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This paper is a continuation of [10], where P. Erd6s, A. Hajnal, V. T. S6s, and E. Szemer~di 
investigated the following problem: 

Assume that a so called forbidden graph L and a function f(n) = o(n) are fixed. What is 
the maximum number of edges a graph Gn on n vertices can have without containing L as a 
subgraph, and also without having more than f(n) independent vertices? 

This problem is motivated by the classical Turin and P~msey theorems, and also by some 
applications of the Turin theorem to geometry, analysis (in particular, potential theory) [27-29], 
[11-13]. 

In this paper we are primarily interested in the following problem. Let (Gn) be a graph 
sequence where Gn has n vertices and the edges of Gn are coloured by the colours X1,...,Xr, 
so that the subgraph of colour Xv contains no complete subgraph Kpv, (v = 1 .... ,r). Further, 
assume that the size of any independent set in Gn is o(n) ([iS n ---* oc). What is the maximum 
number of edges in Gn under these conditions? 

One of the main results of this paper is the description of a procedure yielding relatively 
simple sequences of asymptotically extremal graphs for the problem. In a continuation of this 
paper we shall investigate the problem where instead of a(Gn) = o(n) we assume the stronger 
condition that the maximum size of a Kp-free induced subgraph of Gn is o(n). 

Notation. In th is  p a p e r  we shall  p r imar i ly  consider  g raphs  w i thou t  loops and  
mul t ip le  edges.  However,  (as tools  to prove our  resul ts)  we shall  also use coloured 
g raphs  wi th  weighted edges and  vert ices.  Given a g raph  G, e(G) will denote  the  
number  of i ts  edges, v(G) the  number  of i ts  vert ices,  x(G) i ts  ch romat ic  number ,  
a(G) the  m a x i m u m  size of an independen t  set in it. Given a graph,  the  (first) 
subsc r ip t  will deno te  the  number  of vert ices:  Gn, Sn, . . .wil l  always deno te  g raphs  
on n vert ices.  R ( k l , . . . ,  kr) will deno te  the  usual  R a m s e y  number ,  i.e., the  m i n i m u m  
t such t ha t  for every edge colour ing of Kt in r colours Kt conta ins  a m o n o c h r o m a t i c  
Kkv for some colour  Xu. One more  convent ion on the  colour ing of graphs :  whenever  
we use two colours  X1 and X2, we shall  call  the  first colour RED,  the  second one 
BLUE.  

Given two dis joint  ver tex  sets,  X and Y, in a g raph  Gn, e G ( X , Y )  denotes  the  
number  of edges jo in ing  X and  Y, and  dG(X, Y )  denOtes the  edge-dens i ty  be tween 
them:  

(1) d a ( X  ' y )  _ e a ( X ,  Y )  

AMS subject classification code (1991): 05 C 35, 05 C 55 
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The number of edges in a subgraph spanned by a set X of vertices of G will be 
denoted by ea(X) .  We shall say that X is "completely joined" to Y if every vertex 
of X is joined to every vertex of Y. 

Given two points x, y in the Euclidean space E h, p(x,y) will denote their 
distance. 

Given two graphs Gn and Hn, their distance A(Gn,Hn) is defined as the 
minimum number of edges one has to delete from and add to Gn to get a graph 
isomorphic to Hn. 

1. I n t roduc t i on  

This paper is a continuation of [10], where P. Erd6s, A. Hajnal, V. T. Sds, and E. 
Szemer~di, investigated the following problem: 

Assume that a so called forbidden graph L and a function f (n )  = o(n) are given. 
What is the maximum number of edges a graph Gn can have without containing 
L as a subgraph, and also without having more than f (n)  independent vertices? 

This problem is motivated by the classical Turs and Ramsey theorems [25,26], 
[19], (see also [1,21]), and also by some applications of the Turs theorem to 
geometry, analysis (in particular, potential theory) [27-29], [11-13]. 

In 1930 Ramsey proved his famous theorem [19]: 

Ramsey theorem for ordinary graphs. Given r integers kl, . . . ,  kr, there exists a 
threshold integer R = R(k l , . . . , k r )  such that if a complete graph Kn is edge- 
coloured in r colours and n >_ R, then for some v <_ r it contains a Kk~ in the 
vth colour. 

Motivated by this theorem, Turs posed the following question: 
What is the maximum number of edges a graph Gn can have without containing 

a complete Kq? 
Obviously, if we partition n vertices into q - 1 classes as equally as possible 

and join two vertices iff they belong to different classes, then we obtain a graph not 
containing Kq. This graph will be denoted by Tn,q-1, and called the Turs graph 
on n vertices and q - 1  classes. 

P. Turin proved (1940) [25,26], that 

Turin theorem- Given n and q, (1 < q <_ n), ail the graphs Gn on n vertices not 
containing a Kq have at most t ( n , q -  1)=  e(Tn,q-1) edges, and this maximum is 
attained only by Tn,q-1. 

Note that 

t ( n , q - 1 ) =  (1 1 ) ( 2 )  q - 1 + O(1). 

As Turs observed, both Ramsey's and his theorems are, in some sense, gener- 
alizations of the Pigeon Hole Principle, and therefore they are applicable in many 
different situation [21]. He himself started a new line of applications [27-29], [11- 
13] in geometry and analysis (primarily potential theory). Another line was started 
by G. Katona, where some Turs type theorems were used to obtain inequalities in 
Probability Theory. One of the limitations of these applications seemed to be that 
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in Tur~in's theorem the graphs attaining the maximum (called extremal graphs) are 
too special e.g. they have "large" independent sets. The question is, how stable 
the extremal graph is? In [22] the following was asked: 

How many edges can a graph Gn have if it contains neither a Kq nor such an 
"enormous" independent set? 

Since that a whole theory has emerged around this and similar questions. We 
first formulate a general question in this field. 

Question. Let L1, . . .  ,L r be given graphs and a graph Gn on n vertices be coloured 
by r colours X1,. . . ,Xr. Assume that the ~ubgraph of colour Xu contains no Lv, 
(for u = 1 , . . . , r ) ,  and ~(Gn) _< m. What is the~ maximum of e(Gn) under these 
conditions? This maximum will be denoted by RT(n, L1, . . . ,Lr ,m),  and the Lu's 
will be called forbidden graphs. 

In the case when the forbidden graphs are complete graphs, Lu -- Kk v , we shall 
use the simpler notation RT(n,k] , . . . ,kr ,m) .  Mainly we will be interested in the 
case m = f(n) = o(n), and use the (simplified) notation RT(n, kl , . . .  , kr, o(n)). 

In [10] primarily the problem of RT(n,L,o(n)), i.e. the case of r = 1 and 
arbitrary L was investigated. Here we consider the problem for r > 1. 

It is probably hopeless to give an exact description of the optimum. Quite 
often, instead of looking for the optimal (or so-called extremal) graphs, we try to 
find an asymptotically extremal sequence of graphs of relatively simple structure. 
"Relatively simple" means that its structure depends very loosely on n. 

Definition 1. (Asymptotically extremal graphs) Given the forbidden graphs 
L1,. . .  ,Lr, and the function f ,  a sequence of graphs (Sn) will be called an asymp- 
totically extremal sequence for RT(n, L1, . . . ,Lr , f (n))  if the edges of Sn can be 
r-coloured so that the uth colour contains no L , ,  for u =  1 , . . . , r ,  a(Sn)<_ f(n) a n d  
e( Sn) = RT(n, L1, . . . ,  Lr, f(n) ) + o(n2). 

In this paper we give upper bounds on RT(n, L1,. . . ,Lr,o(n)) and show that  
a generalization of the Bollobs graph [2] forms an asymptotically extremal 
sequence for the problem of RT(n, kl, . . . ,kr,o(n)).  In Sections 2,3 we shall define 
the generalized Bollobs graphs, and formulate our corresponding results. 
We shall also establish some results concerning particular cases of this problem. In 
Section 4 we give the proofs. 

In a continuation of this paper we shall investigate the problem where instead 
of a(Gn) = o(n) we assume the stronger condition that the maximum size of a 
Kp-free induced subgraph of Gn is o(n). 

Since we will be able to state our main result only after having introduced 
some involved definitions, here we give a simplified version of it. 

