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ESTIMATING THE CONDITIONAL EXPECTATIONS
FOR CONTINUOUS TIME STATIONARY PROCESSES

Gusztáv Morvai and Benjamin Weiss

One of the basic estimation problems for continuous time stationary processes Xt, is that
of estimating E{Xt+β |Xs : s ∈ [0, t]} based on the observation of the single block {Xs : s ∈
[0, t]} when the actual distribution of the process is not known. We will give fairly optimal
universal estimates of this type that correspond to the optimal results in the case of discrete
time processes.
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1. INTRODUCTION

Tom Cover formulated a number of problems in the Proceedings of the First Interna-
tional IEEE-USSR Information Workshop [6] that have generated a substantial liter-
ature. He posed two questions concerning estimation of discrete time stationary and
ergodic binary processes without any further prior knowledge of the distribution. In his
first question he asked if there exists a universal estimator Ên solely depending on the
observations (X0, X1, X2, . . . , Xn) such that for all discrete time stationary and ergodic
binary processes

lim
n→∞

|Ên(X0, X1, X2, . . . , Xn)− E(Xn+1|X0, X1, X2, . . . , Xn)| = 0 almost surely. (1)

This problem is called the ’forward’ problem and the estimator a ’forward’ estimator
because the estimator Ên may make use of the data segment of ever increasing length
(X0, X1, X2, . . . , Xn) and tries to estimate an ever moving target E(Xn+1|X0, X1, X2,
. . . , Xn) where n tends to +∞, in the positive ’forward’ direction. (As for an application,
one may consider a river and let zero denote the event that there will not be flood and let
one denote the event that there will be flood. In this case E(Xn+1|X0, X1, X2, . . . , Xn)
is the probability that there will be flood in year (n+ 1) given the past observations of
the behaviour of the river from year zero to year n.)

In his second question, Cover asked if there exists a universal estimator Ê−n solely
depending on the observations (X−n . . . , X−2, X−1, X0) such that for all discrete time
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stationary and ergodic binary processes

lim
n→∞

Ê−n(X−n . . . , X−2, X−1, X0) = E(X1| . . . , X−2, X−1, X0) almost surely. (2)

This problem is called the ’backward’ problem and the estimator a ’backward’ estimator
because the estimator Ê−n may make use of the data segment of ever increasing length
(X−n . . . , X−2, X−1, X0) and tries to estimate a fixed target E(X1| . . . , X−2, X−1, X0)
where we collect more and more data from the past, in the negative ’backward’ direc-
tion. (As for an application, one may consider the special case where the infinite past
(. . . , X−2, X−1, X0) determines the exact value of X1. In this case E(X1| . . . , X−2, X−1,
X0) is either zero or one and the goal is to reconstruct the exact value of X1 from the
past observations. This problem is called the reconstruction problem.)

Notice that while E(Xn+1|X0, X1, X2, . . . , Xn) does not converge almost surely in
general, E(X1|X−n . . . , X−2, X−1, X0) does. Namely,

lim
n→∞

E(X1|X−n . . . , X−2, X−1, X0) = E(X1| . . . , X−2, X−1, X0) almost surely. (3)

It turned out that the answers to the ’forward’ and the ’backward’ problems are far
from being the same. Ornstein [20] gave a rather complicated algorithm for the back-
ward estimation problem (2) whereas Bailey [4] provided a proof for the nonexistence of
a universal algorithm guaranteeing almost sure convergence in the forward estimation
problem (1) . To do this, Bailey in [4], assuming the existence of a universal algorithm,
used Ornstein’s technique of cutting and stacking [20] for the construction of a ”coun-
terexample” process for which the algorithm fails to converge (see Shields [25] for more
details on this method).

The problem came to life again in the late eighties with the work of Ryabko [21]. He
used a simpler technique, namely - relabelling a countable state Markov chain, in order
to prove the nonexistence of a universal estimator for the forward estimation problem
(1) (cf. also Györfi, Morvai and Yakowitz [11]).

One approach in an attempt to obtain positive results for the problem of forward
estimation in the face of Bailey’s theorem modifies the almost sure convergence to al-
most sure convergence of Cesaro averages. The forward problem for Cesaro averages
is this. Does there exist a universal estimator Ên solely depending on the observa-
tions (X0, X1, X2, . . . , Xn) such that for all discrete time stationary and ergodic binary
processes

lim
N→∞

1

N

N∑
n=1

|Ên(X0, X1, X2, . . . , Xn)− E(Xn+1|X0, X1, X2, . . . , Xn)| = 0 (4)

almost surely? (Notice that now one is allowed to make a certain error infinitely many
times but not too often so that the errors vanish in the time (Cesaro) average.) This
was solved already by Bailey in his thesis [4] who constructed such universal estimator.
(Cf. Algoet [2, 3] and Weiss [27] also.) (As for an application, one may consider a
certain stock at the stock market and let zero denote the event that the price of the
stock goes down and let one denote the event that the price goes up. In this case
E(Xn+1|X0, X1, X2, . . . , Xn) is the probability that the price of the stock will go up on
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day (n + 1) given the past observations of the behaviour of the stock. The goal is to
estimate this probability well in Cesaro average so that most of the time the predictionn
will be correct. One may use this prediction to sell when with higher probability the
price will go down and buy when the price will go up according to our estimator. )

In case of the backward estimation problem (2), several authors first have extended
the results from discrete time binary processes to discrete time bounded real valued
processes using quantization to reduce to the finite valued case see for example Algoet
[1], Morvai [16], Morvai Yakowitz and Györfi [17] and later to discrete time real-valued
unbounded processes, cf. Györfi et.al. [10] and Algoet [3].

In case of the forward estimation in Cesaro averages problem (4), several authors
extended the results from discrete time binary processes to discrete time real-valued
bounded processes, for example Algoet [1, 3], Morvai [16], Morvai Yakowitz and Györfi
[17]. Even though, some authors using the method of weighted averages of so called
’experts’ obtained results for discrete time real-valued unbounded processes, for example
Györfi and Ottucsák [12] (cf. Györfi et. al. [13] also) the moment conditions were not
optimal. We have given some fairly definitive results for forward estimation in Cesaro
averages (4) in [18].

