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Abstract

Y 1—NJl|| ( a subinterval of

u,el
1SnEN

Let U= {u,) be a sequence in [0, 1]* and 4¥ = sup |4x(])| =sup
, 1

PR |
[0, 11%. By Schmidt’s theorem Ay > ¢, log N for any N if k=2 while for k=1 only lim I—NN > ¢, >0 holds
og

and we have sequences (e.g. {na} sequences) for which 4y < 1 for infinitely many N. Inspite of this fact we have
the following Theorem: Let u,= {na}. With a suitable é € (0, 1) and for every N> N,

A,>c3log N

holds for all but at most N? values of n, 1<n<N. (Here ¢;>0 is an absolute constant.)

Introduction

Let E*={(x, ..., x,) € R, 0=x;<1 for 1 <i<k} be the unit cube in R* and for
x € EX.

k
Ix)={(t;, ..., t):0=t;<x; for 1Zi<k}; |I| = [] x;. For a sequence {u,}, u, € E*
i=1

put
(1) A= ¥ 1-NI|
w,el
1SnsEN
and
@ 4xll, = ( § 14T d)p ;
Eﬁ
) An=11nl., -

The infinite sequence {u,} is uniformly distributed in E*if lim L Ay=0.Dy= :71’— Ayis
N- o

called the discrepancy function of the sequence {u,}. 4 resp. ||4y]| , measures in certain
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respect the irregularity of the finite sequence u,, ..., uy, their behaviour for N— o0
describes the irregularity of the infinite sequence {u,}.

It was conjectured by Van per Coprut and proved first by VAN AARDENNE-EHRENFEST
[22], [23] that for any infinite sequence {u,} we have

lim Ay=o0
N- o,

i.e. there is no “too well” distributed sequence.

We recall some results which show how the situation changes with increasing
dimension.

K. F. Rotu [13] proved, that for all k>1.

(A) for any infinite sequence {u,} in E¥, for any N> N, there exists an n, ISn<N
such that

k
l4,]1; > ¢, logZ N

and consequently also
k

A,>clog2 N .
(B) for any N points u,, ..., uy in E* with N> N}

k-1
[l4xll2 > ci log

and consequently also

k-1

Ay>cylog 2 N.

Here N, N;, ¢,>0, ¢, >0 depend only on k and are absolute constants.

RortH also proved directly that the case (A) for k-dimension is equivalent to the case
(B) for k—1 dimension.

Best possible results concerning the order of magnitudes of 4, are known only for
k=1 and for finite sequences also for k =2. Namely, W. G. Scumipt [17] proved

(A™) for any infinite sequence (u,) in E' and for any N> N, there exists an n, -
1=n< N such that

@ A,>clog N
and

(B*) for any N points u,, ..., uy in E?> with N> N,
®) Ay>c'logN .

(Here ¢ >0, ¢’ >0 are effective constants; the best possible constants are not known.)
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As to the sharpness of these results, it is well known that there exist sequences in E*
for which Ay=0(log N). Rotn [13] constructed finite sequences in E2 for which
A4y =0(log N). The best possible result concerning the order of magnitude of 4y is not
known for k> 2. However for ||4y||, DavenrorT [3] constructed finite sequences in E2

1

for which ||4y|l, =O(logz N) and quite recently for any k>2 Rotu [14], [15]
constructed finite sequences in E* for which

k-1
llanll2=0(log N 27).

The above results show, that the irregularities of a sequence increase with increasing
dimension, which can be expressed in a quantitative form. Moreover, from k=1 to
k=2 this phenomenon has also a qualitative feature.

Namely, for k=1 for any N we have sequences with 4y <1, for example for the

1 2
equipartition of E': —, —, ..., — we have 4y<1, while for k>1
quip N'N N NS =
k-1
2

AyZcllog N) 7

and consequently for infinite sequences for k=2

lim Ay=o00
N-

while for k=1 we have only
lim Ay=o00.
N—

(For k=2 a “good equipartition” does not exist.) There are sequences in E' for which

Ay

for infinitely many N. Now the question we are interested in is, the following: for a given
sequence {u,} in E' and for a fixed C how often may e.g.

() AysC

hold, how often must

(®) Ay>clog N

hold. The above theorem leaves open the possibility that for some sequences (8) holds

with any ¢ > 0 only for a sequence of integers of 0 density. The theorems we are going to
prove show that at least for ({na}) sequences this is not possible.
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As to ({na}) sequences it was proved already by Haroy-LirrLewoop [6] and
Ostrowskr [11] that for any ({na}) sequence

9 Ay>clogN

holds for infinitely many N, (where ¢ is a positive absolute constant). This is a “best
possible” result concerning the order of magnitude since for any a« with bounded partial
quotients '

(10) Ay=0(log N).