It is easy to see, that for every L1,. . .  ,Lr there exists a minimum O(L1 .... ,Lr)  
such that whenever f(n) = o(n), then 

(2) RT(n, L1 , . . . , L r , f (n ) )  5 ~ ( L 1 , . . . , L r ) n  2 + o(n2). 

(The equality is attained for some functions f(n) for which f (n ) /n  --~ 0 suffi- 
ciently slowly. Of course, if f (n ) /n  ---* 0 too fast, then this ~ can be replaced 
by a smaller constant. Still, when we speak (sometimes a little loosely) about 
RT(n, L1,... ,Lr, o(n)), we will always mean the determination of this minimum v~. 
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Theorem 1. Given the integers kl, . . . ,  kr >_ 3, for RT(n, hi,..., kr,o(n)) there exists 
a fixed t and a sequence of asymptotically extremal graphs (Sn) such that the 
vertices of Sn can be partitioned into t classes X1, . . . ,Xt  where 

- -  esn(Xi)=o(n 2) for i =  1,2,.. .  ,t, 

and for l <_ i < j < t 

- -  either dsn (Xi, Xj ) = 1 + o(1) or ds, (Xi, Xj ) = 1 + o(1). 

To get some insight first we construct some graphs which later will turn out 
to be extremal in most of our problems. 

The Erdhs graph. The simplest statement in our field is as follows. If a(Gn)= o(n) 
and K3 ~ Gn, then e(Gn)= o(n2). One immediately wants to know if such graphs 
(with a(Gn) = o(n) and /(3 ~ Gn) do exist at all. The existence of such graphs 
can be proved by using probabilistic arguments but there is a more useful way to 
get such graphs. In [14] Erdhs and Rogers constructed a graph sequence (Gin) for 
which ~(Gm) = o(m) but K 3 ~ Gin. 

Combining the Erdhs (or Erd~s-Rogers) graph with Tur~n's graph we get some 
very useful graph sequences. 

Definition 2. (Canonical colouring with respect to a vertex-partition) Given a graph 
Gn the vertex set of which is partitioned into the classes X1, . . . ,  Xq, an r-colouring 
will be called canonical ,  if the colour of an edge depends only on the classes its 
endpoints belong to: all the edges (x,y):x,y E X i have the same colour Xv~, and 
for 1 < i < j <_ q all the edges (x, y):: x E Xi, y E Xj have the same colour Xvi,j. 

Construction 1. Given the integer d, consider Tn,d, with the classes C1,. . . ,  Cd, and 
put into each Ci an Erdhs graph H of [~] vertices, with a ( H ) = o ( n ) .  Thus we get 
a graph Un=U(n,d) with a(Un)=o(n). 

(a) Since K2d+l ~ Un, therefore 
(3) RT(n, 2d + 1, o(n)) > e(Tn,d). 

(4) 

(b) Colouring the edges of Tn, d by RED and the edges in the classes C/ by 
BLUE we obtain a graph not containing RED Kd+l, nor BLUE K3: 

RT(n, d + 1, 3, o(n)) >_ e(Tn,d). 

We shall prove (see Theorem 4) that  this is asymptotically sharp for d = 2 and 
d=3.  However for d = 4  we get the extremal sequence by the following: 

Construction 2. Let t = R(q, s) - 1 (where R(q, s) is the Ramsey function). Colour 
Tn,t by RED and BLUE canonically (with respect to the classes of Tn,t) so that  
the coloured graph should contain neither RED Kq, nor BLUE Ks. Put into each 
class of this graph a RED Erdhs graph. Then the resulting graph Un = U(n,q,s) 
will contain neither a RED K2g-1, nor BLUE Ks. Clearly, 

e(Un)> ( 1 - ~ )  (n2), 

and 
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a(Un) = o(n). 
Hence 

(5) RT(n, 2q - 1, s, o(n)) >_ e(Tn,t). 

Let us list the already known upper bounds on RT(n, k l , . . . ,kr ,m) .  If 
m = n, then there is no real restriction on a(Gn). Put  T(n, kl , . . . ,kr)  := 
RT(n, k l , . . . ,  kr, n). This case is described by 

Theorem [22]. Let kl, . . . ,kr >_ 3 be given integers, and let T(n, k l , . . . ,kr )  denote 
the maximum number of edges an r-coloured Gn can have under the condition that 
it does not contain a Kk~ in its uth colour. Then 

( 1 ) ( 2 )  T(n, k l , . . . , k r )  _< 1 - R ( k l , . . : ~ k r ) _  1 " 

This inequality immediately follows from Turs and Ramsey's theorems. 
Indeed, if 

( 1 ) ( 2 )  e(G~) > 1 - R(k l , . . - ,  kr) - 1 

then it contains a complete KR for R =  R(kl , . . . ,  kr). This is coloured by r colours, 
hence for some u it contains a Kk, in the uth colour. 

The theorem is sharp up to an additive constant 0(1) .  
If r =  1, then this theorem reduces to Turs theorem. 

n Remark 1. Clearly, if m >  R(kl ..... k r ) - l '  then 

RT(n, k l , . . . , k r , m )  = T(n, k l , . . . , k r ) .  

On the other hand we shall always assume that m is so large that n < 
R(kl,...,kr,m). 

The problem of T(n, L1,... , L r ) : = R T ( n ,  L1,... ,Lr,n) is still "easy": 

Theorem. [7] Let t = t(L1, . . . ,Lr be the smallest integer for which there exists a 
v > 0 such that 

Kt(v,.  . ,v) ~ (L1, . . . ,Lr) ,  
(or, in less formal language), for any r-colouring of Kt(v, . . .  ,v) there exists a colour 

and a monochromatic Lu in this colour. Then for some constant c > O, 

( )(;) T(n, L 1 , . . . , L r ) =  1 t - 1  +O(n2-C)" 

This is related to some results of Burr, Erdhs and Lovs [7] and Chvs Ap- 
plying their results and the Erd6s-Stone Theorem [16] a slightly weaker form of the 
above theorem immediately follows. The proof of this version uses a strengthening 
of Erdhs-Stone Theorem [16], the Erd6s-Simonovits Theorem [8], [20], and is easy. 

These are results where we used colourings but actually there were no restric- 
tions on the independent sets. The first theorem where a(Gn)= o(n) was assumed 
is 
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Theorem. [15] For q--2k+ 1 

(6) RT(n,q,o(n))= ( l - k )  (n2)+o(n2). 

(See Construction 1.) 
Intuitively the theorem asserts that for large q, if we add (in Turs theorem 

on Kq) the extra condition that  a(Gn)= o(n), this will have roughly the same effect 
as excluding a complete graph of half the original size. 

For q = 3  the theorem is trivial, since in that  case/(3 is excluded, which implies 
that each degree is o(n). The previous theorem leaves open the question of the e v e n  
values, which is much more difficult. For quite a long while the question whether 

RT(n, K4, o(n) ) = o(n 2) 

seemed to be untractable. Then Szemer@di found a nontrivial upper bound: 

Theorem. [23] 

n 2 
(7) RT(n, g4, o(n)) <_ -~ + o(n2). 

It came as a surprise - -  when Bollob~s and Erd6s proved - -  that (7) is sharp: 

Theorem. [2] (Construction) 

n2 o(n2). 
(8) RT(n, K4,o(n)) >_ 8 

Finally, the problem of K2k and many related problems were settled in [10]. 

Theorem. [10] For q = 2k, 

1 3q - 10 n2 
(9) RT(n, Kq, o(n)) - 2 ~q - 4 + ~ 

2. The B o l l o b ~ s - E r d S s  g r a p h  a n d  i ts  g e n e r a l i z a t i o n  

First we describe the original construction of Bollobs and Erd6s used to prove (8). 
We shall fix n points on the surface of a high dimensional unit sphere S "uniformly". 
Speaking of the relative measure of a set X on S we will mean the measure of X 
divided by the total measure of S. 

