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ON THE ECONOMIC INTERPRETATION  
OF PROBABILITY THEORY

Péter Medvegyev1

Probability theory and the economic interpretation of probability is a perennial 
topic that has been explored in this journal several times already. In full concur-
rence with János Száz’s opinion set out elsewhere in this volume2, it makes sense 
to start out from the premise that the complexity of the problem largely arises 
from the fact that we are trying to explain several unrelated questions at the same 
time.
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Firstly, it is worth singling out the pricing of derivatives because, despite this be-
ing the flagship economic application of stochastic analysis, the theory actually 
has nothing to do with randomness. Or rather, it only formally appears to be as-
sociated with a type of randomness. The central idea in the pricing of derivative 
products is hedging. The price of a derivative is the cost of the self-financing port-
folio hedging the product. If there is no hedging portfolio, which is usually the 
case, then the theory is unable to answer the question. What remains is the good 
old theory of supply and demand. This cannot be emphasised enough. There is 
nothing complicated about it. The prices are determined by supply and demand. 
In a very special situation that perhaps might never even occur in real life, where 
derivatives can be hedged, demand and supply are independent of preferences, in 
which case the price can simply be determined. The question, therefore, is wheth-
er there is a self-financing hedging portfolio. To put it another way: Are we able to 
solve a system of linear equations in a certain, extremely complicated mathemati-
cal situation, or not? In this sense, the question has far more to do with linear 
algebra or linear programming, but the story is told in an infinitely dimensional 
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space rather than a space with finite dimensions. In other words, the mathemati-
cal cloak enshrouding the content is very imposing, but it is still just a cloak. The 
pricing of derivative products is a chapter of the good old general equilibrium 
theory, and the prices are dual variables associated with the production set. The 
difficulty stems from the fact that the space in which the system of equations 
needs to be solved has infinite dimensions. Furthermore, its structure is far from 
simple because not only the number of individual outcomes, but also the number 
of individual instances is infinite. In other words, you could say that the problem 
is multiply infinite. If we dispense with the two infinites, the problem reveals 
its true nature and it turns out that the price can be derived from the duality 
theorem of linear programming. If the time horizon is finite, but the number of 
outcomes is infinite, then the discussion is still greatly simplified in comparison 
to the general case and it becomes clear that the separation theorem of convex sets 
must be applied. On the other hand, of course, treating both the time horizon and 
the outcomes as infinite unleashes a torrent of mathematical problems that can 
only be managed by the most well-prepared. The situation is further complicated 
by the fact that, essentially, in the simplest case where the stock prices develop 
according to a geometric Wiener process, a simplified path is offered by the ‘Gir-
sanov theorem’. Of course, the Girsanov theorem is not in itself a particularly 
simple one either, but it is still far simpler than the toolkit applied in the general 
case. Moreover, the change of measure described by the Girsanov theorem gives 
the impression that the outcomes must be assessed with some kind of subjective 
probability, and the derivative products can be priced as and expected value in a 
risk-free world. Meanwhile, the new probabilities are simply dual variables, or the 
shadow prices of linear programming if you prefer.
Setting aside the matter of pricing derivative products, the question is quite sim-
ple: Is the world knowable? Although pertinent, there is one big problem with 
this question. Neither of the two concepts that it features, ‘knowable’ and ‘the 
world’ are defined, so we cannot give an answer. The question is especially critical 
in economics because the boundaries between what constitutes a social issue, a 
political issue or an economic issue are extremely arbitrary. Economics debates 
and arguments, for the most part, revolve around the demarcation of the field. 