Since if E
(
|X0| log+(|X0|)

)
<∞ then martingale convergence in (3), Doob’s inequal-

ity and Breiman’s generalized ergodic theorem (cf. [2]) yield

lim
N→∞

1

N

N∑
n=1

|E(Xn+1|X0, X1, . . . , Xn − E(Xn+1| . . . , X−1, X0, X1, . . . , Xn)| = 0

almost surely and so the Cesaro average problem for discrete time real valued stationary
and ergodic processes in (4) is equivalent to the following formulation of the prob-
lem. Does there exist a universal estimator Ên solely depending on the observations
(X0, X1, X2, . . . , Xn) such that for all discrete time stationary and ergodic real valued
processes with E

(
|X0| log+(|X0|)

)
<∞,

lim
N→∞

1

N

N∑
n=1

|Ên(X0, X1, . . . , Xn)− E(Xn+1| . . . , X−1, X0, X1, . . . , Xn)| = 0 (5)

almost surely? Note that the estimator Ên depends only on (X0, X1, . . . , Xn) but the
quantity we are trying to estimate E(Xn+1| . . . , X−1, X0, X1, . . . , Xn) depends partly on
values (. . . , X−2, X−1) which the estimator will never observe.

In this paper we take up the corresponding questions of (2) and (5) for continuous
time processes. This is of interest because there are many natural phenomena modelled
by continuous time processes such as Brownian motion, Poisson point processes and
more general continuous time renewal processes, Markov processes in continuous time
etc. The backward problem we will consider for a stationary processes {Xt} is that
of estimating Xβ given the past {Xt : t ∈ (−∞, 0]} based on observing finite sections
of the past when the distribution of the process is unknown. We shall do this for any
fixed value of β > 0. We will also deal with the problem of forward estimation, that is
estimating the conditional expectation of XT+β given {Xt : t ∈ (−∞, T ]}. Here as in the
case of discrete time case we will need to evaluate our guesses using Cesaro averaging.
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As for an application, one may consider a device measuring the water level of a river,
in continuous time. Our task is then that based on the observations, to give estimation
for the water level, let’s say, a week ahead.

The only prior works for universal estimation in this setting are due to Scarpellini
[22, 23, 24] who based his result for the continuous time backward problem on the original
universal scheme for discrete time backward estimator due to Ornstein [20]. Scarpellini
[24] considered continuous time real-valued bounded stationary and ergodic processes
and obtained results for the backward estimation problem under severe restrictions.
Using the more recent schemes pioneered by Morvai [16] ( cf. also Algoet [3] and Morvai
et al. [17]) we will generalize his results in several ways, in particular for unbounded
processes (with some integrability restrictions) and get optimal results for the forward
estimation in Cesaro averages problem as well.

In the next section we will formulate more precisely our main results.The following
section contains the proofs of these results, while several auxiliary facts which are needed
for the proofs are relegated to an appendix.

Finally, we would like to thank the referees for several useful remarks which improved
our exposition.

2. RESULTS

Before giving the main results we shall describe the processes we shall deal with. The
simplest framework for discussing stationary processes with a continuous time parameter
is to assume that we have a probability space (Ω,Φ, P ) and a one parameter family of
measure preserving invertible transformation Tt : Ω → Ω ( −∞ < t < ∞) which are
jointly measurable as a map from Ω× IR→ Ω and has the group property that TtTs =
Tt+s (see Ch. XI in Doob [8] and Ch. III in Neveu [19] ). In this situation any real valued
measurable function f : Ω → IR defines a stochastic process Xt(ω) = f(Ttω). These
processes are separable which means that for any dense subset S ⊂ IR and any interval
I, the σ-field generated by {Xt : t ∈ I} equals the σ-field generated by {Xt : t ∈ S

⋂
I}

(cf. e. g. Proposition III.4.3 on p. 89 in Neveu [19]). Note that we will not assume that
the flow Tt is ergodic.

We follow this formal framework for a stochastic process that we have just explained.
To define the basic backward scheme, we shall use a sequence of finer and finer dis-
cretizations of the time parameters and quantizations of the real random variables
{Xs : s ∈ (−∞, 0]} that are being observed. (We need discretization and quantiza-
tion because our scheme will depend on pattern matching and we have to ensure to find
a recurrence of the patern.)
We adjust the discrete time scheme in Morvai [16], Morvai, Yakowitz and Györfi [17] ,
Algoet [3] and Morvai and Weiss [18] to continuous time in the following way:

For n = 1, 2, . . . let Pn = {An,i : i = 1, 2, . . . } be a nested sequence of countable
partitions of the real line by intervals. Let An(x) denote the cell of the nth partition Pn
which contains the point x. Assume that

sup
n=1,2,...

sup
x∈IR

sup
y∈An(x)

|y − x| <∞ and lim
n→∞

sup
x∈IR

sup
y∈An(x)

|y − x| = 0. (6)

Let [·]n denote the quantizer which is measurable with respect to σ(Pn) and [x]n ∈
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An(x). It is immediate from (6) that

sup
n=1,2,...

sup
x∈IR

|[x]n − x| <∞. and lim
n→∞

sup
x∈IR

|[x]n − x| = 0. (7)

For example, one may choose Pn = {[ k2n ,
k+1
2n ) : k = 0,∓1,∓2, . . . } and [x]n = k

2n if
k
2n ≤ x <

k+1
2n .

Let β > 0 be arbitrary, but fixed. Let

T̂ = Tβ . (8)

Note that T̂ is a measure preserving transformation.
Define the sequences λm−1, τm and Rm−1 recursively (m = 1, 2, . . . ). Put λ0 = 0,
R0 = 0 and let τ1 be the time between the occurrence of the pattern

[X0]1

at time 0 and the last occurrence of the same pattern at times . . . ,−2β,−β. Formally
let

τ1 = min{t ∈ {β, 2β, 3β, . . . } : [X−t]
1 = [X0]1}.