In the definition of the BE-graph [2] the following fact is used: 
Given 6,~ > 0, for any c > 0 small enough and integer h > h0(E), if S is a unit 

sphere in the h-dimensional euclidean space E h, then for #=r 
( . )  for every sufficiently large n S can be partitioned into n sets of equal 
measure and diameter < #/10; 
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(**) the relative measure of the spherical cap of diameter 2 -  1# is at most 6; 2 

(***) given a point x, the relative measure of the set of points y with p(x,y)< 
v ~ - #  is almost 1, more precisely, at least 1 _  7. 
Based on this, let us partit ion S into ,~ subsets A1 . . . . .  An~ 2 as described in 

(*), select two sets of vertices, X1,X2 of size ,~, each containing exactly one point 
from each Ai, and then join two vertices x and y by an edge iff 

(i) either x E X i and y E X3- i ,  and p(x, y) < v ~ -  # 

(ii) or x, yC X i i = l  or 2 and p(x,y) > 2 - # .  
Denote the obtained graph by BE(n,h,c) .  It is not uniquely determined by 

the above construction, but any realization of it will have the properties we need: 

(a) a(BE(n,h ,s ) )  <26n. 

(b) the degrees of the vertices are > ( 1 - r l )  n. 

(c) K4~=BE(n,h,r 

(d) the subgraphs spanned by X1 and )(2 are K3-free. 

In our main theorems the asymptotically extremal graph sequences will be 
given by some generalizations of the BE-graph. In this generalization we use many 
sets X1, . . . ,  Xt on the sphere and of different sizes. 

Definition 3. (Weighted t-partite B E  graphs, construction). The graph to be 
defined below will depend on the integers h, t, n l , . . . , n t ,  and on a small positive 
number #, and will be denoted by 

B(h, t ln l , . .  . , ntl#). 

We shall subdivide the points of the h-dimensional sphere S into ni sets according 
to (.) ,  for each i. For i = l , . . . , t ,  k = l , . . . , n i  choose a vertex Xik from the kth set 

t 
of the i th partition. Put  Xi = {xik, 1 < k < hi} for 1 < i < t and let V(B) = U x i .  

i=1 
For each pair x,y E Xi we join them iff p(x,y)> 2 - # .  For some pairs (i,j) (i C j) 
we join every vertex of Xi to every vertex of Xj,  for all the other pairs we build 
a Bollobs graph between the two classes: join x C Xi to y EX j  iff p(x,y)< 
v ~ - # .  The resulting graph is the monochromatic generalized Bollobs or 
shortly GBE graph. If two classes are joined completely, we shall call this a "full" 
connection; if they are joined by a Bollob•s-Erd6s graph, we shall call this a "half" 
connection. 

Remark 2. The graph B(h, t tn l , . . . ,n t[#  ) is not completely determined by the 
parameters listed, even when the "full" connections and "half" connections are 
determined, since the embedding of the vertices into the sphere also can slightly 
influence its structure. However, in all our statements these minor variances can 
be neglected. We shall choose the parameters so that  with r 0 slowly enough 
and h --+ ~ (at a speed, depending on e), # =: c / v ~  and n > no(h,r Under 
these assumptions our assertions will not depend on the choice of these "hidden 
parameters". 
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3. Main results 

Our main results solve asymptotically the problem of RT(n, k l , . . . ,  kr, o(n)), (Theo- 
rem 2) and yield an upper bound on RT(n, L1, . . . ,  Lr,o(n)), (Arboricity Theorem). 

The structure of the asymptotically extremal graphs is given by 

Theorem 2. Let kl , . . . ,  kr >_ 3 be given integers, then for some t~xed t there exists 
a sequence of graphs B(h, t lnl , . . .  ,ntl#) asymptotically extremal in the problem 
of RT(n,  kl , . . . ,kr ,o(n)) .  (Meanwhile #-~0 and h--*oc.) 

Obviously Theorem 2 immediately implies Theorem 1. 
Let A be a t • t matrix, whose diagonal entries are all O's and aij = �89 or 1 

depending on whether the ith and j t h  classes of B(h, t lnl , . . .  ,nt[#) are joined by a 
BE-graph or completely. Let us normalize the integers n l , . . . , n t  by putting 

ni 
ui -- ~ nj" 

Then 

(10) e(B(h, t ln l , . . .  , nt[#)) = uAu*n 2 + o(n 2) 

(as h--*cr r n---* cr If uAu* attains its maximum on the standard simplex 

{• } u:  u i = l ,  ui>_O ( i = l , . . . , t )  
i----1 

on the boundary, i.e. for some u k = 0, then the GBE-graph will be called 
degenerate. If there are no maxima on the boundary, then one can easily see 
that  there is exactly one maximum and the structure of this GBE-graph will be 
called dense .  

An equivalent form of Theorem 2 is 

Theorem 2'. Given the integers k l , . . .  ,kr >_ 3, then for some fixed t there ex- 
ists a sequence of dense graphs B(h, t ln l , . . . ,n t l#  ) asymptotically extremal for 
RT(n,  k l , . . . ,  kr, o(n)). 

Indeed, assume that  Theorem 2 is already proved. If there exists a de- 
generate asymptotically extremal structure B(h, t ln l , . . . ,n t l#)  for the problem of 
kl , . . . , kr ,  then we may assume that nt = 0, i.e. we got an asymptotically ex- 
tremal structure with fewer classes. Consider an asymptotically extremal structure 
B(h, t lnl , . . . ,n t l#)  with minimum t. It must be dense. 

Remark 3. Our problem is strongly related to multigraph and digraph extremal 
problems. The notion of dense structures was introduced by Brown, Erd6s, and 
Simonovits in [3], (see also [4-6]). 

To get some more information on RT(n;kl , . . . ,kr ,o(n))  first we define the 
generalized complete graphs, then define a Ramsey number /3 = / 3 ( k l , . . . , k r )  for 
generalized complete graphs, and finally prove that  0 (k l , . . . ,  kr) = 13(kl,. �9 kr). 

Definition 4. (Generalized complete subgraphs) Let R be a graph some vertices of 
which are "marked", the edges of which are weighted by the weights 0, �89 and 1. 
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X C_ V(R) and Y _C X span (by definition) a generalized complete subgraph of the 
size IXI + IY[ if 

(a) all the vertices of Y are "marked"; 

(b) all the edges in Y have weight 1, 

1 (c) all the edges in X have weight > ~. 

Definition 5. ( Weighted Ramsey numbers). Assume that the vertices and the edges 
of a Kt are coloured by the colours X1,... ,Xr, and the edges are weighted by �89 and 
1. For the colour X, we define R" as a weighted graph, where a vertex is "marked" 
iff its colour is X,, and the edge e gets weight �89 or 1 if its colour is X, and its 
weight is 1 or 1 respectively. (If its colour differs from X-, then its weight is 0 in 

t 
R' . )  Finally, assume that there is a distribution u = (ul,. . .  ,ut) (ui > 0, ~ ui = 1) 

i = l  
on the vertices of Kt. If we wish to emphasize that Kt is weighted, we shall write 
Kt(w). Let 

(11) g(Kt(w) ,u)= ~ wi,juiuj. 
l<_i<j<_t 

w h e r e  wi,j is the weight of (i,j). We define the edge density of such a weighted 
graph as 

(12) g(Kt(w)) = g(Kt(w), u) = max ~ wi,juiuj. 
U 

The weighted Ramsey number ~ (k l , . . . , k r )  is the maximum B such that  
(*) there exist a t and a weighted colouring of Kt with edge density B for 

which none of the subgraphs R v of colours )C~ (in Kt) contains a generalized Kk~. 
Clearly, 

(12") t < R ( k l , . . . , k r ) .  

Theorem 2". Let k l , . . . ,kr  >_ 3 be given integers, then 

(13) v~(kl,..., kr) -~ ~ (k l , . . . ,  kr). 

In other words, 

(13") RT(n, k l , . . . ,  kr, o(n)) = / 3 ( k l , . . . ,  kr)n 2 + o(n2). 

Corollary 1. There exists a finite algorithm to find an asymptotically extremal 
sequence for any RT(n, kl , . . . ,  kr, o(n)). 

Motivation of the previous definitions. We shall consider a graph Gn the edges 
of which are coloured with r colours, and will approximate it by some (canonically 
coloured) Hn = B(h,t]nl,. . . ,nt[#). This approximation will be "encoded" using 
a graph Rt defined on the index set {1,2, . . . , t}  of the classes X i of Ha, (see 
Definition 3). 
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(a) The encoding goes as follows. If two sets X i and Xj are joined completely, 
(in Definition 3) in RED, then i and j will be joined in Rt by a RED edge of 
weight 1. If they are joined by a RED BE-graph,  i and j will be joined in Rt 
by a RED edge of weight 1. If the edges in Xi are RED, "mark" i in RED. 