What belongs within it, and what does not. The ‘what is economics’ debate is 
always current and always fierce. And what lies behind this debate is the fact that 
even defining the subject is a highly arbitrary matter. The question of probability 
is, for the main part, associated with the question of knowability. If we know 
the probability of the future outcomes of each possibility, then we have learned 
something even if it is only the probabilities and the possible outcomes. Naturally, 
the main problem is that we must first draw the boundaries, describe the great 
mystical Omega set if you will. Given the uncertainty of economics when it comes 
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to marking out boundaries, it is hardly surprising that it is even more uncertain 
about the assignment of probabilities. And from this point on, we can safely say 
that the question becomes unfathomable and, you might say, chaotic. It cannot be 
stressed enough that the ability to forecast economic trends depends largely on 
how we can localise the problem. Forecasting can be solved in an easily described 
system where there is a small number of well-defined variables. Referring to the 
question encapsulated in the title, in a badly defined system it is difficult to ensure 
the basic requirements of probability theory; namely, a large independent sample 
with equal distribution. Put another way, formally, the issue manifests itself as an 
inability to apply probability theory. Nevertheless, the problem lies not with the 
probability calculus or the frequentist interpretation of the statistics, but rather 
it stems from the nature of the studied phenomenon. And of course, this means 
that precise forecasts cannot be given using other methods either. It is perhaps 
worth mentioning that one of, if not the most imposing theories of physics is 
electromagnetic theory. To get a sense of how impressive this theory and the ac-
cumulated knowledge is, just look at your telephone. At the same time, there is 
still no satisfactory and convincing theory to answer the question of why and how 
lightning is created.3

Naturally, the scientific community is trying to improve this situation, and con-
structing models; in other words, it artificially designates certain questions and 
starts to examine them, identifying the study of the model’s properties with that 
of the thing being modelled. Moreover, like all human activity this is also a social 
phenomenon; it is about influence, power and money, and the thing – the model 
– starts to take on a life of its own. The perpetual struggle for funds, influence 
and titles marshals the researchers into teams, and these teams and communities 
of researchers are held together at least as much by common interests as by the 
knowability of what they are researching. Obviously, totally absurd models can-
not be promoted ad-infinitum, although he who seeks shall find, however strong 
the group interest may be. The interests of another team dictate that it should 

3 Feynman et al. (1986): The Feynman Lectures on Physics, Volume II, Chapter 9-6, published in 
Hungarian as: Mai Fizika, 5. kötet, Budapest: Műszaki Könyvkiadó, 133. The cited literature is not 
the latest on this subject, and I do not claim to be an expert in this field, so it is possible that the 
matter has since been reassuringly clarified. Nevertheless, it is worth making that while under 
controlled conditions researchers in the field have unparalleled knowledge both mathematically 
and in engineering terms, when the phenomenon occurs in the wild in its own natural state it is 
no longer so clear what needs to be done and why things are the way they are. The problems of 
economics stem from the fact that there are no controlled conditions; owing to the nature of the 
thing, it is not reasonably possible to remove an entity from its social environment or isolate some 
phenomenon from its surroundings. As a student, I joked that we had to answer every question 
with: ‘social relationship’. For example, what is price, what is demand, etc. Today I think that this 
was actually a wise, if not particularly ground-breaking observation.
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replace those grouped around the weaker model. And it does everything it can to 
achieve this. In other words, in academic life as in every area of society, the battle 
for resources nudges the system towards greater efficiency. The speed with which 
this process runs its course is another matter. Generally, the individual compet-
ing teams are in the same age group; in other words, the speed of progress is not 
too high, and of course there is no guarantee that the younger generation will 
move forwards and not backwards.
It is worth considering a somewhat abstract example of the relationship between 
the model and reality. The advantage of this example is that it is highly specif-
ic and well-defined. The question is as follows: How can we simulate a Poisson 
process with a computer? The Poisson process is a very well-defined concept in 
mathematics. You could say it exists objectively in the world of mathematics. If 
we want to simulate it with a computer, however, we are faced with a fundamental 
issue: The two systems have a different concept of numbers. In mathematics, we 
understand numbers to be real numbers, and it is the axioms of real numbers that 
ardent professors reveal to keen audiences at the beginning of lectures on analy-
sis. Meanwhile, in the world of computers real numbers are defined as something 
completely different. Obviously, the computerised concept of real numbers seeks 
out the best possible approach to the mathematical concept of real numbers; but 
it is also clear that the possibilities are highly limited. Accordingly, the concept of 
time is completely different in the two systems. A computerised Poisson process 
will be different in every respect to a true, mathematical Poisson process. When 
deriving the critical properties of the Poisson process the mathematical proper-
ties of the real numbers must be exploited as fully as possible. Which properties 
of the real, mathematical Poisson process are important, and which of its proper-
ties can be disregarded? An addition problem is that, although we may be able to 
simulate many properties, this comes at the cost of time and storage capacity. In 
other words, we can only decide on the nature of the simulation after weighing 
certain limitations and certain objectives against each other. 
