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Abstract

We highlight a topological aspect of the graph limit theory. Graphons are limit objects

for convergent sequences of dense graphs. We introduce the representation of a graphon
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on a unique metric space and we relate the dimension of this metric space to the size of

regularity partitions. We prove that if a graphon has an excluded induced sub-bigraph then

the underlying metric space is compact and has finite packing dimension. It implies in

particular that such graphons have regularity partitions of polynomial size.

1 Introduction

One can define convergence of a growing graph sequence [4, 3, 5], and construct a limit object to

such a sequence [11] in the form of a symmetric measurable function W : J × J → [0, 1], where

J is any probability space (one may assume here that J = [0, 1] with the Lebesgue measure, but

this is not always convenient). We call the pair (J,W ) a graphon.

The goal of this paper is to show that one can introduce also a topology on J (in fact, a

metric), and that topological properties of this space are related to combinatorial properties of

the graphon (or of the graphs whose limit it represents). A related metric was introduced in

[12], and the topology on J was used in [13].

The theory of graph limits is tied to the Regularity Lemma of Szemerédi [14, 15] in several

ways. In [12] it was shown that the Regularity Lemma is equivalent to the compactness of

the space of graphons in an appropriate metric, and also to a “dimensionality” of particular

graphons. This paper relates to the latter result.

The metric in question is simply the L1 metric on functions W (x, .), x ∈ J . This metric

itself can be weird (it may not even be defined on all points of J). We show in Section 3 that

that every graphon is “equivalent” (technically: weakly isomorphic, see the end of Section 2)

to a graphon (J,W ) with special properties: J is a complete separable metric space, and the

probability measure on J has full support. We call such graphons pure. We also prove that the

pure version of a graphon is uniquely determined up to changing the function W on a 0-set in

each row. We define another metric in which J is compact, and characterize the cases when

the two define the same topology. We prove that several important functions defined on J are

continuous in this topology, which shows that it is indeed the “right” topology to define on J .

In Section 4 we show that topological properties of pure graphons are related to their graph-

theoretic properties. Our main result states tha if we exclude any bipartite graph from the

graphon, then J must be compact and finite dimensional.

In [12] it was shown that weak regularity partitions of a graphon (J,W ) (which generalize

weak regularity partitions of graphs in a natural way) correspond to covering J with sets of small

diameter. In Section 5 we give a stronger and cleaner version of this result. Combined with the

results in Section 4, we obtain the following fact: If a graph does not contain a fixed bipartite

graph F as an induced sub-bigraph, then it has polynomial size strong regularity partitions (in

the error bound ε).

A motivation for our paper comes from extremal combinatorics. In [13] we study the structure

of graphons that arise as unique solutions of extremal problems involving the densities of finitely

many subgraphs (we call such graphons finitely forcible). Such graphons come up naturally

in extremal graph theory. Quite interestingly, all the examples of finitely forcible graphons

produced in [13] have a compact and finite dimensional underlying metric space. The question

2



arises wether every extremal problem (involving a finite number of subgraph densities) has a

solution of this type.

Finally we mention that graph limit theory has a close connection to the theory of dynamical

systems. Probability spaces with measure preserving actions can often be endowed by a natural

topology in which the action is continuous. The corresponding theory is called topological dy-

namics. Informally speaking, we can say that the relationship between graphons and topological

graphons is similar to the relationship between dynamics and topological dynamics.

2 Preliminaries

We make a technical but useful distinction between bipartite graphs and bigraphs. A bipartite

graph is a graph (V,E) whose node set has a partition into two classes such that all edges connect

nodes in different classes. A bigraph is a triple (U1, U2, E) where U1 and U2 are finite sets and

E ⊆ U1 × U2. So a bipartite graph becomes a bigraph if we fix a bipartition and specify which

bipartition class is first and second. On the other hand, if F = (V,E) is a graph, then (V, V,E′)

is an associated bigraph, where E′ = {(x, y) : xy ∈ E}. This bigraph is obtained from F by a

standard construction of doubling the nodes.

If G = (V,E) is a graph, then an induced sub-bigraph of G is determined by two subsets

S, T ⊆ V , and its edge set consists of those pairs (x, y) ∈ S × T for which xy ∈ E (so this is an

induced subgraph of the bigraph associated with G).

Let Ji = (Ωi,Ai, πi) (i = 1, 2) be (standard) probability spaces. A measurable function

W : J1 × J2 → [0, 1] is called a bigraphon. A graphon is a special bigraphon where J1 = J2 = J

and W is symmetric: W (x, y) = W (y, x) for all x, y ∈ J .

For a fixed probability space J , graphons can be considered as elements of the space L∞(J ×
J). The norm that it most important in their is study is, however, not the L∞ norm, but the

cut-norm, defined by

‖W‖� = sup
S,T⊆J

∣∣∣
∫

S×T

W (x, y) dx dy
∣∣∣.

We will also use the L1 norm

‖W‖1 =
∫

J×J

|W (x, y)| dx dy.

A graphon (J,W ) is called a stepfunction, if there is a partition of J into a finite number of

measurable sets S1, . . . , Sn so that W is constant on every Si ×Sj . The partition classes will be

called the steps of the stepfunction.

Every graph F = (V,E) can be considered as a graphon, if we consider V as a finite probability

space with the uniform measure, and E, as the indicator function of adjacency. We can resolve

the atoms into intervals of length 1/|V |, to get a graphon ([0, 1],WF ) (which is a stepfunction).

More explicitly, we split [0, 1] in |V | equal intervals Li, and define WF (x, y) = E(i, j) for ix ∈ Li

and y ∈ Lj. This graphon is weakly isomorphic to (V,E) (see below).

In a similar way, every bigraph can be considered as a finite bigraphon, and defines a bi-

graphon ([0, 1], [0, 1],WF ).
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Remark 2.1 We could consider the version of this notion where J1 = J2 butW is not necessarily

symmetric. Such a structure arises as the limit object of a convergent sequence of directed graphs

with no parallel edges, and therefore can be called a digraphon. We do not need them in this

paper.

Every bigraphon (J1, J2,W ) can be considered as a linear kernel operator L1(J1) → L∞(J2),

defined by

f 7→
∫

J

W (., y)f(y) dy.

Of course, this operator reamin well-defined if we increase the subscript in L1 in the domain and

lower the subscript in L∞ in the range. In the case of a graphon (J,W ), it is useful to consider

it as an operator L2(J) → L2(J), since it is then a Hilbert-Schmidt operator, and a rich theory

is applicable. In particular, we know that it has a discrete spectrum.

If (J1, J2, U) and (J2, J3,W ) are two bigraphons, we can define their operator product

(J1, J3, U ◦W ) by

(U ◦W )(x, y) =

∫

J2

U(x, z)W (z, y) dz.

(We will write dz instead of dπ2(z), where π2 is the measure on J2: integrating over J2 means

that we integrate with respect to the probability measure of J2.)

The notion of the density of a graph in a graphon has been introduced in [7]. Here we need

several versions, which unfortunately leads to some messy notation. For a graphon (J,W ) and

graph F = (V,E), we associate a variable xv ∈ J with every node v ∈ V , and define

t(F,W ;x) =
∏

uv∈E(F )

W (xu, xv), t(F,W ) =

∫

JV

t(F,W ;x) dx.

We can think of t(F,W ) as “counting subgraphs isomorphic to F”. We also need the induced

version:

tind(F,W ;x) =
∏

uv∈E(F )

W (xu, xv)
∏

u,v∈V
uv/∈E(F )

(1 −W (xu, xv))

tind(F,W ) =

∫

JV

tind(F,W ;x) dx.

