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In 1948, De Bruijn and Erdos proved that a finite linear space on v points has at least v 
lines, with equality occurring if and only if the space is either a near-pencil (all points but one 
collinear) or a projective plane. 

In this paper, we study finite linear spaces which are not near-pencils. We obtain a lower 
bound for the number of lines (as a function of the number of points) for such linear spaces. A 
finite linear space which meets this bound can be obtained provided a suitable projective plane 
exists. We then investigate the converse: can a finite linear space meeting the bound be 
embedded in a projective plane. 

1. Introduction 

A finite linear space is a pair (X, a), where X is a finite set, and 93 is a set of 
proper subsets of X, such that 

(1) every unordered pair of elements of X occurs in a unique B E 9, 
(2) every B E 46 has cardinality at least two. 
the elements of X are called points; members of 48 are called lines or blocks. 

We will usually let v = (Xl and b = (3 I. The length of a line will be the number of 
points it contains; the degree of a point will be the number of lines on which it 
lies. We will abbreviate the term ‘finite linear space’ to FLS. 

A linear space in which one line contains all but one of the points (and hence all 
other lines are of length two) is called a near-pencil. An F’LS which is not a 
near-pencil is said to be non-degenerate. A non-degenerate FLS will be denoted 
NLS. 

A projective plane of order n is an FLS having n2 + n + 1 points and lines, in 
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which every line has length n + 1. A projective plane of order n is known to exist 
when n is a prime power. 

An afine plane of order n is an NLS having n2 points and n2 + n lines, in which 
every line has length n. Aane and projective planes of order n are co-extensive. 

A well-known theorem of De Bruijn and Erdijs [1] states that in an FLS the 
relation 6 b v holds, with equality if and only if the space is either a near-pencil or 
a projective plane. 

In this paper we obtain similar results for NLS. In an NLS having v 3 5 points, 
we show that b >B(v), where 

if n2+2sv<n2+n+l, 

(*) if n2 -n+3<vcn2+1, 

if v=n2-n+2. 

Equality can be attained if n is the order of a projective plane. 
An NLS is said to be minimal if no NLS on v points has fewer lines. We 

consider the embeddability of minimal NIS with b = B(v) lines in projective 
planes, and prove several results. For example, if v = n2 - cy, for some integer n, 
with a!~0 and cw”+a(2n-3)-(2n2- 2n) G 0, then a minimal NLS with v points 
and B(v) lines can be embedded into a projective plane of order n. Minimal NLS 
with v = n2 - n + 2 (v > 8) and b = n2 + n - 1, can likewise be embedded. 

2. Some prelbinary results 

We require the notion of an (r, 1)-design. An (r, l)-design is a pair (X, 9) 
where X is a finite set of points, and 98 is a family of proper subsets of X called 
blocks satisfying: 

(1) every point occurs in precisely r blocks, 
(2) every pair of points occurs in a unique block. 
As before we will use u and b to denote respectively the number of points and 

blocks. By deleting blocks of length one from an (r, 1)-design one obtains an FTS, 
and conversely, given an FLS, the addition of sufficiently many blocks of length 
one will produce an (r, 1)-design for some r. 

An (r, 1)-design (X, 3) is said to be embedded in an (r, 1)-design (X’, 9’) if 
(1) XEX’, and 
(2) !%={(Bnx:BE9I’} 

(note C% and 3 are multisets). We will make use of the following results 
concerning embeddability of (r, 1)-designs. 

Lemma 2.1. (1) Suppose an (n + 1, l)-design D with v points and b s n2+ n + 1 
blocks has a point which occurs in s blocks of Eength n. Then D can be embedded in 
an (n + 1, 1)-design D* having v + s points and at most! n2 + n + 1 blocks. 
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(2) Any (n + 1, 1)-design with v 3 n2 points and b s n2+ n + 1 blocks can be 
embedded in a projective plane of order n. 

Proof. See [4]. Cl 

An FLS is defined to be embedded in a larger FLS analogously. 

Lemma 2.2. An NLS with v 2 n2 points is embeddable in a projective plane of 
order n if and only if it has at most n2 + n + 1 lines. 

Proof. See [5]. Cl 

The following two arithmetic results will be of use. 