Note that since [X0]1 takes values from a countable set and since T̂ in (8) is measure
preserving transformation we have 0 < β ≤ τ1 <∞ almost surely. Put

λ1 = τ1 + λ0 = τ1 + 0 = τ1.

Note that 0 = λ0 < λ0 + β = β ≤ λ1 <∞ almost surely. Define the first estimate R1 as

R1 = X−τ1+β .

Note that −τ1 + β ≤ 0 and R1 depends only on {Xs : s ∈ [−λ1, 0]}. Now let τ2 be the
time between the occurrence of the pattern

([X−λ1 ]2, [X−λ1+β/22 ]2, . . . , [X−β/22 ]2, [X0]2)

at time 0 and the last occurrence of the same pattern at times . . . ,−2β,−β. Formally
let

τ2 = min{t ∈ {β, 2β, 3β, . . . } : [X−jβ/22−t]
2 = [X−jβ/22 ]2 for j = 0, 1, . . . , λ12

2

β }.

Note that since ([X−λ1 ]2, [X−λ1+β/22 ]2, . . . , [X−β/22 ]2, [X0]2) takes values from a count-

able set and since T̂ in (8) is measure preserving transformation we have 0 < β ≤ τ2 <∞
almost surely. Put

λ2 = τ2 + λ1.

Note that λ1 < λ1 + β ≤ λ2 <∞. Define the second estimate R2 as

R2 =
X−τ1+β +X−τ2+β

2
.
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Note that R2 depends only on {Xs : s ∈ [−λ2, 0]}. Now in general let τm be the time
between the occurrence of the pattern

([X−λm−1 ]m, [X−λm−1+β/2m ]m, . . . , [X−β/2m ]m, [X0]m)

at time 0 and the last occurrence of the same pattern at times . . . ,−2β,−β. Formally
let

τm = min{t ∈ {β, 2β, 3β, . . . } : [X−jβ/2m−t]
m = [X−jβ/2m ]m for j = 0, 1, . . . , λm−12

m

β }.

Note that since ([X−λm−1
]m, [X−λm−1+β/2m ]m, . . . , [X−β/2m ]m, [X0]m) takes values from

a countable set and since T̂ in (8) is measure preserving transformation we have 0 <
β ≤ τm <∞ almost surely. Put

λm = τm + λm−1.

Note that λm ↑ ∞ since τm ≥ β > 0. Define the mth estimate Rm as

Rm =
1

m

m∑
j=1

X−τj+β . (9)

Note that Rm depends only on {Xs : s ∈ [−λm, 0]}. To obtain a fixed sample size t ≥ 0
version, let κt be the maximum of integers k = 0, 1, 2, . . . for which λk ≤ t. Formally,
for t ≥ 0

κt = max{k : λk ≤ t k=0,1,2,. . . }.

Since λ0 = 0 and λk ↑ ∞ the above formula is well defined. Note that

κt = k as long as λk ≤ t < λk+1 (10)

and

κt =

∞∑
k=0

kI{λk≤t<λk+1}. (11)

For t ≥ 0 put

R̂−t = Rκt . (12)

Note that R̂0 = R0 = 0 and R̂−t depends only on {Xs : s ∈ [−t, 0]}. Note also that

R̂−t = Rm as long as λm ≤ t < λm+1 (13)

and

R̂−t =

∞∑
k=0

RkI{λk≤t<λk+1}. (14)

Note that since λk takes values from {0, β, 2β, 3β, . . . }, for any l = 0, 1, 2, . . . ,

R̂−t = R̂−lβ as long as lβ ≤ t < (l + 1)β (15)
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and

R̂−t =

∞∑
l=0

R̂−lβI{lβ≤t<(l+1)β} =

∞∑
l=0

I{lβ≤t<(l+1)β}

∞∑
k=0

RkI{λk≤lβ<λk+1}. (16)

Note that R̂−t is not a continuous function of t ∈ [0,∞) (except if it is the constant
zero) but it is right semi continuous in t ∈ [0,∞) (or in other words, R̂t is left semi
continuous in t ∈ (−∞, 0] ). Now R̂−t(ω) is jointly measurable in ω and t. Indeed, for
a Borel measurable set A ⊆ IR,

{(ω, t) : R̂−t(ω) ∈ A}

= {(ω, t) :

∞∑
k=0

Rk(ω)I{λk(ω)≤t<λk+1(ω)} ∈ A}

=

∞⋃
k=0

∞⋃
m=0

∞⋃
n=m+1

{ω : λk(ω) = m,λk+1(ω) = n,Rk(ω) ∈ A} × [mβ, nβ)

which is a measurable set.

To get a scheme for forward estimation we follow Bailey [4] and shift this backward
scheme to give estimations for the future. For t > 0 consider the estimator

R̂t(ω) = R̂−t(Ttω) (17)

which is defined in terms of {Xs : s ∈ [0, t]} in the same way as R̂−t(ω) was defined in
terms of {Xs : s ∈ [−t, 0]}. Now R̂t(ω) is jointly measurable in (ω, t). Indeed,

R̂t(ω) = R̂−t(Ttω)

=

∞∑
l=0

R̂−lβ(Ttω)I{lβ≤t<(l+1)β}

= lim
N→∞

N∑
l=0

R̂−lβ(Ttω)I{lβ≤t<(l+1)β}.

Now for a fixed l ∈ {0, 1, 2, . . . },

R̂−lβ(Ttω) =

∞∑
k=0

Rk(Ttω)I{λk≤lβ<λk+1}(Ttω)

is jointly measurable in (ω, t). Thus for a fixed N ∈ {0, 1, 2, . . . },
N∑
l=0

R̂−lβ(Ttω)I{lβ≤t<(l+1)β}

is jointly measurable in (ω, t). Now the limit of measurable functions

lim
N→∞

N∑
l=0

R̂−lβ(Ttω)I{lβ≤t<(l+1)β}

is also jointly measurable in (ω, t).
The estimator R̂t may be viewed as an on-line predictor of Xt+β .
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Theorem. Let {Xt : t ∈ IR} be a real-valued stationary continuous time process. Let
β > 0 be arbitrary. Assume that

E (|X0|) <∞.