For any subset S ⊆ V , we define tS(F,W ; .) : JS → R by integrating only over variables

corresponding to V \S: If x′ and x′′ denote the restrictions of x ∈ JV to S and V \S, respectively,
then

tS(F,W ;x′) =

∫

JV \S

t(F,W ;x) dx′′.

Note that t∅(F,W ) = t(F,W ) and tV (F,W ; .) = t(F,W ; .).

These quantities have obvious analogues for bigraphs and bigraphons. For a bigraphon

(J1, J2,W ) and bipartite graph (U1, U2, E), we introduce variables xu ∈ J1 (u ∈ U1) and yv ∈ J2
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(v ∈ U2), and define

tb(F,W ;x, y) =
∏

uv∈E(F )

W (xu, yv), tb(F,W ) =

∫

J
U1
1

∫

J
U2
2

tb(F,W ;x, y) dy dx.

Again, we define an induced version:

tbind(F,W ;x, y) =
∏

ij∈E(F )

W (xi, yj)
∏

i∈U1,j∈U2
ij /∈E(F )

(1 −W (xi, yj))

tbind(F,W ) =

∫

J
U1
1

∫

J
U2
2

tbind(F,W ;x, y) dy dx.

Assume that subsets Si ⊆ Ui are specified. We define the function tb(F,W ; .) : JS1

1 × JS2

2 → R

by

tbS1,S2
(F,W ;x′, y′) =

∫

J
U1\S1
1

∫

J
U2\S2
2

tb(F,W ;x, y) dy′′ dx′′,

where, similarly as above, x′ and x′′ denote the restrictions of x ∈ JU1
1 to S1 and U1 \ S1,

respectively, and similarly for y. We can define tbind;S1,S2
(F,W )(x′, y′) analogously.

Two graphons (J,W ) and (J ′,W ′) are weakly isomorphic if for every graph F , t(F,W ) =

t(F,W ′). Various characterizations of weak isomorphism were given in [2]. Every graphon is

weakly isomorphic to a graphon on [0, 1] (with the Lebesgue measure), and also to a (possibly

different) graphon which is twin-free in the sense that W (x, .) and W (x′, .) differ on a set of

positive measure for all x 6= x′.

3 The topology of graphons

3.1 The neighborhood distance

Let (J,W ) be a graphon. We can endow the space J with a distance function by

rW (x, y) = ‖W (x, .)−W (y, .)‖1.

This function is defined for almost all pairs x, y; we can delete those points from J where

W (x, .) /∈ L1(W ) (a set of measure 0), to have rW defined on all pairs. It is clear that rW is a

pre-metric (it is symmetric and satisfies the triangle inequality). We call rW the neighborhood

distance on W .

We also define metrics on bigraphons, endowing the spaces J1 and J2 with distance functions

by

r1(x, y) = ‖W (x, .)−W (y, .)‖1 (x, y ∈ J1),

r2(x, y) = ‖W (., x)−W (., y)‖1 (x, y ∈ J2).

These functions are defined for almost all pairs x, y.
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Example 1 Let Sk denote the unit sphere in R
k+1, consider the uniform probability measure

on it, and let W (x, y) = 1 if x · y ≥ 0 and W (x, y) = 0 otherwise. Then (Sk,W ) is a graphon,

in which the neighborhood distance of two points a, b ∈ Sk is just their spherical distance

(normalized by dividing by π). Furthermore, 1 − 2(W ◦W )(x, y) is just the spherical distance

of x and y, and from here is is easy to see that the similarity distance is within constant factors

of the neighborhood distance.

Example 2 Let (M,d) be a metric space, and let π be a Borel probability measure on M .

Assume that the diameter of M is at most 1. Then d can be viewed as a graphon on (M,d). For

x, y ∈ M , we have

rd(x, y) =

∫

M

|d(x, z)− d(y, z)| dπ(z) ≤
∫

M

d(x, y) dπ(z) = d(x, y),

so the identity map (M,d) → (M, rd) is contractive. This implies that if (M,d) is compact,

and/or finite dimensional (in many senses of dimension), then so is (M, rd). For most ”everyday”

metric spaces like (like segments, spheres, or balls) rd(x, y) can be bounded from below by

Ω(d(x, y)), in which case (M,d) and (M, rd) are homeomorphic.

More generally, if F : [0, 1] → [0, 1] is a continuous function, then W (x, y) = F (d(x, y))

defines a graphon, and the identity map (M,d) → (M, rW ) is continuous.

Example 3 Finitely forcible graphons, mentioned in the introduction, give interesting examples,

for whose details we refer to [13]. One class is stepfuctions (equivalent to finite weighted graphs),

which were proved to be finitely forcible by Lovász and Sós [10]; for these, the underlying metric

space is finite. Other examples introduced in [13] provide as underlying topologies an interval,

the Cantor set, and the one-point compactification of N.

3.2 Pure [bi]graphons

A bigraphon (J1, J2,W ) is pure if (Ji, ri) is a complete separable metric space and the probability

measure has full support (i.e., every open set has positive measure). This definition includes that

ri(x, y) is defined for all x, y ∈ Ji and ri(x, y) > 0 if x 6= y, i.e., the bigraphon has no ”twin

points”. We say that a graphon is pure, if the underlying metric probability space is complete,

separable and the probability measure has full support.

Theorem 3.1 Every [bi]graphon is weakly isomorphic to a pure [bi]graphon.

Remark 3.2 It was shown in [2] that every graphon is weakly isomorphic to a graphon on

a standard probability space with no parallel points, which means that for any two points

x, x′ ∈ J , W (x, .) and W (x′, .) differ on a set of positive measure. Lemma 3.4 can be considered

as a strengthening of this result.

Proof. We give the proof for bigraphons; the case of graphons is similar. We assume that

J1 and J2 are standard probability spaces; this can be achieved similarly as for graphons. Let
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T1 be the set of functions f ∈ L1[J2] such that for every L1-neighborhood U of f , the set

{x ∈ J1 : W (x, .) ∈ U} has positive measure.

Claim 3.3 For almost every point x ∈ J1, W (x, .) ∈ T1.

Indeed, it is clear that for almost all x ∈ J1, W (x, .) ∈ L1[J2]. Every function g ∈ L1[J2] \T1

has an open neighborhood Ug in L1[J2] such that π1{x ∈ J1 : W (x, .) ∈ Ug} = 0. Let

U =
⋃

g/∈T1
Ug. Since L1[J2] is separable, U equals the union of some countable subfamily

{Ugi : i ∈ N} and thus π1{x ∈ J1 : W (x, .) ∈ U} = 0. Since if W (x, .) /∈ T1 then W (x, .) ∈ U ,

this proves the Claim.

Clearly T1 inherits a metric from L1[J2], and it is complete and separable in this metric.

The functions W (x, .) are everywhere dense in T1(W ) and have measure 1. It also inherits a

probability measure π′
1 from J1 through

π′
1(X) = π1{x ∈ Ω1 : W (x, .) ∈ X}.

So T1 is a complete separable metric space with a probability measure on its Borel sets. It also

follows from the definition of T1 that every open set has positive measure.

Define W̃ : T1 × J2 → [0, 1] by W̃ (f, y) = f(y) for f ∈ T1 and y ∈ J2. Then we can replace

J1 by T1 and W by W̃ , to get a weakly isomorphic graphon. Similarly, we can replace J2 by T2.