(10) means that concerning the order of magnitude of 4y the ({na}) sequences for «
with bounded partial quotients are among the “best” sequences.’
We also know that for any a

4,£1

holds for infinitely many n, e.g. for n;=q; (i=1, . . .) where g;’s are the denominators of
the convergents of .

The above results suggest that the behaviour of ({na}) sequences is quite
characteristic for the general situation. Probably results analogous to the ones
formulated below, hold for arbitrary sequences too.* See also Remark 2.

Here we are going to prove

Theorem. Let o be irrational and A, be defined by (3) belonging to the sequence ({ko.}).
With a suitable 3 € (0, 1), for N> N,

(1) A,>clog N

holds for all but at most N* values of n; 1<n<N. Here c>0 is an absolute constant.
Without proof we mention the following

Proposition 1. Let « beirrational, a=[ay, a,, . . .] bethe continued fraction expansion
of a, g; (i=1, ...) the denominators of the convergents of a. Then for every N

N v
(12) L y A,,>c<z @)+ — )
Nn=l k

=1 qyv+1

where v is determined by q,,, <N <gq,,,. Here ¢>0 is an absolute constant.

1 As to the best possible constant in (9) with Y. DupAIN we proved in [2] that for

— 4n
o) = lim -
we have v 08
. 1
inf c(o) =min c(@)=(y/2—1) = ————— ~ 0.2836.
. " 4log(\/2+1)

* See “Added in proof”.
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Remark 1. Proposition 1 asserts more than our theorem in the case when o has

“large” partial quotients; 11m Z = - = 0. The result in K uipErs—N1eDERREITER [9], that

for every n; 1<n<N

4 N
(Z ak+1 >
k= qv+1

holds with an absolute constant ¢’, shows that in certain sense (12) is best possible.

Proposition 2. Let « be irrational and A,(B) = :4,([0, B]) defined by (1) belonging to the
sequence ({ka}). Then for almost all € (0, 1) we have

A _
13) ,Lm logN

Here ¢ >0 is an absolute constant.
Moreover, the exeptional set- the set of B’s, for which (13) does not hold — has

Hausdorff-dimension 0.

Remark 2. Kesten [8] proved that for {na} sequences 4,(I) is bounded only if
[I|={ka} for some integer k (and it is bounded for |I|= {ka} according to a theorem of

Hecke [7])?

ScumipT [17] proved, that for any sequence the lengths of all intervals for which
A1) is bounded form a countable set. Moreover, a recent result of SCHMIDT [17] states

that for any sequence

lANB)
N- loglog N

holds for almost every f#, were ¢ >0 is an absolute constant. In [17] Scumipt asks
whether the analogous result holds with log N instead of log log N. So Proposition 2

gives an affirmative answer in the case of {na} sequences.
For the proofs of Proposition. 1 and Proposition 2, see V. T. Sos [21].

2 For ergodic-theoretical generalizations and proofs of K esTEN's theorem see e.g. FURSTENBERG-K EYNES—
Snariro [4], HaLAsz [5], PeTerseN [12].

4
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Notation

Leta=[ay, ..., a, ...]bethe continued fractions expansion of a. We shall use the
notations and consequences
Dn

q_ = [ah &3 "an—l] N qn+1=anqn+qn—1! pn+l=anpn+pn—l >

@n=qna—pn; @n+l=an@u+@n—l7
)'n=l9n|=(—1)n+l@n 5

. Z A+2vOk42,=— 6Oy} k=1,... (@o=-1)
v=0

Zak+2vqk+2v=‘1k+2n+1_‘1k—1; k=1,... (q0=0).

v=0

We shall say that the sequence of integers (b, . . ., b,) is a “permitted” sequence if it
satisfies

(14) 0<b,<a,—1, 0<h,<a, if 2Zk<v
and
(15) =0 if bisi=ar.; (1SkSv—1).

It is well known that every positive integer N <g, +, can be uniquely represented in
the form

(16) N = Z biq
figm

=1

where (b,, ..., b)) is a “permitted” séquence (and conversely, for every “permitted”
sequence (b;, ..., b))

v

N= z bg:<q,+1)
1

v=

It is also known (Descomses [1], So6s [20], Lesca [10]) that each g with —a<f<
<1—a can be represented in the form

17 B= Z 4,0,

where (d,) is a “permitted” infinite sequence which satisfies

(18) 0<d,<a,—-1, 0=sdi=saq if k22,
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(19) d=0 if dyi1=ap+y,
(20) dyk+1Fa2k+1

for infinitely many positive integer k.