Then
lim
t→∞

R̂−t = E(Xβ |Xs : s ∈ (−∞, 0]) almost surely. (18)

If in addition
E
(
|X0| log+(|X0|)

)
<∞

then

lim
t→∞

1

t

∫ t

0

∣∣∣R̂u − E(Xu+β |Xs : s ∈ (−∞, u])
∣∣∣ du = 0 almost surely (19)

and

lim
t→∞

1

t

∫ t

0

∣∣∣∣∣∣R̂u −Xu+β

∣∣∣− |E(Xu+β |Xs : s ∈ (−∞, u])−Xu+β |
∣∣∣du = 0 (20)

almost surely. If in addition for some 1 < p <∞,

E(|X0|p) <∞

then

lim
t→∞

1

t

∫ t

0

∣∣∣R̂u − E(Xu+β |Xs : s ∈ (−∞, u])
∣∣∣p du = 0 almost surely (21)

and

lim
t→∞

1

t

∫ t

0

∣∣∣∣∣∣R̂u −Xu+β

∣∣∣p − |E(Xu+β |Xs : s ∈ (−∞, u])−Xu+β |p
∣∣∣du = 0 (22)

almost surely.

Note that (18) generalizes the result of Scarpellini (cf. Scarpellini [24]) in that we
have dropped the assumption that the process is bounded and that the time instant β
is special. (Scarpellini [24]) assumed that Tβ is an ergodic transformation. We do not
need such assumption for our results.)

Note that (19) and (21) state that R̂u is an asymptotically consistent estimator of
the conditional expectation E(Xu+β |Xs : s ∈ (−∞, u]) in time (Cesaro) average almost
surely.

Note that (20) and (22) state that R̂u is asymptotically as good estimator for Xu+β as
the conditional expectation E(Xu+β |Xs : s ∈ (−∞, u]), in time (Cesaro) average almost
surely. This is particularly important for p = 2 where the conditional expectation
mimimizes the least square error.

As for a possible application consider a device measuring the temperature in contin-
uous time. The goal is to give an estimate for the temperature e. g. a month ahead
based only on the measurements. According to (20) and (22) our estimate will be as
good in time average as the conditional expectation itself which uses prior knowledge of
the process distribution.



418 G. MORVAI AND B. WEISS

3. PROOF OF THE THEOREM

Let
K = sup

n=1,2,...
sup
x∈IR

|[x]n − x|.

By (7), K < ∞. We will follow Algoet [3] to prove (18). For m = 1, 2, . . . define the
forward going version of τm as

τ̃m = min{t ∈ {β, 2β, 3β, . . . } : [X−jβ/2m+t]
m = [X−jβ/2m ]m

for j = 0, 1, . . . , λm−12
m

β .}.

Let r be a nonnegative integer and bj ∈ {[x]m : x ∈ IR} for j = 0, 1, . . . , r. By
stationarity, it follows that for arbitrary C ⊆ IR

P ({λm−1 =
rβ

2m
, [X−jβ/2m ]m = bj : j = 0, 1, . . . , 2m

λm−1
β
} ∩ {X−τm+β ∈ C})

=

∞∑
l=1

P ({λm−1 =
rβ

2m
, [X−jβ/2m ]m = bj : j = 0, 1, . . . , 2m

λm−1
β
}

∩{τm = lβ,X−τm+β ∈ C})

=

∞∑
l=1

P (T−lβ({λm−1 =
rβ

2m
, [X−jβ/2m ]m = bj : j = 0, 1, . . . , 2m

λm−1
β
}

∩{τm = lβ,X−τm+β ∈ C}))

=

∞∑
l=1

P ({λm−1 =
rβ

2m
, [X−jβ/2m ]m = bj : j = 0, 1, . . . , 2m

λm−1
β
}

∩{τ̃m = lβ,Xβ ∈ C})

= P ({λm−1 =
rβ

2m
, [X−jβ/2m ]m = bj : j = 0, 1, . . . , 2m

λm−1
β
} ∩ {Xβ ∈ C}),

which in turn implies that

P (X−τm+β ∈ C|[X−jβ/2m ]m : j = 0, 1, . . . , 2m
λm−1
β

)

= P (Xβ ∈ C|[X−jβ/2m ]m : j = 0, 1, . . . , 2m
λm−1
β

). (23)

(Cf. Morvai [16] , Morvai et al. [17] , Algoet [3] and Morvai and Weiss [18] .) Thus for
m = 1, 2, . . . the random variables X−τm+β and Xβ are identically distributed. Now we
go back to the definition of the Rk in (9) and decompose the quantity we are trying to
estimate into several pieces. We will use the decomposition and argument in Algoet [3]
to prove (18).

Rk =
1

k

∑
1≤j≤k

(
X−τj+β − [X−τj+β ]jI{|[X−τj+β ]

j |≤j}

)
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+
1

k

∑
1≤j≤k

([X−τj+β ]jI{|[X−τj+β ]
j |≤j}

−E([X−τj+β ]jI{|[X−τj+β ]
j |≤j}|[X−lβ/2j ]j : l = 0, 1, . . . , 2j

λj−1
β

))

+
1

k

∑
1≤j≤k

(E([X−τj+β ]jI{|[X−τj+β ]
j |≤j}|[X−lβ/2j ]j : l = 0, 1, . . . , 2j

λj−1
β

)

−E([Xβ ]jI{|[Xβ ]j |≤j}|[X−lβ/2j ]
j : l = 0, 1, . . . , 2j

λj−1
β

))

+
1

k

∑
1≤j≤k

E([Xβ ]jI{|[Xβ ]j |≤j}|[X−lβ/2j ]
j : l = 0, 1, . . . , 2j

λj−1
β

)

= ξk + ηk + θk + ζk.