(b) This encoding will be useful, since the maximum size of a RED ordinary 
complete subgraph of Gn will be at least as large as that  of B(h,t lnl , . . .  ,ntl#) 
and this will be exactly as large as the maximum size of a RED generalized 
complete subgraph of Rt. 

We shall characterize below the relative sizes of the classes Xi, i = 1,... ,t by 
the distribution vector u. 

(c) The size IXI + IYI of a generalized complete graph is used because if Rt 
contains a generalized Kq with the vertex-sets X and Y C_ X (as described 
above), then we shall be able to find a Kq C Gn with q = IX I+ I YI: each vertex 
of Y will yield 2 vertices of this ordinary Kq and each vertex of X -  Y will 
yield one vertex of Kq. 

Until now we restricted our considerations to the case of complete graphs. 
As described in [10], RT(n,L,o(n)) depends in some sense on the arboricity of L 
defined below - -  differently from the usual one - -  as follows. To consider arbitrary 
L1, . . . ,LT in our problem, we need the 

Definition of Arboricity. (a) L ~ Arb(2k) if the vertices of L can be k-coloured so 
that  the subgraph spanned by the uth colour is a forest, for u =  1,2, . . . ,  k. 

(b) L E Arb(2k+l) if the vertices of L can be k+l-coloured so that  the subgraph 
spanned by the uth colour is a forest, for u = t ,2~. . . ,  k and the vertices of colour 
k + 1 are independent. 

Remark 4. A slightly different definition of arboricity used to be given as the 
minimum k for which L can be coloured in k colours so that  each colour-class 
spans a forest. 

Arboricity Theorem. Given r graphs L1, . . .  ,Lr with L~ E Arb(kv), then 

RT(n, L1 . . . .  , Lr, o(n) ) < RT(n, kl, . . . , kT, o(n) ) + o(n2). 

Unfortunately, we have only upper bound for the general case. We do not even 
know the t ruth for r =  1, not even for one of the simplest cases: we do not know if 
RT(n,K(2,2,2),o(n)) = o(n 2) or not. The Arboricity Theorem will not explicitly 
be proven here: we shall prove Theorem 2 and the reader can easily generalize the 
upper bound of Theorem 2 to the Arboricity Theorem, applying the Tree-building 
lemma, and the ideas given (in details) in [10]. 

We determine RT(n; L1, L2, o(n)) for some special L1, L2. 

Definition 5. We shall say that  for a problem RT(n, L1 .... ,Lk,o(n)) the w e a k  
s t a b i l i t y  property holds if for any two sequences of asymptotically extremal graphs, 
say (S~)o~ and (Z~)o~ their distance is o(n2): A(Sn,Zn)=o(n2). 
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Theorem $. 

(a) /)(K3,K3) = �88 U(n,2) is an asymptotically extremal sequence. 

(b) / ) ( I ( 3 , K 4 ) :  �89 (1 - �89 U(1% 3) is an asymptotically extremal sequence. 

(c)/)(K3,K5) = �89 (1 - I ) '  U(n,3,3) is an asymptotically extremal sequence. 

(d) /)(K4,K4) = 1 ( 1 - 3 ) .  The sequence in Construction 4 below is an 

asymptotically extremal structure. 

(e) In all these cases the weak stability holds. 

Theorem 4. If  p and q are odd integers, then 

n 2 
(14) Cp, Cq, = T + 

4. P r o o f  of  Theorems  2 - 4  

Proof of the lower bound for / ) (kl , . . . ,kr) .  Construction. There exists a corre- 
spondence between the coloured-weighted Kt's with distribution u and the graph 
sequences { B(h, tInl, . . .  , nt ]#)}. 

Given a coloured weighted Kt with a distribution (with a fixed r-colouring of 
the edges and vertices of Kt, with a distribution u l , . . . ,  ut on the vertices of Kt and 
the weights �89 and 1 on the edges), then there are canonically coloured generalized 
Bollob~s-Erdhs graphs B(h, t lnl , . . . ,nt lp)  corresponding to these data. Namely, 
given the dimension h and # > 0, fix the sets X1 , . . . ,X t  on the h-dimensional 
sphere S, so that 

(a) [Xi[=ni=uin+o(n  ) and 

(b) the set X = X1 U... L)Xt be distributed as described in Definition 3. 

1 (c) take a "half" resp. a "full" connection between X i and Xj if w(i , j )  = 
resp. w(i , j )  = 1. 
Obviously e( B( h, t lni , . . .  , nt I/t)) = g( Kt (w), u)n 2 + o(n2). 

We need also 

Lemma 1. The above B(h, t[nl , . . . ,n t l#)  does not contain Kq in colour Xv iff the 
corresponding coloured weighted Kt does not contain a generalized Kq in colour X.. 

Proof. If x l , . . . ,  Xq form a RED Kq C B(h, tin1,..., nt IP), then each Xi contains at 
most 1 vertex of this Kq, unless  Xi is RED. Even so, it contains at most 2 vertices. 
Further, if Xi and Xj both contain 2 vertices of this Kq, then they must be RED 
and joined by RED edges completely. Hence the corresponding coloured, weighted 
Kt contains a RED generalized Kq. This proves half of Lemma 1. The other half 
is left to the reader. | 
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Now, given an arbi trary colouring r of Kt satisfying the property (*) in 
Definition 5 (of ~ ( k l , . . . , k r ) ) ,  build a B(h, t ln l , . . . ,n t l#  ) with the corresponding 
colours and weight function w and distribution u. Then - -  by Lemma 1 and the 
Definitions 3, and 5 - -  Kk~ ~B(h, t[nl , . . . ,n t[#)  in colour Xv, and it will have 

9 ( k l , . . ,  kT)n 2 + o(n 2) 

edges. (The error term comes from the fact that  there is an error te rm in the 
BE-graph and tha t  the vertices cannot be distributed exactly according to the 
distribution u.) Hence 

(15) RT(n,  k l , . . . ,  kr, o(n)) >_ j 3 (k l , . . . ,  kT)n 2 + o(n2). | 

Proof of the upper bound 

In the proof of the upper bound our first problem is that  the condition c~(Gn) = 
o(n) applies only to the union of the colours, and so Gn could contain cn indepen- 
dent vertices in each separate colour. We need a lemma to overcome this difficulty. 

Lemma 2. Fix an ~ > O. If  Gm is an r-coloured graph with o~(Gm) -- ~m, then one 
can partition the vertices of Gin into r + l  classes Co, el, . . . ,  Cr so that ]Co[ < 2 { F m  
and t'or 1 <: v < r for each Cv every subset Y C Cv of size > {/~m contains an edge 
of the vth colour Xv. 

Remark  5. One can ask if this partitioning is really necessary or under the condition 
of Lemma 2 there must always exist a colour X and a constant ~? tending to 0 as E --* 
0, for which every set of size > 7/m contains an edge of colour X. The partitioning is 
needed. Let Gm be the disjoint union of two Erdbs graphs, one of which is coloured 
in RED, the other in BLUE. Then (fixing any ~? E (0, 1 ~)), there is no fixed colour 
X0 (=RED or BLUE) such that  every vertex set Y of size > ~m contains an edge 
of colour X0. 

Proof of Lemma 2. Let us assume that  Gm is coloured by r colours: X1,. . . ,  Xr. For 
the sake of simplicity, we shall call )tl RED, X2 BLUE . . . and  Xr BLACK. Let 7 =  
{/~ and call an X C_C_ V(Gm) RED if 

(a) IX[ > e r a  and 

(b) every X* C_X of size >r/]X[ contains a RED edge. 
Clearly, the disjoint union of RED sets is RED. (However, a subset of a RED 

set is not necessarily RED).  Fix a maximal RED subset of V(Gm). Denote it by 
II1. In the remaining par t  fix a maximal BLUE subset 172,..., and finally - -  in the 
r th  step - -  fix a maximal  BLACK subset. Put  U0 = V(Gm) - UiVi. If ]U0] _< ~/m 
then we are home. 

Suppose that  [U0] > ~/m. If every Bm-tuple of U0 contains a RED edge, then 
we are home. 