And what about the application of the Poisson process, at the checkouts of a hy-
permarket for example? The Poisson process has numerous applications in the 
theory of queuing systems. What concept of time does the everyday shopper use, 
and how does this relate to the mathematical axioms of real numbers? Is service 
time really exponential? Or does it just seem that way? Or do we just say that it 
is, because that is the best we can come up with? Or, perhaps we know there is 
no point because the system will be badly scaled whatever happens, so it is easier 
to give the job of designing it to the local handyman? How far is it possible, and 
worthwhile, to take an examination of this question? At what point do we have 
to admit that the mirror through which we view the world is arbitrary, false and 
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distorted. Not to mention that we are not even looking at the world, but at a movie 
projected onto us by another mirror. 
Today almost nobody encounters reality anywhere, but only sees its reflection 
through multiple lenses. The reflection is so compounded that we are entirely 
justified in suggesting that perhaps reality does not exist at all, or if it does exist 
it is unrecognisable to us. The question of what probability is, and what is its cor-
rect economic interpretation, is unfortunately a false problem. There is no correct 
interpretation, merely the one that is expedient and useful. What is expedient and 
what is useful? That is another good question. The answer can only be interpreted 
in its complex, social contexts. Often, usefulness is whether a paper can be writ-
ten on something and whether it can boost the number of citations. Sometimes 
it may signify whether a good trading strategy can be put together. Humankind, 
as they say, is a tool-making animal. We make tools to facilitate survival. The big 
change in intellectual tool-building that has been under way since the 19th century 
is that the purpose of creating our intellectual tools is becoming less, or rather not 
at all, to understand world created by God. Sadly, we must recognise that the age 
of great discoveries is over. I know, they thought the same at the end of the 19th 
century, then along came the 20th century and everything in the world of science 
was turned on its head. But just because something was true once, why would it 
always be true? We have seen examples of this, and of the opposite too.
Essentially, the inability of economics to foretell the future is not due to one prop-
erty of probabilities or another. The problem does not lie in this or that inter-
pretation of probability theory. The main sticking point is that it is incapable of 
clearly defining its own subject; it cannot isolate what it is studying from what 
it is not studying. You could say that there are no fixed parameters, every value 
is a variable. The problem lies not with the skills of the researchers nor with the 
unsatisfactory nature of the applied methods, but with the fact that the subject 
under study cannot be isolated from its environment, and nor can that environ-
ment be appropriately shaped. So-called theoretical economics attempts to mimic 
the methodology of successful sciences, using tools that are alien to it. It clings 
desperately to the illusion that it is capable of providing an explanation for the de-
velopment of economic trends when it cannot even say what it is measuring, what 
the phenomenon that it is trying to forecast is, or even what the economic trends 
are and whether they can be regarded as a technical or a sociological problem. 
It constructs a world for itself, and as a best option examines his own creation. 
I must emphasize that this is not a problem. Indeed, perhaps this method is the 
only way. As long it is done with sufficient insight, sincerity and humility. In my 
view, these are precisely what are lacking. Everyone has making a living somehow 
and pay the tuition fees for their child’s top university, because this is the entry 
ticket to a successful life. One hand washes the other. 
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Probability theory is a fine and elegant mathematical approach with numerous 
theoretical pitfalls, but there is nothing better. If we look very closely, we can 
see even at the level of the axioms that it cannot answer a fundamental question; 
namely, how to calculate the probability of a intersection. The way around this 
is to introduce conditional probability, but we do not say how to calculate it. To 
be more precise, the introduced definition must always be used backwards. If we 
know the conditional probability, then multiplying this with the probability of 
the condition gives us the probability of the intersection. The elementary exam-
ples aside, we will never be able to tell the conditional probability; but this is not 
what interests us. What we would like to know is the probability of occurrence 
of the various events together; in other words, the relationship of the observed 
phenomena with each other. Or, if you prefer, we would like to know the co-move-
ment, the correlation between the various events, to use the word ‘correlation’ in 
its most general sense. Conditional probability is the point at which we smuggle 
the properties of the phenomenon to be modelled into the probability model. For 
example, we might say that market prices make up a Markov chain, or that yields 
constitute a Lévy process. This is the problematic step in every modelling exer-
cise. From this point on, everything is mathematics. This does not of course mean 
that the conclusion is correct; because, as I indicated with regard to the Poisson 
process, it is not certain, for example, that the calculations will not make the er-
rors more acute due to the differing concepts of time. Since the two systems are 
not the same, a transformation of one model may point to a side of the other that 
was not visible in the initial situation. In other words, the mathematics do not 
necessarily help with the conclusion, but may assist with the identification of er-
rors. It is possible, and a certainty when it comes to economic processes, that this 
is the more important role. In the theory of derivative pricing, the most impor-
tant mathematical achievement was to demonstrate, and especially to recognise, 
that the completeness of the market has a key role in the derivation of the pricing 
formula. Contrary to introductory textbooks, it is not lack of arbitration but com-
pleteness that is the decisive condition. This has been revealed by mathematical 
studies. This is the contribution of the scientific community. Similarly, general 
equilibrium theory shows that we can only talk about the balance of supply and 
demand in the case of convex technologies. The errors arising during practical 
applications also stemmed, among other things, from the fact that the various 
derivative products were not really hedged; how they have been? Perfect hedging 
exists only in fairy tales, or in mathematics if you like.