Lemma 2.3. Given an FLS which has the longest line of length k, the inequalities 

0) 
bsl+ k2tv- k, 

v-l 
and (2) b 3 

must hold, where as usual, 1x1 denotes the least integer no less than x. 

Proof. (1) is proved in Stanton and Kalbfleisch [3]. (2) is easily proved since every 
point has degree at least [(v - l)/(k - l)] . Cl 

Lemma 2.4. Suppose k,, . . . , kb are non-negative integers, and CFzI ki 3 qb+ r 
where O<r<b and 921. Then 

with equality if and only if precisely r of the ki’s equal q + 1 and the remaining ki’s 
equal q (hence xFzI ki = qb + r). 

Proof. See [2]. Cl 

For v 2 4, denote by h(v) the number of lines in a minimal NLS having v 
points. We seek to determine the behaviour of the function h(v). This we shall do 
mainly in the next section, but we first prove a couple of simple results here. 

Lemma 2.5. h(4) = h(5) = 6. 

Proof. Trivial. Cl 

Lemma 2.6. For v 2 4, h(v + 1) > h(v). 



52 P. Erdiis et al. 

Proof. The result is true for o -4 by Lemma 2.5. Thus, let F be a minimal NLS 
on v + 1 points, v 2 5. If F contains no line of length v - 1, the result is clearly 
true, so suppose F contains such a line 1. For any other line I’ of F, the sum of the 
lengths of 1 and I’ does not exceed v + 2, so I’ has length at most 3. Since v 5 5, 1 

is the unique line of length v - 1. Then we may delete any point x of I from F, and 
also delete any ‘lines’ of length one produced by this operation, to obtain an NLS 
on v points having at most h(v + 1) lines. Thus h(v + 1) > h(v), as required. Cl 

3. Minimal non-degenerate finite linear spaces 

Let f(k, v) = 1 + k2(v - k)/( v - 1). We have the following. 

Lemma 3.1. If an F’LS has a longest line of length k, and 2 s k, s k < k2 G v - 2, 
then 

b 2 min(f(kI, v), f(k2, 41. 

Proof. Apply Lemma 2.3(l). As observed in [2], the function f(x, v), for fixed v, 
is unimodal on the interval [2, v - 21, having its maximum at x = $v. Cl 

For future reference, we record some values of the function f. 

Lemma 3.2. 

(1) f(v-2, v)=20-l+&. - 

(2) 
2 

f(n+2, n”+2)= n2+n+- 
n2+1’ 

(3) 
7n-1 

f(n+l, n”+2)= n2+3n-n’+l. 

(4) f(n+2, n2-n++)= n2+3n-l-n~~~~l. 

(5) f(n+l,n2-n+2)=n2+n-l-,1_“,:, . 

Lemma 3.3. Suppose v 3 n2 + 2 and n 2 2. If an NLS on v points has a line of 
length n+2, then ban2+n+2. 

Proof. Clearly f(v, k) is monotone increasing in v for fixed k, and also 
f(v - 1, v + 1) < f(v - 2, v) for all admissable v. Thus, by Lemma 3.1, we have 

bamin(f(n+2, n’+2), f(n2, n2+n)). 
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If na2, then f(n+2,n2+2)sf( n2, n”+2), SO baf(n+2, n2+2). By Lemma 
3.2(2), we have 

7n-1 
f(n+2, n2+2)= n2+3n------= n2+n+l+ 

2n3-n2-Sn 
n2+1 n2+1 ’ 

For n B 2, 2n3 > n2+ Sn, so the result follows. Cl 

By a similar argument, one can prove the following 

Lemma 3.4. Suppose v 5 n2 - n + 2 and n 2 3. If an NLS on v points has a line of 
length n + 2, then 

(1) bsn2+n+l if n>4, 
(2) ban”+n ifn=3. 

Proof. As in Lemma 3.3, 

baf(n+2, n2-n+2) 

=n2+3n-l- 
13n-2 

n2-n+l 

For n 34, 2n3 > 3n2+ 1On - 1, which establishes (1). To prove (2), we note that 
f(5, ll)>ll, so bsl2. 0 

Lemma 3.5. Suppose v >, n2+ 1 and n 2 2. If an NLS on v points has no line of 
length exceeding n, then b a n2 + 2n + 2. 