In the remaining case U0 contains a U1 of > Bm vertices but  not containing 
RED edges. We shall use that  - -  by the maximali ty of the ~ no subsets of U1 can 
be BLUE .... or BLACK. Since U1 is not BLUE, it contains a U2 of r/2m vertices 
but not containing BLUE edges . . . .  Since Ur-1 is not BLACK, it contains a Ur of 
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> ~rm vertices but not containing BLACK edges. Clearly, Ur-1 is an independent 
set of > r vertices, a contradiction. 

Remark 6. It is easy to see that  ~'{m cannot be replaced by any essentially smaller 
value. To see this fix an integer p, put q = pr and E = 1. Take a TurAn graph 

Tin,q, enumerate its classes by r-tuples (Pl,...,Pr), where 0 _< Pi < P. Colour the 
edges joining the class C(al , . . . ,  at)  and C(b l , . . . ,  br) with colour j if the two index- 
sequences al, . . .  ,at and bl , . . .  ,br differ first in the j t h  position. In this graph each 

1 set of size > Cm contains an edge, and one can easily see that with an ~? < 

the lemma does not hold. 

Symmetrization 

One of the basic tools we shall use to prove our theorems is the symmetrization. 
Let us modify Definition 5 by allowing (besides the weights �89 and 1) the weight 

0 as well. (This corresponds to allowing pairs of classes in B(h, t lnl , . . . ,n t lp)  not 
joined at all.) If there exists such a 0 weight in our graph, call the graph deficient. 
(12"), namely t<R(k l , . . . , k r )  does not hold anymore for these deficient Kt's: the 
problem becomes infinite as soon as we allow deficient graphs. The next lemma 
tells us that  for each deficient Kt there exists a non-deficient one, at least as good 
as the deficient one. 

For a (coloured) graph Gn with the distribution u on the vertices and weights 
w on the edges let the w e i g h t e d  d e g r e e  of a vertex x be 

d(x) = n Z w(x,y)Uy' 
(x,y)EE(Gn) 

where E is the set of edges. 

Lemma 3. Let Kt, w and u be as in Definition 5, with the only exception that 
some weight, e.g., the weight of the edge (x,y) be O. Let d(x) >_ d(y). Then 
g( (Kt -y ) (w ' )  ) >_g(Kt(w) ) if  w' is the weight on K t - y  where the (original) weight 
of y (in Kt) is added to the weight of x (in K t - y ) .  

Proof. Trivial. 

Generalized Szemerddi Lemma. 

Szemer~di Lemma [24] asserts - -  loosely speaking - -  that  given an e > 0, the 
vertex-set of every Gn can be partitioned into a bounded number of classes so that  
almost all the pairs of classes will be r -regular in the following sense. 

Regularity condition. Given a graph Gn and two disjoint vertex sets in it, X and 
Y, we shall call the pair (X,Y) c -regular if for every subset X* C X and Y* C Y 
satisfying [X*] >e[X[ and [Y*[>v[Y[, 

[d(X*,V*) - d(X,Y)[ < e. 

The regularity condition means that  the edges behave (in some weak sense) 
as if they were random. The following generalization asserts that if the edges of 
Gn are coloured by a bounded number of colours, then one can find a partit ion 
for which the assertion of Szemer~di Lemma holds for each colour simultaneously. 
Below we formulate this lemma in the form we shall need it. Let dv(X,Y)  denote 
the density in colour Xu. 
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Generalized Regularity Lemma. For every ~ > O, and integer Ao there exists a Ar 
such that for every r-coloured Gn V(Gn) can be partitioned into sets V0, V1,..., V~ 
- -  for some Ao < A < A~ - -  so that each [t~] < en, [V/[ = m (is the same) for every i > 
O, and for all but at most e(~2) pairs (i , j) ,  for every X C_Vi and Y C_Vj, satisfying 
IX[, [Y] >em, we have 

I d v ( X , Y ) -  d v ( ~ , ~ ) [  < 

for every colour Xv. 

This generalization does not seem to follow from the original lemma, however, 
the original proof can easily be modified to yield it. The role of V0 is to make 
possible that  all the other classes be exactly of the same size, and the role of A0 is 
to make the classes ~ sufficiently small, so that - -  counting the edges - -  we could 
forget about the edges inside those classes. 

Proof of the upper bound. (A) First we sketch the proof of the upper bound 
for 0 (k l , . . . , k r ) ,  (or, equivalently, for RT(n, kl , . . . ,kr,o(n))) ,  and also fix some 
parameters. 

Let us fix an arbitrary r > 0. We shall also use a constant el > 0 which must 
be much smaller than e, however, still fixed, and an e2 > 0 much smaller than E but 
much bigger then El. If S = k l  + . . .+kr ,  then 

(16) E1 -- (E/(16S)) 2S, E2 -- (E/(16S)) S 

is an appropriate - -  perhaps too cautious - -  choice. 
Assume that  a graph sequence (Gn) is given with a(Gn) --: ~nn -: o(n). Let 

77n= ~ n .  Here ~n,?Tn--+O, We shall fix an no so that  if n>no, then 

(17) < (E/16s) 4s 

Let Gn be coloured by r colours XI, . . . ,Xr,  and let G~ be the graph spanned by 
the edges of colour X~. We shall apply the Generalized Szemer6di Lemma to Gn, 
with r, E1 and a lower bound A 0-- 1 on the number of the classes. 

(B) We shall prove that if Kk, ~ G~, (u= 1,... ,r) then 

e(Gn) </3(kl . . . .  , kr)n 2 + 3ten 2. 

Below we sketch the proof and the details will be given in (C) and (D). 
For each Gn - -  for n > no, in paragraph (C5) below - -  we shall define a 

weighted, eoloured graph H(wo) (with a weight function wo and a distribution u0, 
and allowing also multiple edges) so that  

(18) e(Gn) <_ 9(H(wo), uo)n 2 + 3ren 2, 

We shall call a weighted graph complete if any pair of vertices is joined by an 
edge of positive weight. H(wo) is not necessarily complete. 

We shall apply symmetrization to H(wo) to obtain a weighted, coloured 
c o m p l e t e  graph Kt(w) satisfying 

(1') o(Kt(w),u) >_9(H(wo),uo). 
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(2*) If Kt(w) contains a generalized complete Kq in colour Xv, then H(wo) 
also contains a generalized complete Kq in that colour and also an ordinary Kq C_ 

(3*) Each pair of vertices of Kt(w) is joined in exactly one of the colours 
X1,--.,Xr and with weight �89 or 1. Since G~ contains no Kk.,  therefore Kt(w) 
contains no generalized Kk, of colour X,. 

By (3*) Kt(w) occurs in the set of weighted coloured graphs in the definition 
of /3(k l , . . . ,k r ) .  Hence g(Kt(w))<_/3(kl,...,kr). By (1') ,  and (18), 

e(Gn) < g(Kt(w))n 2 + 2rcn 2 < / 3 (k  1 . . . . .  kr)n 2 + 3r~n 2. 

Obviously, this (together with the already obtained lower bounds (15)) will 
prove Theorem 2". 

(C) Now we define H(wo). 
r 

(C1) Using Lemma 2 for n large enough we take a partition V(Gn)= U Uv 
v = 0  

so that IU01 < ~nn and for 1 < ~ < r every Y C_ Uv, with IY] > finn contains an edge 
of colour Xv. 

(C2) Applying the Generalized Regularity Lemma to Gn, with the 51 > 0 and 
A0 (fixed above) we obtain the classes V0,V1,... ,VT, with I~] = m ,  1 < i < T ,  IV01 < 
r (where T_> A0). We delete V0. 

(Cs) Consider the "union" of the two partitions; the classes defined by t~,j := 
VinUj, I < i < T ,  l<j<_r. Keep only the graph G* spanned by the vertex set 

V*= [.J ~,j 
1�88 I>c2m 

We shall use the notation W1,...  ,W M for these classes V/,j in V*. 
Observe that we deleted at most (E2 + ~n)n points; IV* I > (1 - r - ~n)n. 
(C4) For all but r2el (M) pairs ((i,j), (i',j')), i r  for every Xj 

Idx~(X,Y) - dx~(Vi,,, Vi,,j,)l < 2r 

if Xc_Vi,j, Yc_Vi,,j, , IXI,IYI >Elm. Indeed, if (V/,V/,)is a regular pair, then 

Idx(X, Y) - dx(Vi,j, Vi,j, )l <_ Idx(X, Y) - dx(V~, Vi, )l 

+ Idx(Vi,j, Vi,,j,) - d)~(~, V/,)I < 2el. 