Naturally, each era viewed the world differently. Here too, an answer to a very 
difficult question must be found. The 18th and 19th centuries were very optimis-
tic. Why? They firmly believed that the world can be known and changed. It is 
sufficient just listen to Beethoven. A simple, transparent structure. Everything 
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is visible, everything is crystal clear and beautiful. This simplicity and magnifi-
cence impresses people of every era. Unfortunately, the optimistic 19th century 
vanished on the battlefields of the Great War, making way for the 20th century. 
In terms of mathematics, the 19th century was largely about differentiability. The 
idea that a process or formula is undifferentiable did not even come up. Differen-
tiability, however, means the ability to forecast. Since we know the past, or think 
we do, we know the derivative on the left. Since the formula is differentiable, we 
also know the derivative on the right; that is, we know what will happen in the 
future. Indeed, the functions are not only differentiable, but what you might 
call ultradifferentiable. This is because a function was usually understood as 
complex, differentiable function. An important feature of complex differentiable 
functions is that by just observing a small piece of them the whole function can 
be clearly stated. For simplicity’s sake, we shall define a small piece as being the 
value on any small time-segment of our choice. In other words, if we know a 
short section of a function, then we can know the entire function any time, any-
where. Full determinism. A similar logic applies to differential equations. If we 
know the starting conditions, then we can also know the perpetual laws of the 
system. Of course, mathematics is always about fifty years ahead of the world. 
The idea of the knowable world gradually started to disintegrate. It became in-
creasingly clear that things are not that simple after all. The counterexamples 
multiplied albeit for varying reasons. The biggest blow came from trigonometric 
series theory. It turned out that you can make a discontinuous function from 
simple waves. Then came the coup de grâce. In 1872 Karl Weierstrass, the fa-
ther of modern analysis, constructed a function that was continuous, but not 
differentiable at any point. In 1821 Augustin-Louis Cauchy, the greatest math-
ematician of his time, even proved that a continuous function is differentiable 
except at some special points. It usually pointed out that Cauchy did not see, 
failed to notice the difference between convergence in every point and uniform 
convergence4. While this is true, it is more likely that the possibility of a form 
of movement that we cannot forecast, at least for a short period, never even oc-
curred to him. Cauchy’s error was not mathematical, but a philosophical one. 
He wanted to infer something that was not true. You could say that he placed 
his desires before reality. Weierstrass’s counterexample is a turning point in the 
history of science. Firstly, it became clear that intuition does not provide an 
adequate foundation for mathematics. Mathematics must be strictly logic-based 
and axiomatic. Before Weierstrass, plausibility and truth were one and the same. 
It was not only thought that the world was knowledge, but also that the world 
was simple and God did not just roll the dice, but far from being malicious was 

4 Whereas today we are so clever that we would rightly fail someone for this in an exam.
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actually proud of creation; and armed with the apple from the tree of knowl-
edge, people could marvel at creation and through it the Creator himself. At 
this point mathematics started to tread its own path, essentially breaking away 
from physics and, we should add, from applications in general. The purpose of 
this discipline changed. Rightly or wrongly, the concept of true was replaced 
by the concept of logically flawless. Rightly or wrongly it only treats intuition 
as an important aid for supposition. However obvious something may be, that 
does not make it true; the statement must be derived from the axioms. This is 
also reflected in the external appearance of published literature on mathematics. 