Proof. From Lemma 2.3(2), we obtain 

ba[q[s]] =[(n2~1)(n+2)]=n2+2n+2. 0 

Theorem 3.6. If an NLS has n2+2svsn2+n+l for some ns2, then b> 
n2 + n + 1, with equality holding if and only if the NIS can be embedded in to a 
projective plane. 

Proof. Let F be such an NLS. If the longest line in F has length other than n + 1, 
then ba n2+ n +2 by Lemmata 3.3 and 3.5. Also, 

2 
f(n+l, n2+2)=n2+n+- 

n2+1’ 

so b 2 n2 + n + 1. If, however, F has b = n* + n + 1, then F can be embedded in a 
projective plane by Lemma 2.2. Conversely, if one deletes n2+ n + 1 - v points 
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from a projective plane of order n, then an FLS with b = n2+ n + 1 is 
obtained. ??

Lemma 3.7. If an NLS F has v=n2-n+2 for some n>3, then bsn2+n-1 
with equality only if F contains a unique longest line of length n + 1. 

Proof. First, assume F has at most n2+ n - 1 lines, each of which has length not 
exceeding n. Let x,, . . . , x, denote the points, and let Z1, . . . , lb denote the lines of 
F. For 1 G i s v, let ri denote the degree of xi, and for 1 G i Q b, let ki denote the 
length of li. Also, let b” = n’+n-1, and, if b<b*, let ki=O for b+l<i<b*. 

We have, for 1 d i d v, 

then 

i ki= i ris(n2-n+2)(n+l). 
i=l i=l 

We have (n”-n+2)(n+l)=( n-l)(n*+n-1)+3n+l, and CFI1 (!J)=(;l). Thus 
Lemma 2.4 implies 

(n’-n+2)(n2- n + 1) 3 (3n - l)(n)( n-1)+(n2-2n-2)(n-l)(n-2), 
or 

n4-2n3+4n2-3n+2>n4-2n3+4n2+n-4 

or 4n G 6, a contradiction. 
Hence if F has no line of length n + 1, then by Lemma 3.4 and the above, F has 

at least n2 + n lines. So assume F has a line 1 of length n + 1. We have 

f(n+l, n2- n+2)=n2+n-l- 
3n-3 

n2 -n+l’ 

so for n > 3, F has at least n2+ n - 1 lines. We wish to show that if F has exactly 
n2 + n - 1 lines, then 1 is the only line of length n + 1. 

Suppose 1” is another line of length n + 1. If I and I* contain no common point, 
then b a (n + l)* + 2 > n* + n - 1, a contradiction, so we may assume 1 n I* = {x,}. 

Then, for i > 1, ri > n + 1. Also, rl 3 [(n” - n + 1)/n] = n. Counting lines which 
intersect I, we obtain b 3 n + n - n = n2 + n, a contradiction. Thus 1 is the unique 
line of length n + 1 in E 0 

Lemma 3.8. Let F be an NLS with v=n2-n+2 and b=n2+n-1 for some 
n 3 4. Then F can be embedded in a projective plane of order n. 

Proof. By the previous lemma, F contains a unique line I = Zb of length n + 1. 
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Also, if xi E 1 then ti 2 n, and if xi $1, then ri 2 n + 1. Consider 

(n2- n+2)(n2-n+l) 

=(n+l)n+(3 n-3). n(n-l)+(n-1)2(n-l)(n-2). 

Thus F has at least 3n - 3 lines of length n, with equality occurring if and only if 
the remaining lines (excluding I) have length n - 1. For 1 d i s b - 1, let 

Then 

if IZinII=O, 
if IZinll=I. 

b-l 

c kfa(n2 -2n+l)(n+l). 
i=l 

However 

(n’ -2n+l)(n+l)=( n-2)(n2+n-2)+3n-3. 

Thus, by Lemma 2.4, 

(n2 -2n+l)(n2-2nja(3n-3)(n -l)(n-2)+(n2-2n+l)(n-2)(n-3) 

= (n2-2n+ l)(n2-2n). 