(C5) Now we define a weighted, coloured graph H(wo) whose vertices are the 
classes Vi,j, Vi,j C V*. 

(i) We colour a vertex Wg = V/,j by colour Xv~ ; (here V/j C Uj). 

(ii) We assign the weight ut:= ~ J  to the vertex Wl, 1 < t < M .  

(iii) We join two classes Wt=Vi,j, Wt, =Vi,,j, in colour X~ with weight 
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0, if dx~ (We, We,) < 2~ or (~,V/,) is not el-regular or i = i~; 
�89 if2E<_dx.(We,We,)< l +2e, i r  and(Vi,Vi,)isel-regular; 
1, if 1 +2c  _< dx,(We,We,), i 7 t i' and (Vi, Vi, ) is el-regular. 

Below, comparing e(Gn) and g(H(wo))n 2, we encounter 4 types of errors 
(typical in the applications of the Regularity Lemma): 

- -  We have discarded a small number of vertices, V - V * ;  
- -  We have discarded all the edges joining pairs in the same l~'s; 
- -  We have replaced e(l~, V/,) by 0 for the irregular pairs; 
- -  We had a "rounding" error 2e while counting the edges between a regular 

pair (V/, V/,). 
There is still a fifth type of error, coming from the fact that  we have many 

colours. Namely, we shall estimate e(WbWe, ) by 

~_, ~_, wx.(e,e')lWellWel <_ ~ ~_. n 2, 
t,e' v e,el v 

where the "total density" ~ w x , ( t , / ~ )  > 1 can occur. In such cases we agree to 
replace some w x~ (& e')'s by 0 to get Y~., wx~ (t, e') = 1. Since e (We, We, ) _< I Well We, I, 
the estimates below will still hold. 

Clearly, 

n 2 
e(a*) <_ ~ ~ wx.(e,e')~e~e,n 2 + ~n  2 + ~ 2  + -~' 

t,t~ u 

where the term ren 2 comes from the "rounding" in the definition of wx,(g,~),  
r2eln 2 estimates the number of edges corresponding to irregular pairs. The term 
~ <  en 2 represents the edges the endvertiees of which belong to the same groups l~. 

Prom 

g(H(wo),uo) = ~ ~ wx,(&t')ueue, 
e,et v 

we have 
e(G*) <_ g(H(wo),uo)n 2 + 2rvn 2. 

By IV-V*I  < (yn+(r+2)e2)n, 

e(Cn) - e(a*) <_ IV - V*lu <_ (~ + (r + 2)e2)n 2 < 2~n 2. 

Therefore 
e(Gn) <_ g(H(wo))n 2 + 3rcn 2. 

(D) Now we define a weighted, coloured Kt which satisfies (1"), (2*) and (3*). 
(D1) Assume that  We and W e, are independent in H(w), i.e., w• We,)= 

0 for l < i < r .  Let d(We)>d(We, ). Provide W e with the weight u e + u  e, and 
delete We,. Obviously this contraction will not decrease the edge-density and will 
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not increase the maximum size of a generalized complete subgraph in any colour. 
(Actually, this is the symmetrization lemma.) We repeat this step until all the 0 
densities disappear. And even then we repeat this deletion and weight shifting until 
we get a dense Kt. 

(D2) We show that if for some g,g w~,(g,g I) > 0 for more than one u, then 
without increasing the maximum size of a generalized complete subgraph in any 
colour, we can replace all these coloured edges with one appropriately coloured edge 
of weight 1. 

Indeed, if w~(~(g,g) > 0 e.g. for u,J, corresponding to the RED 'and BLUE 
edges between W e and We,, then we may assume that We is not BLUE. We replace 
all the edges between We and W e, with a BLUE edge of multiplicity 1. Obviously 
this cannot increase the maximum size of a generalized complete subgraph in any 
colour but BLUE. (As a matter  of fact, there may be at most 2 such colours and 
both must have weight �89 

We show that it does not increase the maximum size of a Kq in BLUE either. 
Suppose that after this step the sets X, Y define a BLUE generalized Kq. Then 

We, We, C X, and We ~t Y because We is not BLUE, (see Definition 4). Hence the 
contribution of W e to IXI + IYI is 1, independently of the weight of (We,We,). 

Clearly the edge-density will not increase at this step. 
The only thing left to be proven is (2*): if we choose the parameters as 

described in (A) and if a generalized RED Kq C_ Kt(w), then (i) a generalized 
RED Kq CC_ H(wo), and (ii) (an ordinary) Kq C GRn ED. Here (i) is trivial. 

Remember that the vertices of H(wo) represent classes of vertices of Gn of size 
> c2m, and the pairs of positive weight w0 have the regularity property on level 
ca. Let our generalized RED Kq be spanned by the vertex sets X and Y C X (as 
in Definition 4.) Then, if el,C2 and 6n satisfy (16) and (17), then we can choose 
recursively 1 vertex from each class represented by the points in X - Y  and 2 vertices 
from each class represented by the points in Y which form the RED Kq, as follows. 
Assume that we wish to choose the vertices e.g. from the classes W1,. . . ,  WLx 4 and 
have already chosen the corresponding vertices from g classes Wt,. . .~We so that 
these vertices have at least celWil common neighbours in Wi, i = g +  1 , . . . , IX I. 
Denote the class of these common neighbours by Wi g. Now we pick 1 or 2 vertices 

(according to the "plan") from We+l so that they be joined to at least ee+lIWil 
common neighbours in Wi, i = g + 2  . . . .  , IX I. This can be done because 

- -  all the sets Wi t in this argument have > Elm elements and are in some Vj. 
Thus the regularity lemma is applicable to them with c1. 

- -  By the regularity, all but S.clrn vertices of We+I are joined to each Wit by 
their "typical" densities: > 2e when we wish to pick 1 vertex; by > �89 + 2e when we 
have to pick two vertices. Denote the set of these vertices by We*+1. Now the first 
case is trivial, we may pick any of these vertices. 

- -  In the second case W~*+I is in WRE D and is too large to be independent 

in RED. Hence it contains a RED edge uv such that at least 2eIw/+l l  vertices of 

W:+I  are joined in RED to both u and v. So we pick these u and v and go on with 
the recursion. | 
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Proof of Theorem 2'. It follows from the above argument and the construction in 
the proof of the lower bound. 

Proof of Corollary 1, using Theorem 2". Basically we have to show that /3 of 
Definition 5 can algorithmically obtained. Since the coloured Kt we use to get 
~(k l , . . . ,  kr) contains no Kk~ of colour Xv, therefore 

t < R ( k l , . . . , k r )  

(see (12")). Further, given a t, and the weights wij, we can find the o p t i m u m  
d i s t r i b u t i o n  

u = > 0, ui = 1) 

for which g(Kt(w),u) is the maximum. This maximum was denoted by g(Kt(w)) 
and called the density of Kt(w). To find/3 in the above definitions it is enough to 
regard finitely many values of t, finitely many colouring and weighting (X,W) for 
each t, check if there is a "bad" eolour (containing a Kk~ ). If not, then "g(Kt(w)) 
is good". Then we have to take the maximum of the good g(Kt(w))'s. Hence there 
is a finite algorithm to determine/3(kl , . . . ,kr) .  

Proof of Theorem 3. Theorem 3(a) is generalized to Theorem 4, therefore its proof 
will follow from that of Theorem 4. The proof of the stability property in (a)-(d) 
is left to the reader. 

Lemma 4. Let Bn be a graph and A a set of vertices in Bn, m = n - IAI. If A 
contains o(n 2) edges, and 

e(Bn-m) ~ (1-~) (2), 
then 

<_ ( 1 -  - -  e(Bn) 
% 

Or equivalently, if for a vertex x E Kt(w) 

g(Kt(w) - x) < (1 - - -  

then 

1 

1) 
k 1 ' 

The meaning of this lemma is that  if we can delete a set of independent or 
almost independent vertices of a graph Gn so that  the resulting graph Gm has only 
as many edges as the "best" k-1-chromatic graph on m vertices, then Gn has only 
as many edges as the "best" k-chromatic graph on n vertices. The proof is trivial. 