A “good” mathematics book has no illustrative diagrams. This contrasts with all 
the other disciplines, including economics, where a good chart is worth more 
than a thousand words. Dirac was reportedly asked what the difference is be-
tween physics and mathematics. According to Dirac, both sciences are about 
equations; indeed, the very same equations. But a physicist, based on intuition, 
can tell you the solution to the equation and the approximate properties of the 
solution without solving it. A mathematician needs to solve the equation and 
analyse it to know the answer. In fact, we should add to this that a mathemati-
cian’s first thought is to ascertain that there is a solution; that is, that the equa-
tion contains no internal contradictions. 
Kolmogorov’s probability axioms are a typical example of this endeavour. These 
make up a system of axioms and definitions that render the calculations correct 
and mathematically manageable. His principal means of achieving this is to base 
the concept of expected value on the abstract Lebesgue integral. In other words, 
the aim is for the system to be logically stable and easy to use. The tool for this is 
a new “interpretation” of a mathematical theory that had only just emerged. After 
this, he naturally went on to prove brilliant mathematical theorems, such as the 
strong law of large numbers that bears his name. Thus, he proved the effectiveness 
and workability of the proposed system of axioms. Kolmogorov’s theory, how-
ever, has a weak point: the handling of conditional probability. Everybody regards 
conditional probability as a highly illustrative concept. Much to the surprise of 
newcomers to probability theory, this is by far from being the case. As I have 
already pointed out, the purpose of introducing conditional probability was to 
be able to tell the probability of a intersections, and conditional probability is the 
concept whereby “reality” can be injected into the model. At this point, however, 
a series of technical difficulties arises. For example, in the case of fulfilment of the 
condition X = x, when can the random variable X be substituted with the value x? 
The problem stems from the fact that we cannot say what the conditional prob-
ability is if the probability of the condition is zero. Generally, zero-probability 
sets have an overly prominent role in the theory. For example, in the stochastic 
analysis, what is to be treated as zero probability must be established right at the 
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beginning of the investigation. If we identify zero-probability events as impos-
sible events, then we need to say right at the beginning of the investigation which 
events are possible, and which are not. These are sources of considerable difficulty 
from both a philosophical and from a mathematical perspective, but unfortu-
nately this is the nature of the system; so far nobody has been able to propose 
anything better or cleverer. 
Weierstrass’s example was something of a thorn in the side for science.5 The 
big turning point came with the Wiener process, when it transpired that ther-
mal motion – and, based on Bachelier’s research, which attracted little atten-
tion at the time, stock market prices – are not differentiable. In other words, the 
past can tell us nothing about the future. It is perhaps worth noting that Louis 
Bachelier defended his treatise in 1900 without generating much interest, and at 
around the same time that Einstein offered the explanation for Brownian motion 
in his theory of relativity in 1905, thus providing decisive proof of the existence 
of atoms. 
The 18th and 19th centuries tried to understand the world based on the eternal rules 
of planetary movements and the determinism of differential equations. Even 
Marx thought that social questions could be understood and channelled in the 
right direction based on the rules of the material world. What a mistake! The 
early 20th century built its picture of the world on randomness. The Wiener pro-
cess is not just a mathematical bravado, but a world view. What can we state with 
certainty? Maximum statistical parameters, Not even those, in fact. Coincidence 
and unpredictability rule the world. To be honest, we could lose our savings in 
any given minute. The best thing even the wisest can say is never put all your eggs 
in one basket. The victims of foreign-currency loans or brokerage scandals could 
tell many long stories about this. When developing secondary-school curriculum, 
it is seriously suggested financial literacy should be taught to the detriment of 
maths and physics. Naturally, I do not say that this is wrong. All I can say is yes, 
unfortunately, we need to prepare students for the real dangers. They must be 
made aware that at any time, a turn of events could result in the loss of all their 
savings. And this is more important than understanding why the sun rises and 
how the moon changes.

5 Szőkefalvi-Nagy, Béla (1972): Valós függvények és függvénysorok [Real Functions and Function 
Series]. Budapest: Tankönyvkiadó, 15. The oft-quoted sentence by Charles Hermite that sums 
up contemporary reactions is as follows: “I turn with terror and horror from this lamentable 
scourge of continuous functions with no derivatives.” It should be emphasised that the cause of 
this impassioned reaction was not mathematical in nature; rather, it was triggered by the way the 
relationship between intuition and mathematics was cast in a dramatically new light. 
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