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Weakly associative lattices and projective planes 

E. Fried and Vera T. Sds 

It  is well-known how close the connection is between lattices and projective geo- 
metry. In this paper  we intend to show another type of connection between a gener- 
alization of lattices and projective planes. The basic concepts of  projective geometry 

are suppose to be known. 
A weakly associative lattice is a relational system with a reflexive and antisym- 

metrical relation < such that to each pair of  elements there exists both a least upper 
bound and a greatest lower bound. This concept has been introduced in r l ]  and 

in [4]. 
An important class of  weakly associative lattices is the class of  those which have 

the unique bound property. The role of  this class has been described in [2] where this 
concept was introduced. A weakly associative lattice has the unique bound property, 
by definition, if each pair of elements has exactly one common upper bound and 

exactly one common  lower bound. 

D E F I N I T I O N  1. Let 9~=(A;  < )  be a relational system with a reflexive and 
antisymmetrical relation < .  Let us define U ( a )=  {xeA; a<x} and L ( a ) =  {y~A; 
y<a}, for each a~A. We shall call 9.I a WU-system if, for each pair a and b of  distinct 
elements of A, both U (a)c~ U (b) and L(a)c~L(b) have exactly one element denoted 
by a v b and a ^ b, respectively. Let, moreover, both a v a and a ^ a denote the ele- 

ment a. 
We shall use the notation x <  y for ' x <  y and x #  y'. 
One can easily prove the following identities in any weakly associative lattice; 

(i) a v a = a A a = a ,  
(ii) a v b = b v a  and aAb=bAa,  

(iii) a v (b ^ a) = a A (b v a) = a, 
(iv) [ (a  ^ c ) , ,  @ ^ r v r  [ ( a  v c) ^ @ , ,  ^ c = r  
Let A be any set. We define W a as follows. W a contains all elements of  the set A 

and two more elements denoted by 0 and 1. We define, in Wa, the following relations: 
1 < 0  and 0 < a <  1, for all a~A. Then, W a with the relation x < y  if and only if either 

x < y  or x = y  is, clearly, a WU-system. 

D E F I N I T I O N  2. The WU-systems WA will be called singular WU-systems. 

D E F I N I T I O N  3. 9~= (A;  < ) will be called a regular WU-system whenever, 

for each x, y~A, I U (x)l = I U (Y)I = IL (y)l. (IXl denotes the cardinality of  the set X.) 
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T H E O R E M  1. A WU-system & either singular or regular. 
For the proof we need the following 

LEMMA. Let 9~ be a WU-system and a, be9~. If azgb, then I U (a)l = IL(b)[. 
Proof. Suppose a$b and let x be an element of U (a). We associate with x the 

element x A b of L (b). For  x and y distinct elements of U (a) we have x A b :~ y A b. 
Otherwise, from u = x A b = y A b it follows that a, u~L (x) c~ L (y) which implies, that 
a=xAb<b ,  contrary to the assumption that azgb. Thus, the mapping x ~ x A b  is 
one-to-one into L(b), i.e., [U (a)l<lL(b)l. 

Now, we define x<*y  by y<x.  The system 9~*=(A; < * )  is, clearly, a WU-sys- 
tern. Setting U * ( a ) = { x ~ A ;  a<*x} and L* (a )=  {yeA ; y<*a} ,  we have U*(a )=  
= L ( a )  and L*(a)=U(a).  Thus, ar  implies b:g*a, whence IZ(b)l=lU*(b)l<_ 
< IL* (a)[ = [U (a)l. Hence [U (a)l = [L (b)l, and the Lemma is proved. 

Proof of Theorem 1. Let a and b be elements of a given WU-systems 9~. a~b and 
b zg a imply, by the Lemma, [U (a)] = IL (b)l and ]U (a)l = ]L (a A b)l = I U (b)]. Now, 
let, e.g., a<b. We shall distinguish two cases: 

(~) x<b implies x<a and y > a  implies y>b, for each x, y in ~ ;  
(13) there exists either an x in 9i such that x<b and x ~ a  or a y in ~ such that 

y > a  and y~:b are valid. 
In case (~) if x<b, then x, a~L(a)nL(b)  whence x=a. In other words, L ( b ) =  

= {q, b}. Similarly U (a) = {a, b}. Thus, for each u ~ ,  both u v a and u A b belong to 

the set {a, b}. Thus ue{uAa, a, b}c~ {uvb, a, b}. 
Hence, for ur b}, we have U=UAa=uvb,  i.e., b<u<a, proving that 21[ is a 

singular WU-system. 
In case (13), we may suppose, by duality, the existence of an x such that x<b and 

xzga. Then, the Lemma implies IU (b)l=lL(x)l=lU (a)l, since az~x and b:~x. Ap- 
plying this for 9~*, we arrive at IL(b) l= I L (a) l. Hence. 9.1 is a regular WU-system, 

for b ~ a implies ] U(b)I = I L (a)[. 