�

We say that two graphons (J,W ) and (J ′,W ′) are isometric if there is an isometric bijection

φ : J → J ′ that is measure preserving, and W ′(φ(x), φ(y)) = W (x, y) for almost all x, y ∈ J .

The definition for bigraphons is slightly more complicated: two bigraphons (J1, J2,W ) and

(J ′
1, J

′
2,W

′) are isometric if there are isometric, measure preserving bijections φ1 : J1 → J ′
1 and

φ2 : J2 → J ′
2 such that W ′(φ1(x), φ2(y)) = W (x, y) for almost all (x, y) ∈ J1 × J2.

Theorem 3.4 If two pure [bi]graphons are weakly isomorphic, then they are isometric.

Proof. We describe the proof for graphons. Theorem 2.1 (a) in [2] says that if two graphons

(J,W ) and (J ′,W ′) are weakly isomorphic, and they have no twins, then one can delete delete

0-sets S ⊆ J and S′ ⊆ J ′ such that there is a bijective measure preserving map φ : J \S → J ′\S′

such that W ′(φ(x), φ(y)) = W (x, y) for almost all (x, y) ∈ J × J . We may even assume that for

every x ∈ J \ S, W ′(φ(x), φ(y)) = W (x, y) holds for almost all y (and vice versa), since this can

be achieved by deleting further 0-sets. Clearly φ preserves the metric.

We also know that J \ S is dense in J (since (J,W ) is pure and so its probability measure

has full support), and so J is the completion of J \ S (and similarly for J ′). Hence φ extends to

an isometry between J and J ′, which shows that (J,W ) and (J ′,W ′) are isometric graphons. �

Remark 3.5 Is purity the ultimate normalization of a graphon? There is still some freedom

left: we can change the value of W on a symmetric subset of J × J that intersects every fiber

J × {v} in a set of measure. We can take the integral of W (which is a measure ω on J),

and then the derivative of ω wherever this exists. This way we get back W almost everywhere,
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and a well defined value for some further points. What is left undefined is the set of “essential

discontinuity” of W (of measure 0). It would be interesting to relate this set to combinatorial

properties of W .

3.3 Density functions on pure [bi]graphons

The following technical Lemma will be very useful in the study of rW and related distance

functions.

Lemma 3.6 (a) Let (J,W ) be a graphon, F , a graph, and S ⊆ V , an independent set of nodes.

Then the function t = tS(F,W ; .) : JS → R satisfies

|t(x) − t(x′)| ≤ |E|max
i∈S

rW (xi, x
′
i).

(b) Let (J1, J2,W ) be a bigraphon, let F = (U1, U2, E) be a bigraph, and let Si ⊆ Ui be such

that no edge connects S1 to S2. Then the function t = tbS1,S2
(F,W, .) : JS1

1 × JS2
2 → R satisfies

|t(x, y)− t(x′, y′)| ≤ |E|max{max
i∈S1

r1(xi, x
′
i),max

j∈S2

r2(yj , y
′
j)}.

Remark 3.7 (i) It follows that the functions t in (a) and (b) are Lipschitz (and hence continu-

ous).

(ii) In both parts (a) and (b) of the Lemma, the graph F could have multiple edges.

Proof. We describe the proof of (a); the proof of (b) is similar. For each i ∈ U \ S, let xi = x′
i

be a variable. Let E = {u1v1, . . . umvm}, where we may assume that vi ∈ U \ S. Then

t(x)− t(x′) =

∫

JU\S

m∏

i=1

W (xui , xvi) dy −
∫

JU\S

m∏

i=1

W (x′
ui
, x′

vi) dy

=
m∑

j=1

∫

JU\S

∏

i<j

W (xui , xvi)(W (xuj , xvj )−W (x′
uj
, x′

vj ))
∏

j>i

W (x′
ui
, x′

vi), dy

and hence

|t(x)− t(x′)| ≤
m∑

j=1

∫

JU\S

|W (xuj , xvj )−W (x′
uj
, x′

vj )| dy.

By the assumption that vi ∈ U \ S, we have xvj = x′
vj for every j, and so

|t(x)− t(x′)| ≤
m∑

j=1

rW (xuj , x
′
uj
) ≤ |E| max

1≤i≤k
rW (xi, x

′
i),

which proves the assertion. �

Lemma 3.6 has an important corollaries for pure graphons, which are closely related to

Lemma 2.8 in [13]. We do not formulate all versions, just a few that we need.

Corollary 3.8 Let (J,W ) be a pure graphon, and let F be a graph and let S ⊆ V , where S is

independent. Then tS(F,W ;x) is a continuous function of x ∈ JS .
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Applying this when F is a path of length 2, we get:

Corollary 3.9 For every pure graphon (J,W ), W ◦W is a continuous function on J .

Another application of Corollary 3.8 gives:

Corollary 3.10 Let (J,W ) be a pure graphon, and let F1, . . . , Fm be graphs whose node set

contains a common set S, which is independent in each. Let T ⊆ S, and let a1, . . . , am be real

numbers. Let x ∈ JT , and assume that the equation

m∑

i=1

aitS(Fi,W ;x, y) = 0 (1)

holds for almost all y ∈ JS\T . Then it holds for all y ∈ JS\T .

Proof. By Corollary 3.8, the left hand side of (1) is a continuous function of (x, y), and so

it remains a continuous function of y if we fix x. Hence the set where it is not 0 is an open

subset of JS\T . Since the graphon is pure, it follows that this set is either empty of has positive

measure. �

We formulate one similar corollary for bigraphons.

Corollary 3.11 Let (J1, J2,W ) be a pure bigraphon, and let F1, . . . , Fm be bigraphs with the

same bipartition classes U1 and U2. Let a1, . . . , am be real numbers. Assume that the equation

m∑

i=1

ait
b

U1
(Fi,W ;x) = 0 (2)

holds for almost all x ∈ JU1
1 . Then it holds for all x ∈ JU1

1 .

3.4 The similarity distance

It turns out (it was already noted in [12]) that the distance function rW◦W defined by the

operator square of W is also closely related to combinatorial properties of a graphon. We call

this the similarity distance (for reasons that will become clear later). In explicit terms, we have

rW◦W (a, b) =

∫

J

∣∣∣
∫

J

W (a, y)W (y, x) dy −
∫

J

W (b, y)W (y, x) dy
∣∣∣ dx

=

∫

J

∣∣∣
∫

J

W (x, y)
(
W (y, a)−W (y, b)

)
dy

∣∣∣ dx. (3)

Remark 3.12 Let X,Y,Z be independent uniform random points from J , then we can rewrite

the definitions of these distances as

rW (a, b) = EX|W (X, a)−W (X, b)|, (4)

rW◦W (a, b) = EX

∣∣EY(W (X,Y)(W (Y, a) −W (Y, b)))
∣∣. (5)

This formulation shows that this distance can be computed with arbitrary precision from a

bounded size sample. We do not go into the details of this.
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Lemma 3.13 If (J,W ) is a pure graphon, then the similarity distance rW◦W is a metric.

So (J, rW◦W ) is a metric space, and hence Huasdorff. We will show later that it is always

compact.

Proof. The only nontrivial part of this lemma is that rW◦W (x, y) = 0 implies that x = y.

The condition rW◦W (x, y) = 0 implies that for almost all u ∈ J we have (W ◦ W )(x, u) =

(W ◦W )(y, u), or more explicitly

∫

J

(W (x, z)−W (y, z))W (z, u) dz = 0.