Therefore F contains at most 3n - 3 lines of length n. By the remarks above, F 
contains one line of length n + 1, 3n - 3 lines of length n, and n2 - 2n + 1 lines of 
length n - 1. Also, the line of length n + 1 meets every other line. 

Now let x be any point on I, and let a, denote the number of lines of length i 
through x, for n-lsisn+l. Then 

(n - 2)%_1 + (n - l)a,=n2-2n+l 

and u.,,+~ = 1, so either (u_~, u,,, u,,+J = (0, n - 1,l) or (n - 1, 1, l), since n is at 
least 4. Thus x lies on either n or n + 1 lines. 

Since I meets every other line, we have 

l+ C fri -l)=n2+n-1. 
*El 

Thus there are precisely two points x1 and x2 of 1 which have degree n. By 
adjoining blocks (x,} and {xJ we obtain an (n + 1,l) design with n2- n + 2 points 
and n2 + n + 1 blocks. Also, x1 lies on n - 1 lines of Iength n. Applying Lemma 
2.1, we can embed F in an (n + 1,l) design on n2+ 1 points and n*+ n + 1 blocks, 
which can in turn be embedded in a projective plane of order n. Hence F can be 
embedded in a projective plane of order n. Cl 

Lemma 3.9. Let F be an NLS having eight points and eleven lines. Then either F 
can be embedded in the projective plane of order 3, or F is isomorphic to the linear 
space in Fig. 1 Mow. 

Proof. If all points of F have degree at most 4, then as in the previous lemma, F 
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can be embedded in a projective plane of order 3. However, for n = 3 (in Lemma 
3.8) there is an additional possibility for the vector (a2, a,, ~3, namely (4,0,1). 
Should F contain a point 00 having this distribution, all other points have degree 3. 
We may easily construct F, and verify that it is unique up to isomorphism. The 
unique such F is exhibited in Fig. 1 below. 

Theorem 3.10. For n 2 3, there exists an NLS with v = n2- n + 2 and b = 
n”+n-1 if and only if n is the order of a projective plane. 

Proof. In I ’ view of Lemmata 3.8 and 3.9, is suffices to show that if n is the order of 
a projective plane, then the desired NLS exists. Let T be any projective plane of 
order n; and 1, and Z2 be two lines of T. For i = 1,2, let Xi be a point of Zi other 
than I, n Z2. Then delete from T the points of Z1 U Z2\{rtl, x2}, and also delete the 
lines 1, and Z2. The resulting NLS has n2 - n + 2 points and n2+ n - 1 lines. Cl 

~123 145 246 347 

034 167 257 356 

a)5 
036 
m7 

Fig. 1. 

Lemma3.11. LetFbeanNLS withvan2-n+3 forsomena3. Thenb>n’+n, 
with equality only if the longest line in F has length n or n + 1. 

Proof. First suppose that F has a line of length at least n + 2. If n 24, then 
Lemma 3.4 implies the result. If n = 3, then we compute f(5,9) = 27J2, so b 2 14, 
and the result is true here as well. 

Next, suppose F has no line of length exceeding n - 1. Then by Lemma 2.3(2), 

Next, suppose F has a longest line of length n. Every point has degree at least 
[(n2- n +2)/(n - 1)1 = n + 1. An application of Lemma 2.4 yields b > n2 + n - 1 
when v=n2-n+3. 

Finally, we consider the case where the longest line 1 has length n + 1. If 1 is the 
only line of length n + 1, then every point on 1 has degree at least 1 + 

[(n2-2n+2)/(n-l)] =n+l, and bal+(n+l)n=n2+n+1. So assume Z* is 
another line of length n + 1. If 1 and I* are disjoint then b 2 (n + 1)2 + 2, so assume 
1 and 1” meet in a point X. The point x has degree at least [(n”- n +2)/n] = n, 
and any other point of F has degree at least n + 1. Thus b b 1 + n - 1 + n - n = 
n2+ n, and the result follows by the monotonicity of the function h. 
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Corollary3.12. IfFisanNLSwithvan2-n+3andb=n2+n,forsomena3, 
and if the longest line in F has length n + 1, then one point has degree n and all 
other points have degree n + 1. 