Lemma 5. [3] The optimal weight distribution of vertices of a dense Kt(w) is 
attained when all the weighted degrees are equal. Then the density equals the 
half of this weighted degree. 

Proof of Lemma 5. It follows easily using symmetrizations. See also [3]. 
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Lemma 6. Kin a dense Kt(w) each vertex is incident to at least A half-edges, then 

2g(Kt(w)) < ( l  l ~t) 

If  there exist no A-regular graph on t vertices, then we have strict inequality: 

2g(Kt(w)) < 1 t 2t " 

Proof  of Lemma 6. Let d(i), 1 < i < t be the weighted degree of the vertex i in 
Kt(w). Let i l , . . .  ,i,~(i) be the vertices joined to i with a "half"-edge. For 1 < i < t  

1 
d(i) = E w ( i , j ) u j  <_ 1 - ui - 4(ui, + . . .  + ui~(,)) 

Since each uj occurs in at least ), inequalities, summing the above inequalities for 
l < i < t  we get 

min d(i) < 1 d(i) <_ ~ t - l -  = 1 2t 
l<i<t -- t i 

By Lemma 5 this proves Lemma 6. 

Below we formulate a lemma to calculate the density of some graph structures. 

Lemma 7. Let - - i n  Kt(w) - - q  vertex-independent K3 's and r independent edges 
be given, where the edges and triangles are also pairwise vertex independent. 
Assume that the edges in this system (i.e. the edges and the pairs in the triangles) 
have weight �89 Then 

6 _ 4 r )  " 2g(Kt(w)) < (1 6t - 9q 

(There may be some further half-edges as well!) 

Proof  of  Lemmn 7. If we replace a half-edge by a full edge, that cannot decrease the 
density. Therefore we may assume that 3q vertices are covered by K3's; 2r vertices 
are covered by the independent half-edges, and all the other edges are full edges. 
There are s= t - 3 q - 2 r  other vertices. This structure will be denoted by W(q, r, s). 

One could easily prove this lemma, using the Lagrange method. Below we shall 
use an equivalent but more combinatorial technique. One can easily prove that if 
we have two dense structures A and B and join each vertex of A to each vertex of 
B with weight 1, then the obtained structure is dense again. Hence W(q,r,s) is a 
dense structure. 

Further, by Lemma 5, the optimum distribution u yielding g(Kt(w)) can be 
characterized by the fact that all the weighted degrees are equal. If the optimum 
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distribution is x, x , . . . ,  x, y , . . . ,  y, z . . . .  , z, the corresponding vertices of Kt (w) satisfy 
the following equations: 

3 
1 -  2x = l -  ~y= l -  z, 

Hence, if z = 6m, then x = 3m, y = 4m. Thus 1 = 9qm + 8rm + 6(t - 3q - 2r)m = 
(6t - 9q - 4r)m, and consequently, 

1( 6 )  
g(Kt(w))=-~ 1 6 t - 9 q - 4 r  " 

In the proofs below we apply Theorem 2'. If Bn = B(h, tlm,...,ntltt) is an 
asymptotically extremal sequence then we consider the corresponding coloured, 
weighted graph Kt(w) defined in its proof. 

We agree to call a Ks RED (or BLUE) if its edges are RED (or BLUE) and 
this has nothing to do with the colours of the vertices. 

Proof  of Theorem 3(b). The lower bound is given by U(n,3) of Construc- 
tion l(b).  Let Bn--B(h,tlnl, . . . ,ntl#) be an asymptotically extremal structure 
of RT(n, K3,K4,o(n)), with its canonical extremal colouring. Let Kt(w) be the 
corresponding weighted coloured complete graph. 

Now, if in Kt(w) there exists a BLUE point incident to a BLUE edge, then 
we have a BLUE K3 C Bn, and we are home. So we may assume that  if there is 
a BLUE point xl  C Kt(w) at all, then all the edges joining it to the other vertices 
are RED. Let X1 be the corresponding class of Bn. We may apply Lemma 4 to 
Bm= Bn-XI :  it contains neither a B L U E / ( 3 ,  nor a R E D / ( 3 .  Therefore e(Bm)< 
�88 2 + o(m2), and consequently, e(Bn) <_ �89 2 + o(n2). | 

P roof  of Theorem 3(c). Let {1,2, . . .  ,t} be the vertices of Kt(w). 
If one of the vertices, say x is BLUE, then all the edges (x,y) of Kt(w) are 

RED, otherwise we had a BLUE K 3 in Gn. Hence the remaining part contains 
neither a RED K4, nor a BLUE K3. By Theorem 4(b), its density is at most 
l ( 1 - 1 ) , h e n c e  b y L e m m a 4  g(Kt(w))<�89 � 88189  1). 

So we may assume that  all the vertices of Kt(w) are RED. Hence 
(.) K~(w) contains neither a BLUE K3, nor a RED K4 with edges of arbitrary 

weights. Hence t <_ R(3,4) =9.  
1 (**) All the edges of a RED K3 have weight ~. 
1 1 In case of t < 5 the density can be at most ~ (1 - ~). This is achieved only 

when t = 5 and all the edges are "full". Hence the colouring of K5 is the colouring 
of U(n, 3, 3), the PENTAGONLIKE colouring: otherwise (**) would be violated. 

Assume now that  t = 6. Since - -  by (*) and Ramsey Theorem - -  there exists 
a RED Ka in Kt(w), therefore, by (**), its edges must be of weight 1 

Apply Lemma 7 with q - - l ,  r = 0 :  

2 1 if t = 6. 2g(Kt) < 1 2t--~ < 1 - -~ 

Finally let 7 < t < 9. 
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1. Observe that  each x is joined to at most 3 other vertices in BLUE. Indeed, if 
x is joined to Yl,Y2,... ,Yi, then - -  since the BLUE K3's  are excluded, - -  Yl,..-,Yi 
form a complete RED graph. Thus i < 4. 

2. We show that  for t > 7 each x is incident to at least t - 5 (RED) half edges. 
Indeed, if x is joined to Yl, .-- ,  Yi in BLUE and to z l , . . . ,  zj in RED, and, say, xzl is 
a full RED edge, then it is not contained in RED triangles. Therefore zl is joined 
to all the other z's in BLUE. If there is another full RED edge, say xy2, then Y2 
is also joined to all the other y 's  in BLUE. Since there is no BLUE triangle, thus 
j < 3: there are at most 2 BLUE edges incident with x. Since there are at most 3 
BLUE edges xy, if 2 of these RED edges are full, then t < 1 + 3 + 2 = 6. 

Since t > 7, x is incident to at least 2 RED edges (with weight �89 So we can 

app ly  Lemma 6: 2g(Kt(w)) _~ 1 - ~ < 1 - 1 if t < 9. 

P roof  of  Theorem 3(d). The following conditions must hold on the colouring of the 
extremal B(h, tin1,..., nt [p). 

(a) There are no 4 classes Ci, Cj, Ck and Cm joined in the same colour (i.e. 
forming a monochromat ic / (4  in the reduced graph). 

(b) If A=(Ci ,Cj ,Ck)  is RED, then all its "vertices" Ci,Cj and Ck are BLUE 
(where a RED triangle means that  the edges between the different groups are 
RED!) 

(c) If Ci and Cj are RED, then either they form a RED Bollobs graph 
or they are joined, by a BLUE edge. 

(a~)-(c ') If  we swap BLUE and RED, (a)-(c) still hold. 
(As a mat te r  of fact, the converse s tatement  is also true: 
if for B(h,t]nl, . . . ,ntl#) (a-c ' )  hold, then it contains no monochromatic K4.) 
(A) First we prove, that  t = 6 .  
1. Suppose that  t_<4. Then 

( 2g(Kt(w)) < 1 - < 1--4" 

2. Let t = 5. If there is at least one "half" edge, then similarly as in the proof 
of 4(c) we get 

10 11 
2g(gt(w)) ~ ~-~ < 1--4" 

Consequently, we may suppose, that  all the edges are "full". In that  case we 
shall prove that  in any colouring of Ks(w) - -  satisfying (a)-(c ' )  - -  there must be 
a monochromatic K4 in Bn. 