Conversely, every sequence which satisfies (18)+(20) by (17) determines a
pe(—a, 1—a).

The expansions above turned out to be useful for different types of investigations in
diophantine approximation. Our proof will be based on the result that it is possible to
handle 4y by these expansions.

Let

An(B)=A4M[0, p)) for 0<p<I
and
AMB)=A4M[0,1+B)) for —a<p<O0.

We shall use with the notation of (16) and (17) the “explicit” formula for 4x(f) (in this
form see T. Sos [19]).

) 0 k
Q1) AMP) = Y. (—1)** 'min (b, dy) —di(gx Y biO;+6, Y bg))+ Y. b,
k=1 i

i=k+1 i=1 k=1
where
= k—1 k—1
1, if kisodd, d,>b, and Y bg,> ) dg;
i=1 i=1
(22) 5k= k=1 k-1

—1 if k is even, dy<b, and Y bg,< ) dig;

i=1 i=1

| 0 otherwise.

Proof of the Theorem

Let o be fixed. Without loss of generality we may assume that N =c, ¢, +, for some
v with 0<c¢,,,La,44, ¢, 4+ integer.
For any n, 1 £n< N we consider the expansion

v+1

n= Z b(n) g«
k

=1

where b; satisfies (14)(15) if 1<i<vand 0£b,,, <c,.,. We shall write b, instead of
by(n) when it is not misunderstandable. Instead of determining the number of values of
n, 1<n< N with certain conditions on b,(n); 1<k<v+1, we shall determine the
permitted sequences with the given properties.

44*
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In order to obtain a good lower bound for 4, we shall define a 8, resp. a §, for
which 4,(B) or —A4,(B,) is large and we use

%

(4B — 4B -

N |

v+1
Let 1<n<N,n= ) bg. Let B, B, be defined by

i=1

ﬁ:= z b2k+1}~2k+l

2k+1=5v+1

ﬂn_=— Z bzk)vu-

2ksv+1

First for the values of §, in (22) we remark the following: For 7 we have d,;,,, =0
k—1 k-1

Slnced2k+1_b2k+l (k_l ) Since d2|_0 d2|+l_b2|+l9“’e have Z blql< 2 dlql

i=1
iff b,; =0 for i < k. This means that é,, = — 1 for at most one value ofk For B. we have

O2k+1=0, since d,; 4+, =0 and 6,,=0, since dy;=b,;.
Hence using the discrepancy-formula (21) we get

g (44BY)— 4B )=

(23) ]v+l
A Z b1 — byquhy— Ax Z bigi+qx Z (“U'H kbi.)—l

k 1 i<k i>k

Now we consider the k'th term:

si=:b(1=bugih— A Y bi‘l.'“HIi.Z (=1)* 17k b))

i<k i>k
Using
1=qus 14+ Gt 1 = BGidc+ A1 + Gdic+ 1 »

Z (_1)i+1_kbili> — kst

i>k

Y bigi<ds,

i<k
and in case b,=ay (by-1=0)

Zbiq.‘= Z big:<qi-1-

i<k i<k—1
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we get
(24) =20 k=1,...,v+1.

We also have

i
52 bk<(ak =b) A+ M1 — A Y, biqi> .
f=1

By this we have the following positive lower bounds:

bia,—by—1
(25) sk>bk(ak—bk—1),1qu>i""-—“—-) if O<b,<ay—1
ak+2

1
26 >bAgi-1> —-—— if O<b=a;—1
(26) Sk > Ok Ak -1 @+2) (@ +1) 1 k= Ak

3 -1
27 5> Al Q-1 —qr-2)> <n ah—i+2> if by=ay, by_1=by_,=0.

i=0

In order to prove the Theorem we shall show that for all but at most N® values of
n, 1=<n<N at least one of the three cases holds for many values of k, and moreover
in such cases these terms give an essential contribution to 4, . To prove this we need the
following lemmas

Lemma 1. Let N=c,,q,+, for an integer ¢, ,€[1,a,,.], 1<k, <...<k=

<v+1,

3
3 <t, <l fori=1, ..., land S(t,, ..., t;) be the number of “permitted”
ay.

sequences l(bl, ..., by ) which satisfy also b,,,<c,, and
min(bk'_, ak'_—bki_l)<tkiaki, 1:1, o ay l,

min(bv+lacv+l_bv+1)<tv+lc\'+l l.f k1=V+1.