Proof. In order to attain b = n2 + n in the above lemma, we must have 
(1) all lines of length n + 1 meet at a point x of degree n, and 
(2) any line meets all lines of length n + 1. 

Thus x has degree n and all other points have degree n + 1. Cl 

Such a situation can be realized if n is the order of a projective plane. 

Lemma 3.13. Suppose n a 3 is the order of a projective plane and n2 - n -I- 3 s v < 
n2. Then there exists an NLS having v points and b = n2 + n lines, in which the 
longest line has length n or n + 1, as desired. 

Proof. Let m be a projective plane of order n 3 3, and let v = n2+ n + 1 - CX, 
where n+l<cws2n-2. 

Let I, and l2 be two lines of T, which meet in a point x. If we delete all points of 
&, and a! -(n + 1) points from Z2 \{x) we obtain an NLS with n2+ n lines, in which 
the longest line has length n. If we delete the points of I1 \{x} and a - n points of 
12\{x}, we obtain an NLS with n2 + n lines, in which the longest line has length 
n+l. 0 

When v = n2+ 1, we have the following. 

Lemma 3.14. If an NLS on n2+ 1 points has n2 + n lines, then the longest line has 
length n + 1, and the space can be embedded into a projective plane of order n. 

Conversely, if n is the order of a projective plane, then h(n2 + 1) = n2 + n. 

Proof. We have h(n2+ 1) 2 n2+ n. Suppose T is a projective plane of order n. Let 

1 be any line, and let x be any point of 1. If we delete all points of I \ {x}, and the 
line I, from T, we obtain an NI_S with v = n2+ 1 and b = n2+ n, having a line of 
length n + 1. 

Now suppose F is an NLS with b = n2+ 1 and b = n2 + n. We have established 
(Lemma 3.11) that the longest line of F has length n or n + 1. The first case. is 
ruled out by Lemma 3.5, so the longest line has length n + 1. Finally, F can be 
embedded in a projective plane by Lemma 2.2. Cl 

We now consider the embeddability of NLS on v points and n2 + n lines where 
n2- n+2<v<n2, in projective planes. We first consider the case where the 
longest line is of length n. 

Let G be an FLS. A set 5’ of lines is said to span F if for any line 1 in F there 
exists a line Z1 E 9 such that I and Z1 contain a point in common. Now, suppose 7’ 
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is a set of lines such that any two distinct intersecting lines in 7’ span E Let U be 
the set of lines of F that are disjoint from at least one line of 7’. For each 1 in T, 
let D(Z) denote the set of all lines of U disjoint from I, and let E(Z) = D(Z) U (1). 
Define a relation - onS=TUUbytherulea - b if there exists 1 E T such that 
{a, b) c E(Z). 

Lemma 3.15. If E(1,) = E( 12) whenever 1, n I, = 8, then -, as described above, is 
an equivalence relation on S. 

Proof. Suppose 1, and Z2 intersect, for distinct II, Z2e T. Since {II, Z2) spans F, 
therefore E( ZJ n E( ZJ = $4. 

Now, suppose a - b and b - c. Let {a, b) E E( Z1) and {b, c} E E( ZJ for some 
Z1, Z2. If 1, and Z2 are disjoint or equal, then E(Z,) = E(ZJ so {a, c} c E(Z,) and 
a - c. If I, and Z2 are distinct and intersect, then E(Z,) n E(Z,) = 8, so we cannot 
have bEE(Zl)nE(Z,). Cl 

Lemma 3.16. Let F be an NLS with van2-n+2 and b=n2+n in which the 
longest line has length n. Let T denote the set of lines of length n. Then - is an 
equivalence relation on the set S as described above. 

Proof. We must show that 
(1) any pa.ir of distinct intersecting lines I, and Z2 of length n span F, and 
(2) if I, and Z2 are disjoint lines of length n and any line Z is disjoint from Z1, 

then 1 is disjoint from Z2. 
First, we note that every point in F has degree at least [(n” - n + l)J(n - l)] = 

n+l. 
Let x be any point on a line 1 of the length n. If x has degree greater than n + 1, 

then there are at most n2 + n - (1 + n - n + 1) = n - 2 lines disjoint from 1. Thus the 
lines disjoint from 1 have average length at least ( n2 - 2n + 3)/( n - 2) > n, so some 
line has length greater than n, a contradiction. Therefore every point on a line of 
length n has degree n + 1. 