THEOR EM 2/A. Let 9i be a regular WU-system. Then the elements aeg~ and the 
subsets U (a) of 9~ form a projective plane whose points are the elements of 9.( and 
whose lines are these subsets of 9i. In addition the mapping tp : a ~ U ( a) is a one-to-one 
mapping of the points of the plane onto the set of all lines such that a lies on ~o (a) 

Proof. If  a and b are distinct elements of 9,I, there exists exactly one line, namely 
U (a A b), containing both a and b. Also U ( a ) n  U (b) contains only one element, 
namely, a v b, i.e., two different lines have exactly one common point. The regularity 
of  9.i implies that the cardinality of U (a) does not depend on a. Further, the Lemma 
guarantees that U (a) and L (a) have the same cardinality, too. Hence not  all points 
are on the same line and not all lines are on the same point. 
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Finally, the mapping ~0: a --* U (a) obviously has the desired property stated in the 
theorem. 

T H E O R E M  2/B. Let P be a projective plane. Then, there exists a one-to-one map- 
ping ~p of the set of its points onto the set of  all its lines such that a lies on ~o (a). 

Further, there exists, to any such ~, a regular WU-system such that the construction 
described in Theorem 2/A gives us the plane P and the mapping ~O. 

Proof. First of all we ace going to prove the existence of the desired mapping 
(which need not be unique). 

We define a graph whose vertices are the disjoint union of the set of all points and 
of the set of  all lines. Two vertices are connected in this graph if and only if one of 
them is a line and the other one is a point lying on the line. This is, obviously, an even 
graph and each vertex has the same degree. The existence of a mapping ~o in question 
means that this graph has a one-factor. But this is just the statement of  the well- 
known theorem of K6nig (see, e.g., in [3] pp. 17l and 220). 

We choose the underlying set of the WU-system to be the set of all points of P. 
Let, further, a<b if and only if b lies on ~ (a). 

a ~ ( a )  implies a<_a. From a<b and b<a follow both a~b(b)  and b ~ ( a ) .  
Combining this with x ~ r  we have that both a and b lie on the line ~b(a) and on 
the line ~(b) .  Since distinct lines contain exactly one common point, we have 
either a=b or ~O(a)=~O(b) which have the same meaning. Hence, the relation < is 
reflexive and antisymmetrical. 

Now, let a < x  and b<x,  for distinct a and b. This means x ~ ( a ) n  ~O (b) proving 
the uniqueness of x. Let, dually, y__< a and y < b; i.e., a, b ~ ~b (y). Since a pair of points 
uniquely determine the line they lie on, ~O (y) is unique. From this follows the unique- 
ness o f y  since ~O is one-to-one. Thus, we have a WU-system. 

The mapping a ~ U (a) is, clearly, equal to ~, hence, the theorem is proved. 

COROLLARY. The regular WU-systems are equivalent to the projective planes 
endowed with a one-to-one mapping of the set of  the points onto the set of  the lines such 
that each point lies on its image. Since each projective plane may have more such map- 
pings to each projective plane may belong more WU-systems. 

We shall now give an example of a projective plane which yields three non-iso- 
morphic WU-systems depending on the special choice of the one-factor of the graph 
in Theorem 2/B. 

First, we define the following notion. 
Let x and y be distinct elements of  a WU-system 9~. We shall say that the set 

{x, y} has rank 0, whenever the set {x A y, X V y} is equal to the set {x, y}, i.e., x and y 
are comparable. The set {x, y} has rank k + 1, whenever (x, y} does not have rank k 
and {x ̂  y, x v y} has rank k. 
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Now, we are ready to give the example. The points of the projective plane P will 
be the cosets modulo 13. We define, first, two relations on P. One can prove without 
any difficulty that these relations define two WU-systems 9/1 and 9/2. 

Let x < y  in 9/1 if and only i f y - x ~ { 1 ,  3, 9} 
Let x < y  in 912 if and only i f y - x s { 1 ,  4, 6} 
The two projective planes must be the same, for the projective plane with 13 el- 

ements is unique. Besides, the following mapping sends the 'first' plane to the 'second' 
o n e :  

0 ~ 0 ,  1 "-* 1, 2--*5--*8--* 12--+3-+4--+7--+ 11 --* 10-->2, 6--+9-+6. 

Let r denote the mapping belonging to 9/1 and we define ~k as follows: ~ (2)= 
= q~ (6), ~ (3) = q~ (2), ~ (6) = q~ (3), and ~ (i) = q~ (i), for i ~ {2, 3, 6}. 3sq3 (2), 6sq9 (3), 
2e~0 (6) proves that ~ defines, also, a one-factor of the graph. The corresponding 
WU-system will be denoted by 92[3. 

THEOREM 3. No two of  9/1, 9/2, 9/3 are isomorphic. 
Proof. The isomorphic image of a pair of elements has, clearly, the same rank as 

the original one. Thus, it is enough to prove that the maximal ranks of  particular 
pairs are different in the three examples. 

The mapping i ~ i + 1 defines an isomorphism both on 9.I1 and on 9/2. Therefore, 
we need only consider pairs of the form {0, i} with i <7. 