Using that (J,W ) is pure, Corollary 3.11 implies that this holds for every u ∈ J . in particular,

it holds for u = x and u = y. Taking the difference, we get that

∫

J

(W (x, z)−W (y, z))(W (z, x)−W (z, y)) dz = 0,

and hence W (x, z) = W (y, z) almost everywhere. Using again that (J,W ) is pure, we get that

x = y. �

For every x ∈ J , the function W (x, .) is in L∞(J), and hence the weak topology of L1(J)

gives a topology on J . It is well known that when restricted to L∞(J), this topology is the

weak-∗ topology on L∞(J), and hence it is metrizable, and the unit ball of L∞(J) is compact in

it (Alaoglu’s Theorem). A sequence of points (xn) is convergent in this topology if and only if

∫

A

W (xn, y) dy →
∫

A

W (x, y) dy

for every measurable set A ⊆ J . We call this the weak topology on J . We need this name only

temporarily, since we are going to show that rW◦W gives a metrization of the weak topology.

Theorem 3.14 For any pure graphon, the metric rW◦W defines exactly the weak topology.

Proof. First we show that the weak topology is finer than the topology of (J, rW◦W ). Suppose

that xn → x in the weak topology, and consider

rW◦W (xn, x) =

∫

J

∣∣∣
∫

J

(
W (xn, y)−W (x, y)

)
W (y, z) dy

∣∣∣ dz.

Here the inner integral tends to 0 for every z, by the weak convergence xn → x. Since it also

remains bounded, it follows that the outer integral tends to 0. This implies that xn → x in

(J, rW◦W ).

From here, the equality of the two topologies follows by general arguments: the weak topology

is compact, and the coarser topology of rW◦W is Hausdorff, which implies that they are the same.

�

Corollary 3.15 For every pure graphon (J,W ), the space (J, rW◦W ) is compact.
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To compare the topology of (J, rW ) with these, note that for any two points x, y ∈ J , we

have

rW◦W (x, y) ≤ rW (x, y), (6)

which implies that the topology of (J, rW ) is finer than the topology of (J, rW◦W ).

3.5 Compact Graphons

Graphons for which the finer space (J, rW ) is also compact seem to have a special importance

in combinatorics. Let us call such a graphon a compact graphon.

Proposition 3.16 A pure graphon (J,W ) is compact if and only if (J, rW ) and (J, rW◦W ) define

the same topologies.

Proof. If the topologies (J, rW ) and (J, rW◦W ) are the same, then (J, rW ) is compact by

Corollary 3.15. Conversely, if (J, rW ) is compact then, by the argument used before in the proof

of Theorem 3.14, the coarser Hausdorff topology of (J, rW◦W ) must be the same. �

Example 4 Let J = [0, 1], f(y) = ⌊log(1/y)⌋, and define

W (x, y) =





xf(y), if x > 1/2 and y ≤ 1/2,

yf(x), if x ≤ 1/2 and y > 1/2,

0, otherwise,

where x = 0.x1x2 . . . and y = 0.y1y2 . . . are the binary expansions of x and y, respectively.

Then selecting one point from each interval [2−k+1, 2−(k)], we get an infinite number of points in

([0, 1], r2) mutually at distance 1/4, so (J,Wr) is not compact, but by Corollary 3.15, (J, rW◦W )

is compact. So the two topologies are different.

We conclude this section with an observation relating the topology of J to spectral theory.

Lemma 3.17 Let (J,W ) be a pure graphon. Then every eigenfunction f ∈ L2(J) of W as

a kernel operator belonging to a nonzero eigenvalue is continuous in the metric rW◦W (and

therefore also in rW ).

Proof. It suffices to prove that f is continuous in (J, rW ), since we can apply the argument to

the graphon (J,W ◦W ), which also has f as an eigenvector.

First, we have

|f(x)| = 1

|λ|

∣∣∣∣
∫

J

W (x, y)f(y) dy

∣∣∣∣ ≤
1

|λ| ‖f‖1 ≤
1

|λ| ‖f‖2,

and so f is bounded. We know by Corollary 3.9 that W ◦W is continuous in (J, rW ), and hence

so is

f =
1

λ2

∫

J

(W ◦W )(x, y)f(y) dy.

�
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4 Thin graphons

4.1 The main theorem

We say that a bigraphon W is thin if there is a bigraph F such that tbind(F,W ) = 0. Trivially, if

W is thin, then so is its complementary bigraphon 1−W .

We call a graphon thin if it is thin as a bigraphon. (Note: for this, it is not enough to require

tind(F,W ) = 0 for some bipartite graph F . For example, consider the graphon U : [0, 1]2 → [0, 1]

defined by U(x, y) = U(y, x) = 1/2 if x ∈ [0, 1/2] and y ∈ (1/2, 1], and U(x, y) = 1 otherwise.

As a bigraphon, this is not thin, but satisfies tind(F,W ) = 0 for every bigraph with at least 3

nodes in one of the classes.

The (upper) packing dimension of a metric space (M,d) is defined as

lim sup
ε→0

logN(ε)

log(1/ε)
,

where N(ε) is the maximum number of points in M mutually at distance at least ε. So this

dimension is finite if and only if there is a d ≥ 0 such that every set of points mutually at

distance at least ε has at most ε−d elements. It is easy to see that we could use instead of N(ε)

the minimum number of sets of diameter at most ε covering the space.

Our main goal is to prove:

Theorem 4.1 If a pure bigraphon (J1, J2,W ) is thin, then (a) W (x, y) ∈ {0, 1} almost every-

where, (b) J1, J2 are compact, and (c) J1, J2 have finite packing dimension.

Remark 4.2 The proof will show that if tind(F,W ) = 0 for a bigraph F with k nodes, then the

packing dimension of Ji is bounded by 10|F |.

Before giving the proof, we describe a class of examples, and then recall some facts about

the Vapnik-Červonenkis dimension.

Example 5 Let V be a finite or countable set, π, a probability measure on V , and define

J1 = [0, 1]V , J2 = [0, 1]× V , with the power measure µ1 on J1 and the product measure µ2 on

J2. We define a bigraphon on J1 × J2 by

W (x, y) = 1t≤xi

for x = (xi : i ∈ S) and y = (t, i). We can metrize this bigraphon by

r1(x, x
′) =

∑

i∈V

π(i)|xi − x′
i|

for x = (xi : i ∈ S), x′ = (x′
i : i ∈ S) ∈ J1, and

r2(y, y
′) =

{
|t− t′| if i = 1′,

t+ t′ − 2tt′ otherwise.

for y = (t, i), y′ = (t′, i′) ∈ J2.

12



If V is finite, then (J1, r1) has dimension |V |, while (J2, r2) has dimension 1, and both are

compact. These facts also follow if we observe that W is thin. Indeed, if F denotes the matching

with |V | + 1 edges, then tbind(F,W ) = 0, since among any |V | + 1 points in J2, there are two

points of the form y = (t, i) and y′ = (t′, i) with t < t′, and then W (., (t, i)) ≥ W (., (t′, i)).

If V is infinite, then (J1, r1) is infinite dimensional but compact, while (J2, r2) is not compact.

Example 6 Let J1 = J2 = [0, 1], and let W (x, y) = xf(y), where x = 0.x1x2 . . . is the binary

expansion of x, and f(y) = ⌈log(1/y)⌉. Then for x = 0.x1x2 . . . and x′ = 0.x′
1x

′
2 . . . we have

r1(x, x
′) =

∑∞
k=1 2

−k|xk − x′
k|, and from here is is easy to see that ([0, 1], r1) is compact. Fur-

thermore, if S ⊆ [0, 1] is a set of points mutually more than 2−n apart, then any two elements of

S must differ in one of their first n digits, and so their number is at most 2n. Hence the packing

dimension of ([0, 1], r1) is 1.