Let 1, and Z2 be distinct intersecting lines of length n. Since every point on I, 
and Z2 has degree n + 1, the number of lines spanned by 1, and Z2 is at least 
n+1+(n-l)2+2(n-l)=n2+n. Since b=n2+n, I, and Z2 span all lines. This 
proves (1). 

Now, let 1, and Z2 be disjoint lines of length n. Suppose a line 1 intersects Z2 in a 
point x. The point x has degree n + 1, and Z2 has length n, so there is a unique line 
through x which is disjoint from Z2, namely, 1,. Thus 1 intersects Z1, which proves 
(2). cl 

Let F be an NLS satisfying the hypotheses of Lemma 3.16, which has v = n2- Q 
points (OsaGn-2). Let P,, . . . , P, denote the equivalence classes (with respect 
to the relation -), and let W denote the lines of F which are in no Pi, 1~ i s s. 
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Now every point has degree at least n + 1. Denote the degree of x by n + p, 

where & 2 1 for all points x. Let 6 = c, & - v. 

Lemma 3.17. The number of equivalence classes s satisfies 

Sal+ 
n(n -a) 
n-(w+6’ 

Proof. Let x be any point. Then in any Pi, there are & lines containing x. Thus 

c k,=C Px= v+ 8, for any i, 
IEPi x 

where kl denotes the length of the line 1. Then 

c k,=(n+l)v+S-s(S+v). 
ICW 

Next we note that every Pi contains precisely n lines. This follows since a line 
of length n spans n* + 1 lines, and is therefore disjoint from n - 1 lines, since each 
point on a line of length n has degree n + 1. Thus 1 WI = n* + n - sn. 

Now, each line in W has length at most n - 1, since the lines of W occur in no 
Pi. ThUS 

c k,<(n-1) IWl. 
ICW 

Substituting, we obtain 

(n+l)v+S-s(S+v)G(n-l)(n*-n(s-1)). 

Thus 

(n+l)v+s-(n-l)(n*+n)Gs(v+6-n*+n). 

Since v = n* -a, we obtain 

n* -an+n-a++6s(n-a+6), 
so 

Sal+ n(n-a) 
n-cu+S’ 

cl 

Lemma 3.18. An (n + 1, l)-design F on v = n*- (Y points (0 s Q! s n - 2), which 
has n* + n lines, can be embedded into a projective plane of order n. 

Proof. Consider the classes P,, . . . , P,. Since 8 = 0, therefore, by the proof of 
Lemma 3.17, s = n + 1 and W = 8. Each Pi consists of n lines which partition the 
point set. Let WI,. . . , a,+1 be n + 1 new points. For 1 s is n + 1, adjoin mi to 
each line of Pi, and adjoin the line ml~2 . * * mn+l. The NLS thus constructed has 
n*+ n + 1 lines and at least n* points, and so can be embedded into a projective 
plane of order n. This establishes the lemma. Cl 
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Theorem 3.19. Suppose F is an NLS with v = n2- a! points (0 G (Y G n - 3) and 
n2 + n lines, the longest of which has length n + 1. Then F can be embedded into a 
projective plane of order n. 

Proof. In the proof of Corollary 3.12, we have noted that all lines of length n + 1 
pass through a point (say a), and that all other points have degree n + 1. The 
linear space F’ obtained by deleting 00 from F is an (n + 1)-design which satisfies 
the hypotheses of Lemma 3.18. Hence F’ can be embedded into a projective 
plane T of order n. It is also clear that the lines of F’ which passed through 00 (in 
F) form one of the classes Pi, so that the point 00 is restored during the embedding 
of F’ into T. Hence F can be embedded into 7~. Cl 

We now return to the case of linear spaces with n2 - ar points and n2 + n lines, 
the longest of which has length n. As before, we let point x have degree n + & 
and denote 6 = c & - v. 