By (23), (7) and since E(|Xβ |+K) <∞ we get that

∞∑
j=1

P (|[X−τj+β ]j | > j) =

∞∑
j=1

P (|[Xβ ]j | > j) ≤
∞∑
j=1

P (|Xβ |+K > j) <∞

and by the Borel–Cantelli lemma,

I{|[X−τj+β ]
j |≤j} = 1 eventually almost surely. (24)

By (24) and (7),

lim
j→∞

|X−τj+β − [X−τj+β ]jI{|[X−τj+β ]
j |≤j}| = lim

j→∞
|X−τj+β − [X−τj+β ]j | = 0

almost surely. Thus
|ξk| → 0 almost surely. (25)

Toward mastering ηk, one observes that {X−τj+β} are identically distributed by (23)
and by Proposition 4.1 in the Appendix

Vn =

n∑
j=1

(
[X−τj+β ]jI{|[X−τj+β ]

j |≤j}

j

−
E([X−τj+β ]jI{|[X−τj+β ]

j |≤j}|[X−lβ/2j ]j : l = 0, 1, . . . , 2j
λj−1

β )

j
)

is a martingale with
sup
1≤n

E(|Vn|) <∞.

By Doob’s convergence theorem Vn converges almost surely. Then by Kronecker’s lemma
(cf. Shiryayev [26] p. 365),

lim
n→∞

1

n

n∑
j=1

([X−τj+β ]jI{|[X−τj+β ]
j |≤j}
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− E([X−τj+β ]jI{|[X−τj+β ]
j |≤j}|[X−lβ/2j ]j : l = 0, 1, . . . , 2j

λj−1
β

)) = 0

almost surely and we have proven that

ηk → 0 almost surely. (26)

(Alternatively, one could use Theorem 2.15 and the results in the proof of Theorem 2.19
in Hall and Heyde [14] as in Algoet [3] to prove (26) ).
Now we will deal with θk. By (23) we get that

θk = 0 almost surely. (27)

Now we deal with the last term ζk. Since

σ{[X−lβ/2j ]j : l = 0, 1, . . . , 2j
λj−1
β
} ↑ σ{X−lβ/2m : m = 1, 2, . . . , l = 0, 1, . . . , },

[Xβ ]jI{|[Xβ ]j |≤j} → Xβ almost surely,

sup
j≥1
|[Xβ ]jI{|[Xβ ]j |≤j}| ≤ |Xβ |+K,

and

E(|Xβ |+K) <∞,

by Corollary 1 pp. 237–238 in Chow and Teicher [7] (Lemma 3 in Algoet [3]) we get

lim
j→∞

E([Xβ ]jI{|[Xβ ]j |≤j}|[X−lβ/2j ]
j : l = 0, 1, . . . , 2j

λj−1
β

)

= E(Xβ |X−lβ/2m : m = 1, 2, . . . , l = 0, 1, . . . , ) almost surely.

Thus

ζk → E(Xβ |X−lβ/2m : m = 1, 2, . . . , l = 0, 1, . . . , ) almost surely.

The set

{−lβ/2j : j = 1, 2, . . . , l = 0, 1, . . . , }

is a dense subset of the interval (−∞, 0] and this implies that the sigma-algebra generated
by the random variables

{X−lβ/2m : m = 1, 2, . . . , l = 0, 1, . . . , }

coincides up to null sets with the sigma-algebra generated by the random variables

{Xs : s ∈ (−∞, 0]}

(cf. e. g. Proposition III.4.3 on p. 89 in Neveu [19]) and this yields

E(Xβ |X−lβ/2m : m = 1, 2, . . . , l = 0, 1, . . . , ) = E(Xβ |Xs : s ∈ (−∞, 0])
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almost surely and in turn

ζk → E(Xβ |Xs : s ∈ (−∞, 0]) almost surely. (28)

By (25), (26), (27) and (28) we get

lim
k→∞

Rk = E(Xβ |Xs : s ∈ (−∞, 0]) almost surely. (29)

Now (13) and (29) together imply (18).
Now assume that

E
(
|X0| log+(|X0|)

)
<∞.

We go back to the definition of the Rk in (9) and give a different decomposition.

Rk =
1

k

∑
1≤j≤k

(
X−τj+β − [X−τj+β ]j

)
+

1

k

∑
1≤j≤k

(
[X−τj+β ]j − E([X−τj+β ]j |[X−lβ/2j ]j : l = 0, 1, . . . , 2j

λj−1
β

)

)
+

1

k

∑
1≤j≤k

(E([X−τj+β ]j |[X−lβ/2j ]j : l = 0, 1, . . . , 2j
λj−1
β

)

−E(X−τj+β |[X−lβ/2j ]j : l = 0, 1, . . . , 2j
λj−1
β

))

+
1

k

∑
1≤j≤k

(E(X−τj+β |[X−lβ/2j ]j : l = 0, 1, . . . , 2j
λj−1
β

)

−E(Xβ |[X−lβ/2j ]j : l = 0, 1, . . . , 2j
λj−1
β

))

+
1

k

∑
1≤j≤k

E(Xβ |[X−lβ/2j ]j : l = 0, 1, . . . , 2j
λj−1
β

)

= Ak +Bk + Ck +Dk + Ek.