Then
1
(28) S(tb "-9tl)< n (4tk)cv+lqv+1 p
i=1
Proof. Note that the total number of “permitted” sequences (b,, . . ., b, ;) for which

b,+1 <t,+; holds is just ¢, 1q,+1-
Now first let =1, k; =k Zv, t; =t. Assumption (18) means, that b, can take only the
values

(29) 0, ...,[tak],ak_[tak]_l, ceey Qg

Put a;=2[ta;]+2 and ¢, =q,. Now the number of “permitted” sequences under the
restriction that b, can take only the aj + 1 different valuesin (29)is ¢, ; 14, +; Where g, +,
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is determined by the recursive formulae
Gic+1 =G+ k-1, 9= 4«

Gh+j+1=0k+jqk+jtqirj—1 I 1ZjSv—k.

Since ,
A+ i-1 a+1
QG+1= ————— +1 < G+1<3tqi+,
i+ g -1 a+1
and
; G+ 1Gh+ 1+ 4k 3tag . +1
j Q2= Gi+2< vz <Mqy s,
G+19k+1 TGk G yq+1

we get (28) for /=1 by induction on j. )
A similar argument holds in case k=v + 1. Now by induction on [ we get (28) for the

general cases.
Lemma 2. Let 6>0, M > M (J)
K, ={k:q,2M;1<k<v+1}

’ {ak, if k<r
a, =
* if k=r+1

Cre1s
and
1
By(n)={k: min (by(n), a; — b (n)— 1)< Zlog a,kekK,},

Ny={n: ) loga,>élogN, 1=<n<N}.
ke B,(n)

Then with a suitable 3 €(0, 1)
IN,|<N'~%,

[T aa>N?ifneN,.

Proof. By the definition of N; we have
keB,(n)

Let AgKl and
N(A)={n:B,m)=A,neN,).

Let us fix a @ €(0, 1). Then for M > M,

[1 (@ ' logan< [] ar'*®<N=%=9.
ked keA
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By Lemma 1
|N1(A)| <N- N—&(l—el

and consequently by summation on A we obtain-

IN{|= Y IN (4 <N -2"N-%1-6)
A

Now taking into consideration, that

X1-6)
N> [] di2M" and 2<M 2 , if M>M,,

azM

we obtain
H1-6) 1
INJJ<N-N 2 -N-¥1-6_N'"741-6)

Lemma 3. Let K, ={k:2<a, <M, 1<k<v} and K, < K,, v5=|K}),-
By(n)={k:b, € {0, a;}, ke K5},
Ny'={n:|By(n) >(1—8)vy; 1Sn<N}.
If v >vy, 6> 0y, then |[N,| <@":N with a suitable ® = O(5)€ (0, 1).

Proof. First let 1<k, <...<k<v, k;eK, (i=1, ..., ) and Sik,, ..., k;) be the
number of “permitted” sequences by, ..., b, satisfying

bkie{(),ak'_} i=1,...,
We shall prove

: s\
(30) S < (—) N.

6
First let =1, k=k, <v. Similarly to the proof of Lemma 1 put

a=1,qs=q. and g1 =qi+qi-,
Qi+j+1 =@+ 19k+jt qh+j—y for 15jSv—k.

Now we have

g = At g1 Ross E il
k+1— B k+1 S 4k+1
aqi+ - * 3
3 —a,‘+1+1
; O+ 19k+1 1 G 3 5
QG+2= QG+ 2< — G +2< — G +2 .
A 1Qi+1+ G A+ q 6
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By induction on j we get
, 5
Sl(k)=qv+1< g 9v+1 -

Hence by induction on I we obtain (30).

By (30) we have
5 5 t ,
INJJ< ¥ <v2) (—) N<@"N
t>(1-8), t 6

if vy > vo(0).

Lemma 4 Let

97
Ky=lk:iaqy=1,1ZkZv},v;=|K;5|> —v,
3 { ay Sk=vy,vi3=|K;| 100"

B3(n):{k:bk_z=bk_1=0,bk=l,ak_i=1 for 0§l._._<_3, lékév}
N3= {n:|By(m)] <dv,, 1Sn<N).

Then, with a suitable © € (0, 1). [N;|]<9'N , if 6>0¢, r>r,.
Proof. Consider the blocks of indices] ;={10j+i,1<i<10} for 0<j < [1—‘;)} and let

97 .
By the assumption v, > 100 vwe have |J|> % . Now we consider only the blocks in

J and we shall show that for all but at most N values of n, 1n<N

Bs(")f\lﬁé 0

for at least 10™2v; values of j, I; € J.
Let15j,<...<ji<v, I;€J andS(j,, .. Lj)={n:Bym)nl;=0,i=1, ...,1}. Then

(31) IS]<27'N.

