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Abstract. In this paper, we introduce the notion of an admissible extended Z-contraction map-
ping in the setting of extended b-metric spaces. As an application, we consider Ulam stability
problems based on our contractions. The presented results cover several existing results in the
literature.
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1. INTRODUCTION AND PRELIMINARIES

The notion of the distance has been discussed from Euclid period. In the beginning
of the nineteen century it was axiomatically formulated under the name of metric, by
Fréchet and Haussdorff. Since then, the axioms of the metric notions have been
relaxed several ways to generalize it. Among all, we mention the concept of a b-
metric (see [12, 15]) which was also announced as ”quasi-metric” (see [23]).

Definition 1 (Czerwik [15]). Let X be a nonempty set and d : X×X → [0,∞) be a
function satisfying the following conditions:
(b1) d(x,y) = 0 if and only if x = y;
(b2) d(x,y) = d(y,x) for all x,y ∈ X ;
(b3) d(x,y)≤ s[d(x,z)+d(z,y)] for all x,y,z ∈ X , where s≥ 1.
The function d is called a b-metric and the space (X ,d) is called a b-metric space,

in short, bMS.

Example 1. Let X = {xi : 1 ≤ i ≤ M} for some M ∈ N and s ≥ 2. Define d :
X×X → ∞ as

d(xi,x j) =


0 if i = j,
s if |i− j|= 1,
2 if |i− j|= 2,
1 otherwise.
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Accordingly, we obtain that d(xi,x j)≤ s
2 [d(xi,xk)+d(xk,x j)], for all i, j,k ∈ {1,M}.

As a result, the pair (X ,d) forms a b-metric for s > 2. Note that the standard triangle
inequality does not hold.

Example 2 (See e.g. [23]). The space Lp[0,1] (where 0 < p < 1) of all real func-
tions x(t), t ∈ [0,1] such that

∫ 1
0 |x(t)|pdt < ∞, together with the functional

d(x,y) := (
∫ 1

0
|x(t)− y(t)|pdt)1/p, for each x,y ∈ Lp[0,1],

is a b-metric space. Notice that s = 21/p.

Example 3 (See e.g. [23]). Let E be a Banach space and 0E be the zero vector of
E. Let P be a cone in E with int(P) 6=∅ and � be a partial ordering with respect to
P. Let X be a non-empty set. Suppose the mapping d : X×X → E satisfies:
(M1) 0� d(x,y) for all x,y ∈ X ;
(M2) d(x,y) = 0 if and only if x = y;
(M3) d(x,y)� d(x,z)+d(z,y), for all x,y ∈ X ;
(M4) d(x,y) = d(y,x) for all x,y ∈ X .
Then d is called a cone metric on X , and the pair (X ,d) is called a cone metric

space (CMS).
Let E be a Banach space and P be a normal cone in E with the coefficient of

normality denoted by K. Let D : X ×X → [0,∞) be defined by D(x,y) = ||d(x,y)||,
where d : X ×X → E is a cone metric space. Then (X ,D) is a b-metric space with a
constant s := K ≥ 1.

Czerwik [15] proved the analogue of Banach fixed point theorem. For (common)
fixed point results on b-metric spaces, see [1–4, 7, 9–11, 13, 14, 20, 22, 24].

Recently, Kamran [17] introduced a new type of generalized metric spaces and
they proved some fixed point theorems on this space.

Definition 2 ([17]). Let X be a non empty set and θ : X ×X → [1,∞). A function
dθ : X×X → [0,∞) is called an extended b−metric if for all x,y,z ∈ X is satisfies
(dθ1) dθ(x,y) = 0 if and only if x = y;
(dθ2) dθ(x,y) = dθ(y,x);
(dθ3) dθ(x,y)≤ θ(x,y) [dθ(x,z)+dθ(z,y)].

The pair (X ,dθ) is called an extended b−metric space, in short extended-bMS.