By (7), we get
|Ak|+ |Ck| ≤ 2K <∞ almost surely. (30)

Now we will deal with Dk. Using (23) we get that

Dk = 0 almost surely. (31)

Toward mastering Bk, one observes that {X−τj+β} are identically distributed by (23)
and by Proposition 4.1 in the Appendix

Un =

n∑
j=1

[X−τj+β ]j − E([X−τj+β ]j |[X−lβ/2j ]j : l = 0, 1, . . . , 2j
λj−1

β )

j

is a martingale with
E(sup

1≤n
|Un|) <∞
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and since for any sequence of real numbers {ai},

sup
1≤n

1

n

∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣ ≤ 2

(
sup
1≤n

∣∣∣∣∣
n∑
i=1

1

i
ai

∣∣∣∣∣
)
,

(cf. Lemma 7 in Elton [9]), we get

E(sup
1≤k
|Bk|) ≤ 2E(sup

1≤n
|Un|) <∞. (32)

Furthermore, by Doob’s inequality,

E(sup
1≤k
|Ek|) ≤ E(sup

1≤j
E(|Xβ ||[X−lβ/2j ]j : l = 0, 1, . . . , 2j

λj−1
β

)) <∞. (33)

By (30 ), (31), (32) and (33)

E

(
sup
1≤k
|Rk|

)
≤ E

(
sup
1≤k
|Ak|+ |Bk|+ |Ck|+ |Dk|+ |Ek|

)
<∞. (34)

By (13),
sup

l=0,1,2,...
|R̂−lβ | = sup

k=0,1,2,...
|Rk| = sup

k=1,2,...
|Rk| almost surely. (35)

Now (35) and (34) together yield

E

(
sup

l=0,1,2,...
|R̂−lβ |

)
<∞. (36)

For t ∈ [0,∞) let ft(ω) : Ω× [0,∞)→ IR be

ft(ω) = |R̂−t − E(Xβ |Xs : s ∈ (−∞, 0])|

=

∞∑
l=0

|R̂−lβ − E(Xβ |Xs : s ∈ (−∞, 0])|I{lβ≤t<(l+1)β}.

Now ft(ω) is nonnegative and jointly measurable in t and ω, cf. (14). For a fixed ω,
ft(ω) is right semi continuous in t, cf. (13). By (18) it is then immediate that

lim
l→∞

|R̂−lβ − E(Xβ |Xs : s ∈ (−∞, 0])| = 0 almost surely. (37)

By (36)

E

(
sup

l=0,1,2,...
|R̂−lβ − E(Xβ |Xs : s ∈ (−∞, 0])|

)

≤ E

(
sup

l=0,1,2,...
|R̂−lβ |

)
+ E (E(|Xβ ||Xs : s ∈ (−∞, 0]))



Estimating the conditional expectations for continuous time stationary processes 423

= E

(
sup

l=0,1,2,...
|R̂−lβ |

)
+ E (|Xβ |)

< ∞.

Now apply Proposition 4.3 in the Appendix to conclude that

lim
t→∞

1

t

∫ t

0

fu(Tuω) du = 0

almost surely. Thus

lim
t→∞

1

t

∫ t

0

∣∣∣R̂u − E(Xu+β |Xs : s ∈ (−∞, u])
∣∣∣du

= lim
t→∞

1

t

∫ t

0

(∣∣∣R̂−u − E(Xβ |Xs : s ∈ (−∞, 0])
∣∣∣ (Tuω)

)
du

= 0

almost surely and the proof of (19) is complete. Similarly,∣∣∣|R̂−t −Xβ | − |E(Xβ |Xs : s ∈ (−∞, 0])−Xβ |
∣∣∣

=

∞∑
l=0

∣∣∣|R̂−lβ −Xβ | − |E(Xβ |Xs : s ∈ (−∞, 0])−Xβ |
∣∣∣ I{lβ≤t<(l+1)β}

and by (18)

lim
l→∞

∣∣∣|R̂−lβ −Xβ | − |E(Xβ |Xs : s ∈ (−∞, 0])−Xβ |
∣∣∣ = 0

almost surely and by (36)

E

(
sup

l=0,1,2,...

∣∣∣|R̂−lβ −Xβ | − |E(Xβ |Xs : s ∈ (−∞, 0])−Xβ |
∣∣∣)

≤ E

(
sup

l=0,1,2,...
|R̂−lβ |

)
+ 3E (|Xβ |)

< ∞

and Proposition 4.3 in the Appendix gives

lim
t→∞

1

t

∫ t

0

∣∣∣|R̂−t −Xβ | − |E(Xβ |Xs : s ∈ (−∞, 0])−Xβ |
∣∣∣ du = 0

almost surely and the proof of (20) is complete.
Now we assume that for some 1 < p <∞, E(|X0|p) <∞, and we prove (21).

Observe that by (31) and (30)

|Rk|p = |Ak +Bk + Ck +Dk + Ek|p ≤ 3p [(2K)
p

+ |Bk|p + |Ek|p] . (38)
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By Proposition 4.2 in the Appendix

E(sup
1≤k
|Bk|p) <∞ (39)

and by Doob’s inequality, (cf. Theorem 1 on p. 464, §3 Ch. VII in Shiryayev [26]),

E(sup
1≤k
|Ek|p) <∞. (40)

By (38), (39) and (40),

E

(
sup
1≤k
|Rk|p

)
<∞. (41)

Now (41) and (35) together imply

E

(
sup

l=0,1,2,...
|R̂−lβ |p

)
<∞. (42)

|R̂−t − E(Xβ |Xs : s ∈ (−∞, 0])|p =

∞∑
l=0

|R̂−lβ − E(Xβ |Xs : s ∈ (−∞, 0])|pI{lβ≤t<(l+1)β}

and by (18)

lim
l→∞

|R̂−lβ − E(Xβ |{Xs : s ∈ (−∞, 0]})|p = 0 almost surely

and by (42)

E

(
sup

l=0,1,2,...
|R̂−lβ − E(Xβ |Xs : s ∈ (−∞, 0])|p

)

≤ 2pE

(
sup

l=0,1,2,...
|R̂−lβ |p

)
+ 2pE (|E(Xβ |Xs : s ∈ (−∞, 0])|p)

≤ 2pE

(
sup

l=0,1,2,...
|R̂−lβ |p

)
+ 2pE (|Xβ |p)
< ∞

and by Proposition 4.3 in the Appendix one gets (21). Similarly,∣∣∣|R̂−t −Xβ |p − |E(Xβ |Xs : s ∈ (−∞, 0])−Xβ |p
∣∣∣

=

∞∑
l=0

∣∣∣|R̂−lβ −Xβ |p − |E(Xβ |Xs : s ∈ (−∞, 0])−Xβ |p
∣∣∣ I{lβ≤t<(l+1)β}
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and by (37)

lim
l→∞

∣∣∣|R̂−lβ −Xβ |p − |E(Xβ |Xs : s ∈ (−∞, 0])−Xβ |p
∣∣∣ = 0 almost surely

and by (42)

E

(
sup

l=0,1,2,...