Lemma 3.20. If 6 >O, then 

i 

n-a if n odd, 
62 n+l 

(n--(Y) - 
( > n-l 

if n even. 

Proof. Recall that s denotes the number of equivalence classes Pi, and s 3 
1 + n( n - a)/( n - ar + S) by Lemma 3.17. Since there is a point x with pX 5 2, and 
since x occurs & times in each Pi, then counting lines through x yields spX s 
n + &, or s < 1+ [n/pX] where, as usual [yJ denoted the greatest integer not 
exceeding y. Since flX 2 2, we have s < 1 + [in j . 

Now, if n is even, [jn] =$n, and we have 

l- 
n(n - a) 
n--a+8 

Sl+$z, 

so 2(n-a)Gn-a+6 and 8>n-a. If 
obtain 6 3 (n - a)( n + l)/( n - 1) similarly. 

We now obtain an upper bound for 6. 

Lemma 3.21. S <(cw2- a)/2(n - 1). 

Proof. We have 

n is odd, then l$z] = i(n - 1) and we 
cl 

C k,=(n+l)v+a=(n-l)(n2+n)+r, 
1 

where r = (n - a)( n + 1) + 6. Note that r < n2 + n, for otherwise the average line 
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length would be at least n, which is an impossibility. We apply Lemma 2.4 with 
q=n-1, b=n*+n, and t=2. 

Since XI (2) = (z), we obtain 

U(U--l)%n(n-l)+(b-r)(n-l)(n-2). 

If we substitute ZJ = n*- (Y, b = n* + II, and r = (n - cw)(n + 1) + 6 and simplify, the 
desired result is obtained. Cl 

We now combine the bounds of the two previous lemmata. 

Lemma 3.22. Suppose 6 > 0. I_ n is even, then 

a2+a!(2n-3)-(2n*-2n)aO. 

If n is odd, then 

Theorem 3.23. Suppose F is an NLS with n*- a! points (CY 3 0) and n* + n lines, 
the longest of which has length n. If n is even and CX*+CX(~~-3)-(2n*-2n)<O, or 
if n is odd and a*+ a(2n + l)-(2n2+2n) < 0, then F cult be embedded in a 
projective plane of order n. 

Proof. From Lemma 3.22, S = 0, so F is an (n + 1, 1)-design and can be embed- 
ded in a projective plane of order n by Lemma 3.18. 0 

Corollary 3.24. If F is un NLS on v points and B(v) lines, where 9 6 v G 134, then 
F can be embedded in a projective plane of order n (where n2 - n + 2 =G v s n2+ 
n + 1). 

Proof. The proof follows from Theorem 3.6, Lemma 3.8, Lemma 3.14, Theorem 
3.19 and Theorem 3.23. The first instance when the hypotheses of Theorem 3.23 
are violated is n =12 and a!=9. Cl 

5. Open problems 

There are several open questions which arise in connection with finite linear 
spaces. Doyen has asked, given v, the number of points, what are the possible 
values for b, the number of lines? In this regard, P. Erdos and V.T. S6s have 
shown that there is an absolute constant c so that for every b satisfying 

cv3’* < b d 
n 

0 2 ’ 

will occur as the number 
of c.) 

V bfo 2 
-i, i=1,3, 

of lines. (This result is best possible part from the value 
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Let (kl, k2, . . . , kb) be a set of integers such that each k a 2 and 2 ki(ki - 1) = 
U(U - 1) for some integer II. Give reasonable necessary and sufficient conditions 
that there exists a finite linear space on points whose line lengths are specified by 
the ki. 

Let (h, r2, . . . , ru) be a set of positive integers such that each ri B 2. Give 
reasonable necessary and sufficient conditions that there exist a finite linear space 
on v points such that the ith point lies on precisely ri lines. (These questions are 
clearly very difFicult and probably cannot be answered with ‘side’ conditions.) 

Given a finite linear space F with v points and b lines satisfying v d b s 
n2 + n + 1 for some positive integer ~1, then for v large, all points of F must lie on 
no more than n + 1 points. Given n, is the largest value of v such that there exists 
a finite linear space on v points which contains a point which lies on at least n + 2 
lines? We conjecture that such a v must be less than n2- yt + 2 for n > 3. 
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