On the other hand, selecting a point yk ∈ [2−k, 2−(k−1)], we get an infinite number of points

in ([0, 1], r2) mutually at distance 1/2, so this space is not compact and infinite dimensional.

4.2 Vapnik-Červonenkis dimension

For any set V and family of subsets H ⊆ 2V , a set S ⊆ V is called shattered, if for every X ⊆ S

there is a Y ∈ H such that X = Y ∩ S. The Vapnik-Červonenkis dimension or VC-dimension

dimVC(H) of a family of sets is the supremum of cardinalities of shattered sets [16]. For us, k

will be always finite.

Let V be a probability space and H, a family of measurable subsets of V . A finite subfamily

H′ is qualitatively independent if all the 2|H
′| atoms of the set algebra they generate have positive

measure. The dual essential Vapnik-Červonenkis dimension, or briefly DE-dimension, of H is a

supremum of all cardinalities of qualitatively independent subfamilies of H.

We recall two basic facts about VC-dimension:

Lemma 4.3 (Sauer-Shelah Lemma) If a family H of subsets of an m-element set has VC-

dimension k, then

|H| ≤ 1 +m+ · · ·+
(
m

k

)
.

For a family H of sets, we denote by τ(H) the minimum cardinality of a set meeting every

member of H. The following basic fact about VC-dimension was proved by Komlós, Pach and

Woeginger [9], based on the results of Vapnik and Červonenkis [16] (we do not state it in its

sharpest form):

Theorem 4.4 Let J be a probability space and, H a family of measurable subsets of J such that

every A ∈ H has measure at least ε. Suppose that H has finite VC-dimension k. Then

τ(H) ≤ 8k
1

ε
log

1

ε
.

We need a couple of further facts. For a family H of sets, let H(△)H = {A△B : A,B ∈ H}.

Lemma 4.5 For every family of sets, dimVC(H(△)H) ≤ 10 dimVC(H).
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Proof. Set k = dimVC(H). Let S be a subset of V = ∪H with m elements that is shattered by

H(△)H). Then every X ⊆ S arises as X = (A△B) ∩ S, where A,B ∈ H. Since (A△B) ∩ S =

(A ∩ S)△(B ∩ S), the number of different sets of the form A ∩ S is at least 2m/2. By the

Sauer-Shelah Lemma, this implies that

2m/2 ≤ 1 +m+ · · ·+
(
m

k

)
,

whence m ≤ 10k follows by standard calculation. �

Lemma 4.6 Let H be a family of measurable sets in a probability space with VC-dimension k

such that π(A△B) ≥ ε for all A,B ∈ H. Then |H| ≤ (80k)kε−20k.

Proof. Consider the family H′ = H(△)H. Every A ∈ H′ has π(A) ≥ 1/ε, and dimVC(H′) ≤
10k by Lemma 4.5. Hence by Theorem 4.4, we have

τ(H′) ≤ 80k
1

ε
ln

1

ε
.

Let S ⊆ ∪H be a set of size τ(H′) meeting every symmetric difference A△B (A,B ∈ H). Then

the sets S ∩ A, A ∈ H are all different. By the Sauer-Shelah Lemma, this implies that

|H| ≤ 1 + |S|+ · · ·+
( |S|
10k

)
< |S|10k ≤

(
80k

1

ε
ln

1

ε

)10k

< (80k)10kε−20k.

�

4.3 VC-dimension and graphons

Lemma 4.7 Let (J1, J2,W ) be a pure 0-1 valued bigraphon. Then W is thin if and only if the

DE-dimension of the family RW = {supp(W (x, .)) : x ∈ T1} is finite.

Proof. Suppose that this dimension is infinite. We claim that tbind(F,W ) > 0 for every bipartite

graph F = (U,U ′, E). Let S ⊆ J1 be a set such that the subfamily {supp(W (x, .)) : x ∈ T1} is

qualitatively independent. To each i ∈ U , assign a value xi ∈ S bijectively. By Corollary 3.11,

the set of points y ∈ J2 such that supp(W (., y)) ∩ S = {xi : i ∈ N(j)} has positive measure for

each j ∈ U ′. Hence tbind(F,W ) > 0.

Conversely, suppose that k = dim(RW ) is finite. Let F denote the bipartite graph with k+1

nodes in one class U and 2k+1 nodes in the other class U ′, in which the nodes in U ′ have all

different neighborhoods. Then tbind(F,W ) = 0. �

Remark 4.8 The proof above in fact gives the following quantitative result: tbind(F,W ) = 0 for

some bigraph F with k nodes in its smaller bipartition class if and only if dimDE(RW ) < k.

Proof of Theorem 4.1. We may assume that W is pure.
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(a) Suppose that the bigraph F = (U1, U2, E) satisfies tbind(F,W ) = 0. Then for almost all

x ∈ JU1
1 , we have tbU1,ind

(F,W ;x) = 0. By Corollary 3.11, it follows that tbU1,ind
(F,W ;x) = 0 for

every x. In particular, tbU1,ind
(F,W ;x0, . . . , x0) = 0 for all x0 ∈ J1. But for this substitution,

tbU1,ind(F,W ;x0, . . . , x0) =

∫

J
V2
2

∏

j∈J2

W (x0, yj)
dF (j)(1−W (x0, yj))

|U1|−dF (j),

and so for every x0 we must have W (x0, y0) ∈ {0, 1} for almost all y0.

(b) By Theorem 3.16 it suffices to prove that if W (xn, .), n = 1, 2, . . . weakly converges to f ,

i.e.,

lim
n→∞

∫

S

W (xn, y) dy →
∫

S

f(y) dy

for every measurable set S ⊆ J2, then it is also convergent in L1.

Claim 4.9 The weak limit function f is almost everywhere 0-1 valued.

Suppose not, then there is an ε > 0 and a set Y ⊆ J2 with positive measure such that

ε ≤ f(x) ≤ 1− ε for x ∈ Y . Let Sn = supp(W (xn, .)) ∩ Y . We select, for every k ≥ 1, k indices

n1, . . . nk so that the Boolean algebra generated by Sn1 , . . . Snk
has 2k atoms of positive measure.

If we have this for some k, then for every atom A of the boolean algebra

λ(A ∩ Sn) =

∫

A

W (x, yn) dx −→
∫

A

f(x) dx (n → ∞),

and so if n is large enough then

ε

2
λ(A) ≤ λ(A ∩ Sn) ≤

(
1− ε

2

)
λ(A).

If n is large enough, then this holds for all atoms A, and so Sn cuts every previous atom into

two sets with positive measure, and we can choose nk+1 = n.

But this means that the DE-dimension of the supports of the W (x, .) is infinite, contradicting

Lemma 4.7. This proves Claim 4.9.

So we know that f(x) ∈ {0, 1} for almost all x, and hence

‖f −W (., yn)‖1 =

∫

{f=1}

(1 −W (x, yn)) dx +

∫

{f=0}

W (x, yn) dx −→ 0.

Thus W (., yn) → f in L1, which we wanted to prove.

(c) Let F = (U1, U2, E) be a bigraph such that tbind(F,W ) = 0, and let Ui = [ki]. We

show that the packing dimension of J1 is at most 10k2. To this end, we show that if any

two elements of a finite set Z ⊆ J1 are at a distance at least ε, then |Z| ≤ c(k)ε−2k2 . Let

H = {supp(W (x, .)) : x ∈ Z}, then
π2(X△Y ) ≥ ε (7)

for any two distinct sets X,Y ∈ H.
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Let A be the union of all atoms of the set algebra generated by H that have measure 0.