∣∣∣|R̂−lβ −Xβ |p − |E(Xβ |Xs : s ∈ (−∞, 0])−Xβ |p
∣∣∣)

≤ 2pE

(
sup

l=0,1,2,...
|R̂−lβ |p

)
+ 3(2p)E (|Xβ |p)

< ∞.

Now apply Proposition 4.3 in the Appendix to prove (22). The proof of the Theorem is
complete. �

4. APPENDIX

The next result is a generalization of a result due to Elton, cf. Theorems 2 and 4 in
Elton [9].

Proposition 4.1. (Cf. Elton [9], Hall and Heyde [14], Algoet [3] and Morvai and Weiss
[18]) For n = 0, 1, 2, . . . let Xn be random variables identically distributed with

E(|X0|) <∞

and let Gn be an increasing sequence of σ-algebras. For n = 1, 2, . . . let gn be a real
valued functions such that

sup
n=1,2,...

sup
x∈IR

|gn(x)− x| <∞

and gn(Xn) is measurable with respect to Gn. Then

E

(
sup
1≤n

∣∣∣∣∣
n∑
i=1

gi(Xi)I{|gi(Xi)|≤i} − E(gi(Xi)I{|gi(Xi)|≤i}|Gi−1)

i

∣∣∣∣∣
)
<∞. (43)

If in addition
E(|X0| log+(|X0|)) <∞

then

E

(
sup
1≤n

∣∣∣∣∣
n∑
i=1

gi(Xi)− E(gi(Xi)|Gi−1)

i

∣∣∣∣∣
)
<∞. (44)

P r o o f . Write

Yn = gn(Xn),

Y ′n = YnI{|Yn|≤n}
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and
Y ′′n = YnI{|Yn|>n}.

By Davis’ inequality (valid for all martingale differences cf. e. g. Shiryayev [26] p. 470),
we get

E

(
sup
1≤n

∣∣∣∣∣
n∑
i=1

Y ′i − E(Y ′i |Gi−1)

i

∣∣∣∣∣
)
≤ BE

( ∞∑
i=1

(Y ′i − E(Y ′i |Gi−1))2

i2

)0.5


≤ B

[
E

( ∞∑
i=1

(Y ′i − E(Y ′i |Gi−1))2

i2

)]0.5

= B

[ ∞∑
i=1

E
(
(Y ′i − E(Y ′i |Gi−1))2

)
i2

]0.5
.

Now

E
(
(Y ′i − E(Y ′i |Gi−1))2

)
= E

(
(Y ′i )2

)
+ E

(
E(Y ′i |Gi−1)2

)
− 2E (Y ′iE(Y ′i |Gi−1))

= E
(
(Y ′i )2

)
− E

(
E(Y ′i |Gi−1)2

)
≤ E

(
(Y ′i )2

)
.

Define
K := sup

n=1,2,...
sup
x∈IR

|gn(x)− x| <∞.

But since |Yi −Xi| ≤ K we get

E
(
(Y ′i )2

)
= E

(
(Yi)

2I{|Yi|≤i}
)
≤ E

(
(|Xi|+K)2I{|Xi|≤i+K}

)
and the Xi’s are identically distributed therefore

∞∑
i=1

1

i2
E
(
(|Xi|+K)2I{|Xi|≤i+K}

)
=

∞∑
i=1

1

i2
E
(
(|X0|+K)2I{|X0|≤i+K}

)
≤

∞∑
i=1

1

i2
E
(
4|X0|2I{|X0|≤i+K}

)
+

∞∑
i=1

4K2

i2

where 4K2
∑∞
i=1

1
i2 is finite. Now

∞∑
i=1

1

i2
E
(
|X0|2I{|X0|≤i+K}

)
=

∞∑
i=1

1

i2
E
(
|X0|2I{|X0|≤i}

)
+

∞∑
i=1

1

i2
E
(
|X0|2I{i<|X0|≤i+K}

)
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=

∞∑
i=1

1

i2

i∑
j=1

E
(
|X0|2I{j−1<|X0|≤j}

)
+

∞∑
i=1

1

i2
E
(
|X0|2I{i<|X0|≤i+K}

)
=

∞∑
i=1

E (|X0|2I{i−1<|X0|≤i}
) ∞∑

j=i

1

j2


+

∞∑
i=1

1

i2
E
(
|X0|2I{i<|X0|≤i+K}

)
=

∞∑
i=1

E (|X0|2I{i−1<|X0|≤i}
) 1

i2
+

∞∑
j=i+1

1

j2


+

∞∑
i=1

1

i2
E
(
|X0|2I{i<|X0|≤i+K}

)
≤

∞∑
i=1

(
E
(
|X0|2I{i−1<|X0|≤i}

)( 1

i2
+

∫ ∞
i

1

z2
dz

))

+

∞∑
i=1

1

i2
E
(
|X0|2I{i<|X0|≤i+K}

)
≤

∞∑
i=1

(
E
(
|X0|2I{i−1<|X0|≤i}

)( 1

i2
+

1

i

))

+

∞∑
i=1

1

i2
E
(
|X0|2I{i<|X0|≤i+K}

)
≤

∞∑
i=1

(
E
(
|X0|2I{i−1<|X0|≤i}

) 2

i

)

+

∞∑
i=1

1

i2
E
(
|X0|2I{i<|X0|≤i+K}

)
= 2

∞∑
i=1

(
E

(
|X0|
i
|X0|I{i−1<|X0|≤i}

))

+

∞∑
i=1

E

(
|X0|2

i2
I{i<|X0|≤i+K}

)

≤ 2

∞∑
i=1

(
E
(
|X0|I{i−1<|X0|≤i}

))
+

∞∑
i=1

E
(
(K + 1)2I{i<|X0|≤i+K}

)
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≤ 2E(|X0|) + (K + 1)2K <∞.