To see this we have to remark only that
(a) the number of permitted 0,1 — sequences dy, ..., d;, for which

(32) (du dl'+1,di+2)%(010, 1) if lélég
is 11.
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(b) the number of “permitted” 0,1 — sequences d,, ..., d,, for which
(33) d1=0, di=di+1=0a di+2=]9 d10=0

with some 1<i<6is >22.

Consequently to any ne S(jy, .. ., j)) by replacing the blocks (byo,+» 1=i=10) of
type (32) for blocks of type (33) we can order 2 different n ¢ S, on such a way that to
ny #n, we order different ones. (d,=d,,=0 in (33) gives the possibility to choose
sequences of type (33) for different blocks I;, I, independently.)

By (31), with the notation v' = %
INjJ< ¥ <v>2—w<@w
I1>(1-9)v t

if v3>v,.
To finish the proof we distinguish three-cases:

Case 1. Suppose, with the notation of Lemma 2,

1
33 1 +1)> —1logN.
(33) ka og(a;,+1)> 500 108

Let n¢ N,. Then by Lemma 2, (23), (24) and (25) we have

v+1
42 Y sz Y a2 Y log@+1)=
k=1 keK, ke K,\B,(n)

1
= ) log(a,+1)— Y log(a,+1)> ——logN.
ke K, keB,(n) 5-10

Case 2. Let Ky ={k:2<a, <M, a,_, <M, 15k< v}. Suppose, with the notation of
Lemma 2 and Lemma 3,

1
Y log(a+1)< %logN

keK,
and
1
34 lo 1)>—1logN.
(34) k;{g g (a+1) 100108
By these we have
1
=|Ki{|< —— log N
V=K< o Tog M+ 1) 18
1
v=|Ky|>——— log N

100 log (M +1)
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- d@nd consequently

1
Bt ey
=K > o log (01 1) %8

Now we apply Lemma 3. Let n¢ N 2- Then by (23), (24) and (26) we have

v+l 1
4> Y sz b1 2 ~———— |K5\Bo(n)] 2
k;} k kEK%ﬂz(n) k/ kYK — 1 (M+ 1)2 2\P2
1 1 1 1

Bt it oy N
= M+172 10° 200 log(M+1) 8

By (34) v)>c) log N. By this and by Lemma 2 we get with a suitable © € (0, 1) and
9=9O, c)) €(0, 1) that |N,| <@ >N < @»'eN < N3,

Case 3. Suppose neither (33) nor (34) holds. In this case
1

35 RN TR
G3) 'S 200log(M+1) B
1
36 e JopN
(36) 2= 1001og3 OB

and consequently

3
Vit+v, < ﬁ)‘lOgN

Since
N=c,., nl 9k +1 HZ 9k +1 HS Qi +1
kek, I kek, I gkx,uk, 9
k<v
logN=logc,,;+ 2, log(a,+1)+Z, log (a,+ 1)+ log I15,
we obtain

.
(l— ﬁ>logN<logn3<vlog2<v.
By (35) and (36) we get

V3> — V.

100

Now using Lemma 4, by (27) we obtain for n¢ N,

v+1

1
4;2 Z 8> Z Ali-3> —0|Bs(")|>
k=1 k¢ Bs(n) 1

1

103 logN.
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Now by the assumptions (35)+(36) we have
log N<2v;, N<10%.
Therefore, using Lemma 4, with a suitable 9=‘9(@)e(0, 1) we have
IN5|<©®"N < N°®.

This completes the proof.
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Added in proof. This paper was submitted in 1978. I lectured on this topic and formulated the conjecture
concerning arbitrary sequences in 1979 in Oberwolfach. On strong irregularities of the distribution of ({na})
sequences, Tagungsbericht Oberwolfach 23 (1979), 17-18. Since that G. HaLAsz (On Roth’s Method in the
Theory of Irregularities of Point distributions, Recent Progress in Analytic Number Theory. Acad. Press,
1981, (79-94)) and R. TupeMAN, and G. WAGNER (A sequence has almost nowhere small discrepancy.
Monatshefte fiir Math. 90 (1980), 315-329) proved the conjecture and more general results.

EOTVOS LORAND UNIVERSITY
H-1088 BUDAPEST

MUZEUM KRT. 6-8.

HUNGARY




