - ~  ~ (b~+~--r)) = 

- -  dk+l. q~ + d~ 

q~+l d~+~ 

q~(fl) ~ ( # )  < _ _ 1  ( x - - b  -J I- El) def= F~(x, y, b, u). 
= x + y  

(3.8) 

Similarly 

(3.9) q~ (fl) d~ (fl) < 1 
= x + y  

(3. lO) q~+l(~)dz+~(~) < 1 
= x + y  

q ~ + l ( ~ )  ~+~(~) <= - -  (3.11) , ~, 1 
x + y  

(1 + y) ( b - -u )  dee F, tx - 2~ , y ,b ,u ) ,  

- -  (b + y )  (1 - - u )  ~ t :  t~ = ~. . , y ,b ,u ) ,  

{1 + b + y)u de=f F~(x, y, b, u) 

1~ ,~ is in the arc with length dk+ 1 bordered by the q~+l(Z)a- and q[+l(~)a-poinls. 
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where 

(3.12) (a~<x<a~, .§  0 < y < l ,  0 < b ~ a k ,  b integer). 

Since from (3. 12) we get (1 §  (b--u)  >= ( b §  ( l - - u )  and conse- 
quently F~ => F,, for the proof of the theorem we have to show that with the 
restriction given in (3. 12) for (x, y, b, u) 

1 
sup min (F~, F3, F4) < - -  

x~ y~ b~ u ~ 2 

holds. It follows obviously from (3.8)--(3.1 l) that if for a value of (x, y, b, u), 
for any pair i : ~  k also F~ + Fk, then one may change the value of u so that 
rain (F~, E~, F~) increases. This is the fact also in the case when F~=F4 < F3. 
So for the determination of sup rain (F~, E~, F,) we have to investigate the: 

x, y, b, u 

following two cases only: 

2. F~-F.<=F~. 

Case 1. From F ~ - F 3  it follows x - - b § 2 4 7  § 

r - y §  l - - r - -  x - - b §  
y + b §  ' y + b §  ' 

and consequently in this case 

(3. 13) FI -~Fs - -  1 . x - - b §  l F4-- 1 
x§247247 1 ' x §  

/ 

(1 § 2 4 7  -y§ 2 b - x  
l § 2 4 7  

and, since/:1 = F3 =< F~, therefore (b § y) (x - -  b + 1 ) ~ (1 § b § y) (y § 2 b § x),. 
i.e.. 

(y § b) ~ 
(3.14) x ~  2 y § 2 4 7  @b. 

From b ~ 1 it follows that 

x - - b §  l b §  - - (1  y , §  b §  
F1~F~ x §  l § 2 4 7  x §  l § 2 4 7  

is monotonically increasing in x. Putting therefore in (3. 13) the upper boundl 
of x, from (3. 14), we get 

(3.15) F~=F~ < " y § 2 4 7  < 1_ 
= 3 y § 2 4 7  -- 2 "  

In Case 2 we can obtain in a quite analogous way the same expres- 
sion of y and b as an upper bound for the minimum in question. These: 
together prove the theorem. 
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From the proof it follows that for the values 

b --- bk+l ~--- 1, 

Y _ qk ,-~ 0 (ak large), 
qk+l 

4 
X = diik+l . . . .  3 (ak+l= 1 ,  

1 
3 

a~+2 = 3, ak+a large), 

1 1 
we have F~:F3-~F4 . .~ -~ ,  i .e.  ihe c ons t an t s -  is best-possible. 

THEOREM IV. For every positive integer I there exists a suitable irrationaF 
e and a real fl=~=(na) so that with arbitrary ~ > 0 for an infinity of ko the 
inequality 

min (qk(~)dk(fl), ' - '  1 q~(fl)&(fl) ) > ~ - -  ~ 

holds. 
1 

By other words, the inequality x ] a x - - f l - - y t < ~ 5 - - e  cannot be sa- 

tisfied among the I consecutive pairs of jumping multipla and, according t o  
Lemma IV, also among the numbers x with qko(fl)< x < q'~o+Z(fl). 

PnOOF. The theorem follows easily from the following 

LEMMA. Let ~" be an arbitrary small positive number and the integer M 
sufficiently large. I f  for an a and fl and for k - - 2 M  ~ v ~ k + 2M (k > 2M),  
we have 

(3.16) 

then putting 

the inequality 

a ~ : b ~ :  I, 

q k ( f l ) : q i - ~ ( ~ ) : b ~ q ~ + . . . + b k q q k  1, 

- 1 
qk(fl)dk(fl) > - ~ - - ~  

holds. 

PROOF OF THE LEMMA. Using the recursive formulae (2.3), we obtain~ 
according to (3. 16) 

k-1  k -1  k - I  

(3.17) qk(~) :b lq l+. . .+bl~_ lqk_ l< ,,=:k-2M ~'~ b ~ q ~ :  ~=k-2~ ~-" q ~ - , = k - ~  ~-" a ~ q ~ :  
k - 1  

: ~_, (q~,~l--q~ 1) =qk-~q~-l--qk-2~--qk:2~-l=qk+l--q2~+l > qk+~(l - -  d):~ 
~ t ~ k -  2 M 

where ~' is arbitrary small if M is large enough. 
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k + 2 M  1 k + 2 M - 1  

2; X 

and 

Similarly, for &(/~) we have from (2. 3) and (3.16) 

d~,(~)=d~.+ 2 & , d , , = ~ + S - l d ~ +  2 &,d~. 
" v ~ k + l  v ~ . k  ~.'--.k + 2~I 

Since 
k+2M-I 

a,,d,,~- ,~  (d,,+i--d,,- O =--d~.-1--dk + d2M_l + d2u= 

= - -  dl<+, + d2M-+l 

03 _ _  - -  

} Z b,'d,"I ~ ~ a,.+2~.u+2,,d,<+~_.,c~,~,,-:d,+2M-l, 
we have 

(3. 18) &,(fl) > d-k+a --d-~.+ea• d~+2,~ > d/k+l (1 - -8  't) 

where g' is arbitrary small if M is large enough. 
From (3. 17) and (3. 18) we get 

qk(#)~-(~) > qk+adk+~ (1 - - g )  (I - - g ' )  = 

Since the first 2M digits of the continued fractions of 

.are the same as those for the numbers 

] / 5 - - 1  1 1 . . .  and 1-~ V ~ - I  - - 1 +  
2 1 +  1 +  2 

respectively, we obtain 

1 1 
,(3.19) > V 5 -  1 

qk< &.+l 2 2 

1 
_ ( l - g ) ( 1 - g ' ) .  

q~ &. 

qk+1 &+, 

q~ a n d -  
qk+l 

1 1 
1 +  1 + . . . '  

.... 1 - - g " ) .  

From (3. 19) the Lemma follows if M is so large that 

( 1 - - d ) ( 1 - - g ' ) ( 1 - - d " )  > (l Q. 

Theorem IV is a simple consequence of this; Namely, if in the sequence 
ak ( k =  1, 2 , . . . )  we have for an infinity of indices r 

a r - - - a r + l ~ ' ' "  ~ a v + 2 M + z ~  1, 

this means that the conditions of the Lemma are fulfilled for l consecutive 
indices k0+ 1 . . . .  , /co+l and for infinitely many &. Further, if for infinitely 
many ~-indices ark @ 1 and b ~ a ~ ,  b ~ O ,  then, as one can see from the 
definition of the numbers &, f l q = ( n ~ ) .  

(Received 6 March 1958) 
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