Clearly A itself has measure 0, and hence the family H′ = {X \ A : X ∈ H} still has property

(7).

We claim that H′ has VC-dimension less than k2. Indeed, suppose that J2 \ A contains a

shattered set S with |S| = k2. To each j ∈ U2, assign a point qj ∈ S bijectively. To each i ∈ U1,

assign a point pi ∈ Z such that qj ∈ supp(W (pi, .)) if and only if ij ∈ E. This is possible since

S is shattered. Now fixing the pi, for each j there is a subset of J2 of positive measure whose

points are contained in exactly the same members of H′ as qj , since qj /∈ A. This means that the

function t = tbJ1,ind
(F,W ; .) : V J1

1 → R satisfies t(p) > 0. Corollary 3.11 implies that t(x) > 0

for a positive fraction of the choices of x ∈ JV1
1 , and hence tbind(F,W ) > 0, a contradiction.

Applying Lemma 4.6 we conclude that |Z| = |H| ≤ (80k2)
10k2ε−20k2 . �

4.4 Hereditary properties and thin bigraphons

A graph property P is a class of finite graphs closed under isomorphism. The property is called

hereditary, if whenever G ∈ P , then every induced subgraph is also in P .

Let P be any graph property. We denote by P its closure, i.e., the class of graphons (J,W )

that arise as limits of graph sequences in P . For every graphon W , let I(W ) denote the set of

those graphs F for which tind(F,W ) > 0. Clearly, I(W ) is a hereditary graph property.

Let P be a hereditary property of graphs. Then

∪W∈P I(W ) ⊆ P . (8)

Indeed, if F /∈ P , then tind(F,G) = 0 for every G ∈ P , since P is hereditary. This implies that

tind(F,W ) = 0 for all W ∈ P , and so F /∈ I(W ).

Equality does not always hold in (8). For example, we can always add a bigraph G and all

its induced subgraphs to P without changing P . As a less trivial example, consider all bigraphs

with degrees bounded by 10. This property is hereditary, and P consists of a single bigraphon

(the identically 0 function).

Proposition 4.10 For a hereditary property P of graphs equality holds in (8) if and only if for

every graph G ∈ P and v ∈ V (G), if we add a new node v′ and connect it to all neighbors of v,

then at least one of the two graphs obtained by joining or not joining v and v′ has property P.

Proof. Suppose that this condition holds. Let F ∈ P have n nodes, and let F (k) denote a

graph in P obtained from F by a repetition of this operation so that each original node has k

copies. Then tind(F, F (k)) ≥ 1/nn. Let W be the limit graphon of some subsequence of the

F (k) (k → ∞), then W ∈ P. Furthermore, clearly tind(F,W ) > 0, and so F ∈ I(W ).

Conversely, assume that F = (V,E) ∈ I(W ) for some W ∈ P, so that tind(F,W ) > 0. Let F ′

and F ′′ be the two graphs obtained from F by doubling a node v (vv′ /∈ E(F ′), but vv′ ∈ E(F ′′)),

then ∫

JV

tind(F,W ;x) dx > 0
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implies that there is a positive measure of choices for the values of xu (u ∈ V (F ) \ v), for

which the set X of the choices of xv with tind(F,W ;x) > 0 has positive measure. Clearly either

W (x, y) < 1 for a positive measure of choices of (x, y) ∈ Y or this holds for W (x, y) > 0. One

or the alternative, say the first one, holds for a positive measure of choices for the values of xu

(u ∈ V (F ) \ v). But then t(F ′,W ) > 0. �

All of the above notions and simple facts extend to bigraphs and bigraphons trivially.

Let us turn to thin graphons and bigraphons. The significance of thin bigraphons is supported

by the following observation:

Proposition 4.11 Let P be a hereditary bigraph property that does not contain all bigraphs.

Then every bigraphon in its closure is thin.

Proposition 4.11 and Theorem 4.1 imply:

Corollary 4.12 Let P be a hereditary bigraph property that does not contain all bigraphs. Then

for every pure bigraphon (J1, J2, ,W ) in its closure, W is 0-1 valued almost everywhere, and J1

and J2 are compact and their dimension is bounded by a finite number depending on P only.

By this corollary, we can define, for every nontrivial hereditary property of bigraphs, a finite

dimension. It would be interesting to find further combinatorial properties of this dimension.

The natural analogue of this corollary for graph properties fails to hold.

Example 7 Let P be the property of a graph that it is triangle-free. Then every bipartite

graphon is in its closure, but such graphons need not be 0-1 valued, and their topology need not

be finite dimensional or compact.

However, if we include the (seemingly) simplest of the conclusions of Corollary 4.12 as a

hypothesis, then we can extend it to all graphs. A graph property P is random-free, if every

W ∈ P is 0-1 valued almost everywhere.

Theorem 4.13 Let P be a hereditary random-free graph property. Then for every pure graphon

(J,W ) in its closure, J is compact and finite dimensional.

Before proving this theorem, we need some preparation.

Lemma 4.14 For a hereditary graph property P, the following are equivalent:

(i) P is random-free;

(ii) there is a bigraph F such that tb(F,W ) = 0 for all W ∈ P;

(iii) there is a bipartite graph F with bipartition (U1, U2) such that no graph obtained from F

by adding edges within U1 and U2 has property P.

Proof. (i)⇒(iii): Assume that (iii) does not hold, then for every bigraph F there is a graph

F̂ ∈ P and a partition V (F̂ ) = {U1(F̂ ), U2(F̂ )} such that the bigraph between U1(F̂ ) and U2(F̂ )

is isomorphic to F . We want to show that P is not random-free.
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Let (F1, F2, . . . ) be a quasirandom sequence of bigraphs with edge density 1/2, with the same

number of nodes in each bipartition class. Consider the graphs F̂n, and let F ′
n and F ′′

n denote

the subgraphs of F̂n induced by U1(F̂n) and U2(F̂n), respectively. By selecting a subsequence we

may assume that the graph sequences (F ′
1, F

′
2, . . . ) (F

′′
1 , F

′′
2 , . . . ) are convergent. By Lemma 4.16

in [5], we can order the nodes of F ′
n so that WF ′

n
converges to a graphon ([0, 1],W ′) in the cut

norm ‖.‖�, and similarly, WF ′′
n

converges to a graphon ([0, 1],W ′′) in the cut norm. We order

the nodes of F̂n so that the nodes in F ′
n preceed the nodes of F ′′

n , and keep the above ordering

otherwise. Then trivially WF̂n
converges to the graphon

U(x, y) =





W ′(2x, 2y) if x, y < 1/2,

W ′′(2x− 1, 2y − 1) if x, y > 1/2,

1/2 otherwise.

So U ∈ P is not 0-1 valued, and so P is not random-free.

(ii)⇒(i): Suppose that P is not random-free, and let (J,W ) ∈ P be a graphon that is not

0-1 valued almost everywhere. Then by Theorem 4.1, it is not thin as a bigraphon, which means

that for every bigraph F = (U1, U2, E), tbind(F,W ) > 0, so (ii) is not satisfied.

(iii)⇒(ii): Consider a bigraph F = (U1, U2, E) as in (iii), and consider it as a bipartite graph

on V = U1 ∪ U2 (we assume that U1 ∩ U2 = ∅). Suppose that it does not satisfy (ii), then there

is a graphon W ∈ P such that t(F,W ;x) > 0 for a positive measure of choices of the x ∈ JV .