The P E N T A G O N L I K E  colouring is excluded, since in that  case we can always 
find two classes of the same colour and a full connection between them in the same 
colour. This would yield a monochromatic K4. 

If  the vertices Xl,X2,X3 of Ks(w) form a RED triangle, then xl,x2,x3 must 
be BLUE by (b). 

By (a) there exists a BLUE "full" connection between x 4 and Xl, x2, x3. Hence 
(by (c)) x4 must be RED. Similarly, x5 is also RED. Hence (by (c')) they are joined 
by BLUE. 
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There are at most two RED edges between {Xl, X2, X3 } and {x4, xs}. Otherwise 
say x4 were joined to two of Xl,X2,x 3 by RED edge and consequently, we would 
have a RED triangle, say (Xl,X2,X4) with one RED vertex x4, contradicting (b). 
There are at most three BLUE edges between {Xl,X2,X3} and {x4,x5}: otherwise 
say Xl were joined to both x4 and x5 in BLUE, yielding a BLUE triangle (Xl, x4,x5) 
incident to a BLUE vertex. 

Since there are 6 edges between {Xl,X2,Z3} and {x4,x5}, 5 vertices with all 
"full-connections" cannot be properly coloured. 

(B) Next we consider the case when t > 6. 
First we prove, that  in an admissible colouring of Kt(w) all the monochromatic 

triangles have the same colour. Indeed, assume that  Xl,X2,X 3 is a RED, Yl,Y2,Y3 
is a BLUE triangle Then xi's are BLUE and yj's are RED vertices. At least 5 of 
the 9 connections xiYj have the same colour, say RED. Thus we get a RED triangle 
xi, Xk, Yj, contradicting (b). 

Assume that  there exists at least one BLUE vertex, say Xl, and all t h e  
t r i a n g l e s  are also BLUE. Then there is no RED triangle. Xl cannot be contained 
in a BLUE triangle, by (b'). This implies that  Xl has at most 2 BLUE connections: 
otherwise, say x2, x3 and x4 were joined to Xl in BLUE, and therefore x2,x3,x 4 
were a RED triangle. Similarly, xl  is joined to at most 3 other vertices in RED, 
otherwise we have a BLUE K4 in Kt(w). Hence Xl can be joined to at most 5 other 
vertices, a contradiction. 

So the only remaining case to be settled is when all the groups are RED, and 
all the triangles are BLUE. 

First observe that  in this case each vertex in Kt(w) is joined to at least t - 6  
other vertices in RED: otherwise, say, Xl were joined to the remaining 6 vertices 
in BLUE and 3 of these vertices would form a BLUE triangle, yielding with xl  a 
BLUE K4. Now (c) and Lemma 6 yields 

2 9 , < (  1 1 t - 6 ) _ l t + 4  
- t 2 - - 7 - -  

Thus for t >  7 we obtained that 2g< 11/14, for t=7  we use the second part of the 
lemma: t -  6 = 1 and there is no 1-regular graph on 7 vertices. 

(C) Assume now that  t = 6. 
If there exists exactly one half-connection, or two half-connections incident to 

the same vertex, say x6, then we can apply (A) to the remaining 5 vertices Xl , . . . ,  x5. 
We have seen that  in that  case one of the conditions (a-c') must be violated: there 
exists a monochromatic K4. 

So we have proved that  there exist at least two independent "half- connections" 
among the 6 vertices. 

To finish the proof we have to give a "good" colouring of such a weighted 
K6 with 2 independent half edges and determine the optimal weight distribution, 
showing that  its density is �89 ~ .  

This is given by Construction 4. 

Construction 4. For n :  14t + o(t) fix 6 groups W1 ; . . . ,  W6 as follows: 

]Wll ~ 2t, IW21 ~ 2t, IW31 ~ 3t, IW4I ~ 3t, Iw51 ~ 2t, IW6l ~ 2t. 
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W1 and W2 form a RED Bollob~-ErdSs graph, W3, W4, are also RED groups: we 
build RED Erd6s graphs on them; however, they are joined completely, in BLUE. 
W5, and W6 form a BLUE Bollobds-Erd6s graph. All the other pairs of classes are 
completely joined, as follows: 

(Wl, W3), (Wl, W4), (W2, W3), (W2, W4), (Wl, W5), (W2, W6) 

are BLUE, 

(W3, Ws), (W3, W6), (W4, Ws), (W4, W6), (W1, W6), (W2, Ws) 

are RED. One can easily check that there are two BLUE triangles but all their 
groups are RED and the shortest odd RED cycle is a pentagon, and each "full" 
RED edge has at least one BLUE endgroup, no "full" BLUE edge connects BLUE 
groups. Thus the resulting B(h,61nl,...,n61#) contains no monochromatic K4 in 
the above colouring and has only o(n) independent vertices. 

It is easy to check that in (C) we have the optimal distribution and that e(B)= 
1 (1 1-~)n 2+o(n2) .  | - 

P roof  of Theorem 4. We shall call the "odd-girth" of G the length of the shortest 
odd cycle in it. Put  BLUE Erd6s graphs of "odd-girth" >p,q into the classes of a 
RED Tn,2. The obtained Un,2 contains no short odd RED or BLUE cycles. This 
yields the (constructive) lower bound in Theorem 3. 

Apply the proof methods of Theorem 2", (upper bound). If the reduced graph 
H(wo) contains a BLUE vertex and a BLUE edge incident to it, then Gn contains a 
BLUE Cp, assumed that  r = c(p, q) is chosen appropriately. The same holds in RED. 
Hence in the reduced coloured graph Kt(w) all the vertices have colours different 
from the colour of any edge. Therefore all the vertices are of the same colour, say 
RED, and all the edges are of the other colour, say BLUE. If Kt contains a BLUE 
/(3, then Gn contains a BLUE K(p,p,p), a contradiction. Hence there are at most 
2 classes: t = 2 .  | 

5. O p e n  p r o b l e m s  

There are various intriguing open problems in connection with the above theorems. 
We list below some of them. 

Problem 1. How large can t = t(q,s) be if B(h,t]nl,...,nt[#) is asymptotically 
extremal for the problem RT(n, q, s, o(n) ) ? 

It is easy to see, that  t is at least exponentially large. Indeed, let q = 2k+ 1, t = 
R(k, s), and consider U(n, t). Clearly, U(n, t) contains neither RED Kq, nor BLUE 

Ks and has ( 1 -  1 ) (~)  edges. Further, all the GBE-graphs with fewer classes have 
fewer edges. Hence the extremal GBE-graph has t>_ R([~]  ,s) classes, otherwise 
it has too few edges. 

Problem 2. Determine O( Kq, /(3 ). 

Perhaps the following is true. 
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Conjecture 1. U(n,k,3) of Construction 2 is extremal for RT(n,3,q,o(n)) if q = 
2 k + l .  

One of the basic problems to be attacked is in general: Given a graph L, 
how the graph theoretic properties of L influence 0(L)? In case of ordinary graph 
extremal problems the chromatic number is the most important factor in determin- 
ing ext (n, L). The previous paper [10] showed that  the behaviour of tq(L) largely 
depends on the arboricity of L. Still, it did not give a complete solution of the ques- 
tion. The case of/(3(2, 2, 2) seemed to be the first real difficulty. Since K3(2, 2, 2)C 
Arb(4), therefore 

1 
0(K3(2 , 2, 2)) _~ 0(g4)  ---- ~, 

(see [10]). 
We cannot improve this bound. 

Problem 3. Decide i fO(K3(2,2,2))=0.  

One way to settle this question would be to show that  the Bollobs 
graph (or some slight modification of it) contains no K(2,2,2). We cannot decide 
even this (seemingly simple) question. 

Tt n Perhaps replacing o(n) by a slightly smaller functions, say by f (  ) = ~ one 
could get smaller upper bounds. 

Problem 4. Is it true that for some c>0,  

R T ( n ,  K4,1o-~)  < ( ~ - c )  n2? 

Problem 5. Is it true that for RT(n, kl , . . . ,kr,o(n)) the asymptotically extremal 
structure is weakly stable? 

The same type of questions can be asked for hypergraphs. 
Some hypergraph results on 3hrs problem can be found in [15] and 

in [17]. 
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