Firstly, we deal with 9/1. The pairs {0, I}, {0, 3}, {0, 4} have rank 0. The other 
three pairs have rank 1, since 

0 V 2 = 3 < 3 + 9 = 1 2 = 0 h 2 ,  

0 V 5 = 1 < l + 3 = 4 = 0 h 5 ,  

0 V 6 = 9 < 9 + l = 1 0 = 0 h 6 .  

In 9/2 the pairs {0, 1}, {0, 4}, {0, 6} have rank 0. By 0 v 5 = 6 ,  0 ^ 5 = 1 2 = 6 + 6 ;  
0 ^ 3 = 1 2 ,  0 v 3 = 4 - - - 1 2 + 5 ;  0 v 2 = 6 ,  0 ^ 2 = 9 = 6 + 3  we have that the pairs {0, 5}, 
{0, 3}, {0, 2} have rank 1, 2, 3, respectively. 

Finally, we consider 9/3. Though the mapping i --* i + 1 is not an isomorphism of 
this WU-system it will be enough to deal only with pairs of the form {0, i}. 

~k(i)=rp(i), for i=0 ,  4, 10, 12 imply that {0,j} have rank 0, for j = l ,  3, 4, 9, 
10, 12. 

It is not too hard to check: 
0 v 2 = 9 < 1 2 = 0 ^ 2 ,  0 v 5 = l < 4 = 0 h 5 ,  0 V 8 = 9 < 1 2 = 0 h 8 ,  0 v l l = I < 1 0 =  

= 0 h  11 proving that {0, 2}, {0, 5}, {0, 8}, {0, 11} have rank 1. Using 3 v 10= 11 < 7 =  
= 3 h  1 0 a n d 3 v 4 = 5 < 6 = 3 h 4 t h e r e l a t i o n s 0 v 6 = 3 , 0 h 6 = 1 0 a n d 0 v 7 = 3 , 0 h 7 = 4  
one proves that both {0, 6} and {0, 7} have rank 2. 
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Thus, 9/1 is not isomorphic either to 9/2 or to 9/3, for it does not contain pairs having 
rank more than 1. In 9/2, to each x, there exist a y, namely y = x +  2, such that  the rank 
of {x, y} is three. Since no pair {0, i} has rank 3 in 9/3, 9/3 is not isomorphic to 9/2- 

Finally, we give an effective construction of WU-systems, for projective planes 
over certain fields. 

Let K be a field and let the element a over K have degree three. The relation/3 ~ 7 
in L - - K ( a )  if and only if there exists a ueK different from 0 such t h a t / 3 = u 7  is, 
clearly, an equivalence. Let us define a relation =< on the set s of  the classes of  this 
equivalence such that/3_>_ 7 means/3.., 7 (a+a) for some aeK. 

T H E O R E M  4. 9 /=  ( s  < )  is a WU-system. 
Proof. I t  is enough to deal with pairs of  the form { 1,/3}, for L is a multiplicative 

group. 
Let us consider a pair 7, 6 with 76=/3. We shall prove, first of  all, that 7 is a com- 

mon upper bound of/3 and 1 if and only if 6 is a common lower bound of  them. This 
is an immediate consequence of the equalities (7//3)=(1/6) and (y/1)=(fl/6). This 
means, it is enough to prove that 1 and/3 have a unique common upper bound. To 
prove uniqueness let 7 1 = ( ~ + b ) / 3 = u ( c ~ + a )  and 72=(~+d)/3=v(o~+c). This gives 
us the equality v(~+b) (~+c)=u(~+a) (7+d). Using that the degree o f ~  over K i s  
equal to three we arrive at u =  v and, further, b+c=a+d and be=ad. 

The second and the third equations yield either b=d and c=a or b=a and c=d. 
In the first case 71 = 72 and in the second one/3 ~ 1. 

To prove/3 (~+  a ) =  v (c~ + b), with suitable elements for each/3EL, unless/3 and 1 
are comparable we must prove that the elements v(~+b)/(a+a) run over L. (In the 
finite case an easy computation proves this result). Incomparabili ty means we have 
to deal only with elements of the form ~2 + p~ + q. Let x 3 + Ax 2 + Bx + C be the monic 
polynomial of  ~ over K. Thus, we have to show 

(~2 +p~+q) (c~+a)- v(~+b)=c~ 3 +A~ 2 + B~+ C, 

with suitable a, b and v # 0 .  This yields the equations: 

p+a=A,  q+ap-v=B,  aq-vb=C.  

In case q + ap = B, with a = A - p, we have 

(a 2 +p~+q) (~+ a ) - ( a q -  C ) = ~  3 +A~ 2 + B~+ C. 

aq = C is impossible, since the monic polynomial of~ is irreducible and aq-  C# 0 implies 
/3=1. Thus v=q+ap-B~O,  i.e., a = A - p ,  v=q+ap-B ,  and b=(aq-C)/b is a 
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solution. This method is, obviously, not  applicable for algebraically closed and real 

closed fields. 

P R O B L E M S .  1) How does the WU-system depend on the one-factor  o f  the graph 

in Theorem 2/B ? 
2) Give a generalization of  Theorem 2/B for projective geometries o f  higher di- 

mensions. 
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