For every such choice, we define a graph F ′ by connecting those pairs {i, j} of nodes of F for

which W (xi, xj) > 0 and either i, j ∈ U1 or i, j ∈ U2. The same supergraph F ′ will occur for a

positive measure of choices of the xi, and for this F ′ we have tind(F
′,W ) > 0, so using (8), we

get F ′ ∈ I(W ) ⊆ P , a contradiction. �

Proof of Theorem 4.13. By Lemma 4.14, there is a bigraph F such that tb(F,W ) = 0 for all

W ∈ P . Thus Theorem 4.1 implies the assertion. �

5 Regularity partitions

5.1 Weak and strong regularity partitions

The Regularity Lemma of Szemerédi [14, 15], and various weaker and stronger versions of it are

basic tools in the study of large graphs and graphons [12]. Our goal is to show that it is also

closely related to the topology of graphons.

Let (J,W ) be a graphon and P , a partition of J into measurable sets with positive measure.

For x ∈ J , let S(x) denote the partition class containing x. Define

fP(x) =
1

π(S(x))

∫

S(x)

f(x) dx

for a function f ∈ L1(J), and

WP (x, y) =
1

π(S(x))π(S(y))

∫

S(x)×S(y)

W (x, y) dx.
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We say that P is a weak regularity partition with error ε, if ‖W −WP‖� ≤ ε.

We define a Szemerédi partition of a graphon with error ε as a partition P = {S1 ∪ · · · ∪ Sk}
of J into measurable sets such that

|〈W −WP , H〉| ≤ ε (9)

for every function H : J × J → [0, 1] that is 0-1 valued and whose support is the union of

product sets Rij = R′
ij × R′

ij ⊆ Si × Sj (i, j ∈ [k]). To relate this to the weak partitions, we

note that ‖W −WP‖� ≤ ε can be expressed as (9) for all functions h of the form 1S×T . (The

formulation above is not a direct generalization of Szemerédi’s definition, but it is closest in our

setting; cf. [12].)

A strong regularity partition of a graph was introduced by Alon, Fischer, Krivelevich and

M. Szegedy [1]. Here the error is specified by an infinite sequence E = (ε0, ε1, . . . ) of positive

numbers. Again recasting it in our setting, P is a strong regularity partition with error E of a

graphon (J,W ) if there is a graphon (J, U) such that

‖W − U‖1 ≤ ε0 and ‖U −WP‖� ≤ ε|P|.

Even stronger would be, of course, to require that ‖W −WP‖1 ≤ ε (equivalently, (9) holds for

all measurable functions H : J × J → [−1, 1]). In this case we call P an ultra-strong regularity

partition with error ε.

The following result is a graphon version of the original Szemerédi’s Regularity Lemma [14,

15], its “weak” form due to Frieze and Kannan [8], and its strong form due to Alon, Fischer,

Krivelevich and M. Szegedy [1]. It was proved for graphons in [12].

Theorem 5.1 Let (J,W ) be a graphon on an atomfree probability space. Then

(a) for every ε > 0 (J,W ) has a Szemerédi partition with error ε into no more than T (ε)

classes, where T (ε) depends only on ε;

(b) for every ε > 0 (J,W ) has a weak regularity partition with error ε into no more than

22/ε
2

classes.

(c) for every sequence E = (ε0, ε1, . . . ) of positive numbers, (J,W ) has a strong regularity

partition of (J,W ) with error E into no more than T (E) classes, where T (E) depends only on E.

Remark 5.2 (i) We note that every graphon has an ultra-strong partition with error ε by

standard results in analysis, but the number of classes cannot be bounded uniformly by any

function of ε.

(ii) In the usual formulation, partitions in the Regularity Lemma are equitable, i.e., the

partition classes are as equal as possible. For graphons on atomless probability spaces, the

classes can be required to have the same measure. In fact, it is easy to see that the partitions

constructed e.g. in Corollary 5.4 and Theorem 5.8 below can be repartitioned so that the classes

will be as equal as possible, the error is at most doubled, and the number of classes is increased

by a factor of at most ⌈1/ε⌉.
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Several other analytic aspects and versions of the Regularity Lemma were proved in [12].

One of these results made a connection between regularity partitions and partitions of J into

sets with small diameter in the rW◦W metric. Here we prove a stronger, cleaner version of that

result, and then show how to combine it with our results on thin graphons to get better bounds

on the number of partition classes in weak regularity partitions of this graphons.

5.2 Voronoi cells and regularity partitions

We show that Voronoi cells in the metric spaces (J,RW ) and (J,RW◦W ) are intimately related

to different versions of the Regularity Lemma.

Let (J, d) be a metric space and let π be a probability measure on its Borel sets. We say that

a set S ⊆ J is an average ε-net, if
∫
J
d(x, S) dπ(x) ≤ ε.

Let S ⊆ J be a finite set and s ∈ S. The Voronoi cell of S with center s is the set of all

points x ∈ J for which d(x, s) ≤ d(x, y) for all y ∈ S. Clearly, the Voronoi cells of S cover J .

(We can break ties arbitrarily to get a partition.)

Theorem 5.3 Let (J,W ) be a graphon, and let ε > 0.

(a) Let S be an average ε-net in the metric space (S, rW◦W ). Then the Voronoi cells of S

form a weak regularity partition with error at most 8
√
ε.

(b) Let P = {J1, . . . , Jk} be a weak regularity partition with error ε. Then there are points

vi ∈ Ji such that the set S = {v1, . . . , vk} is an average (4ε)-net in the metric space (S, rW◦W ).

Proof. (a) Let P be the partition into the Voronoi cells of S. Let us write R = W −WP . We

want to show that ‖R‖� ≤ 8
√
ε. It suffices to show that for any 0-1 valued function f ,

〈f,Rf〉 ≤ 2
√
ε. (10)

Let us write g = f − fP , where fP(x) is obtained by replacing f(x) by the average of f over the

class of P containing x. Clearly 〈fP , RfP〉 = 0, and so

〈f,Rf〉 = 〈g,Rf〉+ 〈fP , Rf〉 = 〈f,Rg〉+ 〈fP , Rg〉 ≤ 2‖Rg‖1 ≤ 2‖Rg‖2. (11)

For each x ∈ J , let ϕ(x) ∈ S be the center of the Voronoi cell containing x, and define W ′(x, y) =

W (x, φ(y)) and similarly R′(x, y) = R(x, φ(y)). Then using that (W − R)g = WPg = 0,

W −W ′ = R−R′ and R′g = 0, we get

‖Rg‖22 = 〈Rg,Rg〉 = 〈Wg, (R−R′)g〉 = 〈Wg, (W −W ′)g〉 = 〈g,W (W −W ′)g〉

≤ ‖W (W −W ′)‖1 =

∫

J2

∣∣∣
∫

J

W (x, y)(W (y, z)−W (y, ϕ(z)) dy
∣∣∣ dx dz

=

∫

J

rW (z, ϕ(z)) = EX(rW (X, S)) ≤ ε.

This proves (10).
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(b) Suppose that P is a weak Szemerédi partition with error ε. Let R = W −WP , then we

know that ‖R‖� ≤ ε.

For every x ∈ [0, 1], define

F (x) =

∫

J

∣∣∣
∫

J

R(x, y)W (y, z) dy
∣∣∣dz.