Combining all these we get (43), (cf. Theorem 2.19 in Hall and Heyde [14] also).
Now we assume that E(|X0| log+(|X0|)) <∞.

E|Y ′′n − E(Y ′′n |Gn−1)| ≤ 2E|Y ′′n |
≤ 2E

(
(K + |Xn|)I{|Xn|>n−K}

)
= 2E

(
(K + |X0|)I{|X0|>n−K}

)
since Xn’ are identically distributed. Now

E

( ∞∑
n=1

|Y ′′n − E(Y ′′n |Gn−1)|
n

)
≤ 2

∞∑
n=1

1

n
E
(
(K + |X0|)I{|X0|>n−K}

)
= 2

∞∑
n=1

1

n
E
(
(K + |X0|)I{|X0|+K>n}

)
.

Since E((|X0|+K) log+(|X0|+K) <∞, Lemma 2 in Elton [9] implies that

∞∑
n=1

1

n
E
(
(|X0|+K)I{|X0|+K>n}

)
<∞

and so

E

(
sup
1≤n

∣∣∣∣∣
n∑
i=1

Y ′′i − E(Y ′′i |Gi−1)

i

∣∣∣∣∣
)
≤ E

( ∞∑
n=1

|Y ′′n − E(Y ′′n |Gn−1)|
n

)
<∞. (45)

Now by (43) and (45) we get (44). The proof of Proposition 4.1 is complete. �

Proposition 4.2. (Proposition 2 in Morvai and Weiss [18]) Let φn be a martingale
difference sequence. If, for some 1 < p <∞,

sup
1≤n

E(|φn|p) <∞

then

E

(
sup
1≤n

∣∣∣∣∣ 1n
n∑
i=1

φi

∣∣∣∣∣
p)

<∞. (46)

Now we adapt the method of proofs in Maker [15], Breiman [5] and Algoet [2] to our
needs.

Proposition 4.3. (Cf. Maker [15], Breiman [5] and Algoet [2]) Let (Ω,Φ, P ) be a
probability space with a family of measure preserving invertible transformations Tt,
−∞ < t < ∞ with the group property (TsTr = Ts+r) such that T : Ω × [0,∞) → IR
is jointly measurable in (ω, t). For l = 0, 1, 2, . . . let hl be measurable real valued
functions such that hl is nonnegative, E(supl=0,1,2,... hl) <∞ and liml→∞ hl = 0 almost
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surely. For a given fixed β > 0 let ft(ω) : Ω × [0,∞) → IR be such that ft(ω) =∑∞
l=0 hl(ω)I{lβ≤t<(l+1)β}. Then

lim
t→∞

1

t

∫ t

0

fu(Tuω)du = 0 almost surely. (47)

P r o o f . We follow Algoet’s proof for the discrete time case (Theorem 12 in [2]) and
adapt to our needs in the continuous time. First note that

ft(Ttω) =

∞∑
l=0

hl(Ttω)I{lβ≤t<(l+1)β} = lim
N→∞

N∑
l=0

hl(Ttω)I{lβ≤t<(l+1)β}

is jointly measurable in (ω, t) since it is a pointwise limit of sums of measurable functions
(Cf. Maker [15]) . For k = 0, 1, 2, . . . define

Gk(ω) = sup
l=k,k+1,...

hl(ω).

Note that Gk is nonnegative, monotone decreasing and E(G0) < ∞. Furthermore, by
the Fubini–Tonelli theorem and stationarity

E

∫ t

0

fu(Tuω) du =

∫ t

0

Efu(Tuω)du =

∫ t

0

Efu du ≤
∫ t

0

EG0 du = tEG0 <∞

and thus the integrals exist. Now

1

(j + 1)β

∫ (j+1)β

0

fu(Tuω) du

=
1

(j + 1)β

∫ (j+1)β

0

∞∑
l=0

hl(Tuω)I{lβ≤u<(l+1)β} du

=
1

(j + 1)β

∫ (j+1)β

0

j∑
l=0

hl(Tuω)I{lβ≤u<(l+1)β} du

=
1

(j + 1)β

j∑
l=0

∫ (j+1)β

0

hl(Tuω)I{lβ≤u<(l+1)β} du

=
1

(j + 1)β

j∑
l=0

∫ (l+1)β

lβ

hl(Tuω) du

=
1

(j + 1)β

k∑
l=0

∫ (l+1)β

lβ

hl(Tuω) du+
1

(j + 1)β

j∑
l=k+1

∫ (l+1)β

lβ

hl(Tuω) du

≤ 1

(j + 1)β

k∑
l=0

∫ (l+1)β

lβ

G0(Tuω) du+
1

(j + 1)β

j∑
l=k+1

∫ (l+1)β

lβ

Gk(Tuω) du

≤ 1

(j + 1)β

k∑
l=0

∫ (l+1)β

lβ

G0(Tuω) du+
1

(j + 1)β

j∑
l=0

∫ (l+1)β

lβ

Gk(Tuω) du
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≤ 1

(j + 1)β

∫ (k+1)β

0

G0(Tuω) du+
1

(j + 1)β

∫ (j+1)β

0

Gk(Tuω) du

→ 0 + E(Gk|I)

where I is the sigma algebra of the invariant sets. (Cf. Maker [15], Breiman [5] and
Algoet [2]) Since Gk is nonnegative monotone decreasing and E(G0) < ∞ we get that
E(Gk|I)→ 0 almost surely. Thus

1

(j + 1)β

∫ (j+1)β

0

fu(Tuω) du→ 0

almost surely. Now for jβ < t < (j + 1)β,

0 ≤ 1

t

∫ t

0

fu(Tuω) du ≤ j + 1

j

1

(j + 1)β

∫ (j+1)β

0

fu(Tuω) du

and the right hand side tends to zero almost surely which yields (47). This completes
the proof of Proposition 4.3. �
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