Then we have ∫

J

F (x) dx =

∫

J3

s(x, z)R(x, y)W (y, z) dx dy dz,

where s(x, z) is the sign of
∫
R(x, y)W (y, z). For every z ∈ J ,

∫

J2

s(x, z)R(x, y)W (y, z) dx dy ≤ 2‖R‖� ≤ 2ε,

and hence ∫

J

F (x) dx ≤ 2ε. (12)

Let x, y ∈ J be two points in the same partition class of P . Then WP(x, s) = WP (y, s) for

every s ∈ J , and hence

rW (x, y) =

∫

J

∣∣∣
∫

J

(W (x, s)−W (y, s))W (s, z) ds
∣∣∣ dz

=

∫

J

∣∣∣
∫

J

(R(x, s)−R(y, s))W (s, z) ds
∣∣∣ dz

≤
∫

J

∣∣∣
∫

J

R(x, s)W (s, z) ds
∣∣∣ dz +

∫

J

∣∣∣
∫

J

R(y, s)W (s, z) ds
∣∣∣ dz

= F (x) + F (y).

For every set T ∈ P , let vT ∈ T be a point “below average” in the sense that

F (vT ) ≤
1

π(T )

∫

T

F (x) dx,

and let S = {vT : T ∈ P}. Then using (12),

EXd(X, S) ≤
∑

T∈P

∫

T

d(x, vT ) dx ≤
∑

T∈P

∫

T

(F (x) + F (vT )) dx

≤
∫

J

F (x) dx +
∑

T∈P

λ(T )F (vT ) ≤ 2

∫

J

F (x) dx ≤ 4ε.

This proves the Theorem. �

Theorems 5.3 and 4.1 imply the following Corollary (we prove a stronger result in the next

section).
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Corollary 5.4 For every bigraph F = (V,E) there is a constant cF > 0 such that if G is a

graph not containing F as an induced sub-bigraph, then for every ε > 0, G has a weak regularity

partition with error ε with at most cF ε
−10|V | classes.

Remark 5.5 The conclusion does not remain true if the subgraph we exclude is nonbipartite.

Any bipartite graph will then satisfy the condition, and some bipartite graphs are known to need

an exponential (in 1/ε) number of classes in their weak regularity partitions.

5.3 Edit distance

We conclude with deriving bounds on the size of the Szemerédi partitions and approximations

in L1, using the packing dimension of (J, rW ). In the graph theoretic case, this corresponds to

approximation in edit distance.

Lemma 5.6 Let W be a graphon such that (J, rW ) can be covered by m balls of radius ε. Then

there is a stepfunction U with m(1/ε)m steps such that ‖W − U‖1 ≤ 2ε.

Remark 5.7 If W is 0-1 valued, then the bound on the number of classes can be improved to

m2m.

Proof. Let P = {J1, J2, . . . , Jm} be a partition of J into measurable sets such that for every

i there is xi ∈ J with ‖W (xi, .) −W (x, .)‖1 ≤ ε for every x ∈ Ji. Let W ′(x, y) = W (xi, y) for

x ∈ Ji, then trivially ‖W −W ′‖1 ≤ ε. Let Qi be a partition of J into 1/ε measurable classes so

that W (xi, .) varies at most ε on each class of Qi. For x ∈ Ji and y ∈ S ∈ Qi, define

U(x, y) =
1

π(S)

∫

S

W ′(x, z) dz.

Then clearly |U(x, y) − W ′(x, y)| ≤ ε for all x, y ∈ J , and hence ‖U − W‖1 ≤ ‖U − W ′‖1 +

‖W − W ′‖1 ≤ 2ε. It is obvious that U is a stepfunction in the partition generated by P and

Q1, . . . ,Qm, which has at most m(1/ε)m classes. �

We obtain from this lemma:

Theorem 5.8 Let W be a graphon such that (J, rW ) has packing dimension d, then for every

0 < ε < 1 it has an ultra-strong partition with error ε and with at most ε−O(ε−d) classes.

Proof. Consider a maximal packing in (J, rW ) of balls with radius ε/8; this consists of

m = O(ε−d) balls. The balls with the same centers and with radius ε/4 cover J , so Lemma 5.6

there is a stepfunction U with m(4/ε)m ≤ ε−cε−d

steps such that ‖W − U‖1 ≤ ε/2. For the

partition P into the steps of U , we have

‖W −WP‖1 ≤ 2‖W − U‖1 ≤ ε

(the first inequality follows by easy computation). �

For thin graphons, we get a stronger bound.
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Theorem 5.9 Let W be a thin graphon in which a bigraph F = (V,E) is excluded as an induced

sub-bigraph. Then for every 0 < ε < 1, it has an ultra-strong partition with error ε and with

O(ε−10|V |2) classes.

Proof. Theorem 4.1 implies that W is 0-1 valued and it has finite packing dimension at

most 10|V |. Similarly to the proof of lemma 5.6, let P = {J1, J2, . . . , Jm} be a partition of

J with m = O(ε−|V |) into measurable sets such that for every i there is an xi ∈ J with

‖W (xi, .)−W (x, .)‖1 ≤ ε for every x ∈ Ji. LetW
′(x, y) = W (xi, y) for x ∈ Ji, then ‖W ′−W‖1 ≤

ε. Let Si be the support of the function W (xi, .), and let A be the set of atoms of the Boolean

algebra generated by {S1, S2, . . . , Sm} with positive measure. For every atom a ∈ A, let Fa ⊆ [m]

denote the index set {i|a ⊆ Si} and let F denote the set system {Fa|a ∈ A}. Since F is not an

induced sub-bigraph, F has VC-dimension less than |V |, and so by lemma 4.3 we obtain that

|A| ≤ O(m|V |−1). The joint refinement P2 of A and P is of size at most O(ε−10|F |2). This

completes the proof since W ′ is a stepfunction with steps in P2. �

It is easy to see that in the definition of ultra-strong regularity partitions of 0-1 valued

graphons, we can replace WP by a 0-1 valued stepfunction with the same steps, at the cost of

doubling the error. Together with Remark 5.2, we can apply this to a (large) finite graph G. To

state the result, we need a definition. Let H be a simple graph, and let us replace each node v

of H by a set Sv of “twin” nodes, where two nodes x ∈ Su and y ∈ Sv are connected if and only

if uv ∈ E(H). For each u ∈ V (H), either connect all pairs of nodes in Su, or none of them. We

call every graph obtained this way a blow-up of H .

Corollary 5.10 For every bigraph F there is a constant cF > 0 such that if G is a graph not

containing F as an induced sub-bigraph, then for every ε > 0, we can change ε|G|2 edges of G

so that the resulting graph is a blow-up of a graph with at most cF ε
−10|F |2 nodes.

Let us say that a graphon W has polynomial L1-complexity if there is a d > 0 such that for

every ε > 0 there is a stepfunction W ′ with O(ε−d) steps satisfying ‖W −W ′‖1 ≤ ε. We can

define polynomial �-complexity analogously. As we have pointed out, polynomial �-complexity

corresponds to the finite dimensionality of the metric space of W ◦W . Theorem 5.9 implies that

every thin graphon has polynomial L1-complexity.

If W has polynomial complexity, then the structure of W can be described by a polynomial

number (in 1/ε) of real parameters with an error ε in the appropriate norm. The set of graphons

with polynomial complexity is closed under many natural operations such as operator product,

tensor product, etc.

It could be interesting to study other aspects of this complexity notion. We offer a conjecture

relating our complexity notion to extremal combinatorics. It is supported by examples in [13].

Conjecture 5.11 Let F1, F2, . . . , Fn be a set of finite graphs, t1, t2, . . . , tm be real numbers in

[0, 1] and S be the set of graphons W with t(Fi,W ) = ti for 1 ≤ i ≤ n. Then S is either empty

or it contains a graphon of polynomial L1-complexity.
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