Remark 1. If θ(x,y) = s, for s≥ 1 then we obtain the definition of bMS. Note that
neither b−metric nor extended b−metric is continuous. Throughout the paper, we
presume that all considered an extended b−metrics are continuous.

Example 4. Let p ∈ (0,1), q > 1 and X = lp(R)∪ lq(R) equipped with the metric

d(x,y) =

 dp(x,y) if x,y ∈ lp(R),
dq(x,y) if x,y ∈ lq(R),

0 otherwise,
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where

lr(R) =

{
x = {xn} ⊂ R :

∞

∑
n=1
|xn|r < ∞

}
for r = p,q.

and

dr(x,y) =

(
∞

∑
n=1
|xn− yn|r

)1/r

, for r = p,q.

It is clear that (X ,d) forms an extended b-metric with

θ(x,y) =

 21/p if x,y ∈ lp(R),
21/q if x,y ∈ lq(R),

1 otherwise.

Example 5 ([17]). Let X = {1,2,3} ,θ : X×X→ [1,∞) and dθ : X×X→ [0,∞) as
θ(x,y) = 1+ x+ y and

dθ(1,1) = dθ(2,2) = dθ(3,3) = 0, and dθ(1,2) = dθ(2,1) = 80,
dθ(1,3) = dθ(3,1) = 1000, and dθ(2,3) = dθ(3,2) = 600.

Example 6 ([5]). Let X = [0,1] ,θ : X ×X → [1,∞) and dθ : X ×X → [0,∞) as

θ(x,y) =
1+ x+ y

x+ y
and

dθ(x,y) =
1
xy

,x,y ∈ (0,1] ,x 6= y,

dθ (x,y) = 0,x,y ∈ [0,1] ,x = y,

dθ(x,0) = dθ(0,x) =
1
x
,x ∈ (0,1] .

Some fundamental concepts like convergence, Cauchy sequence and completeness
in a extended-bMS are defined as follows [17].

Definition 3 ([17]). Let (X ,dθ) be an extended-bMS.
(i) A sequence (xn)n∈N in X is said to converge to x ∈ X , if for every ε > 0 there

exists N = N(ε) ∈ N such that dθ(xn,x) < ε, for all n ≥ N. In this case, we
write lim

n→∞
xn = x.

(ii) A sequence (xn)n∈N in X is said to be Cauchy if for every ε > 0 there exists
N = N(ε) ∈ N such that dθ(xm,xn)< ε, for all m,n≥ N.

Definition 4. An extended-bMS (X ,dθ) is complete if every Cauchy sequence in
X is convergent.

Lemma 1. Let (X ,dθ) be an complete extended-bMS. If dθ is continuous, then
every convergent sequence has a unique limit.
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Throughout the paper, we presume that all extended-b-metrics are continuous.
The notion of comparison functions is defined by Rus [23] and it has been ex-

tensively studied by a number of authors to get more general forms of contractive
mappings.

Definition 5 ([23]). A function φ : [0,∞)→ [0,∞) is called a comparison function
if it is increasing and φn(t)→ 0 as n→ ∞ for every t ∈ [0,∞), where φn is the n-th
iterate of φ.

Properties and examples of comparison functions can be found in [23]. An im-
portant property of comparison functions is given by the following Lemma.

Lemma 2 ([23]). If φ : [0,∞)→ [0,∞) is a comparison function, then
(1) each iterate φk of φ, k ≥ 1 is also a comparison function;
(2) φ is continuous at 0;
(3) φ(t)< t for all t > 0.

Definition 6 ([23]). Let s ≥ 1 be a real number. A function φ : [0,∞)→ [0,∞) is
called a (b)-comparison function if φ is increasing and

(*) there exist k0 ∈ N, a ∈ [0,1) and a convergent nonnegative series
∞

∑
k=1

vk such

that sk+1φk+1(t)≤ askφk(t)+ vk, for k ≥ k0 and any t ≥ 0.

The collection of all (b)-comparison functions will be denoted by Ψ. In the literat-
ure, a (b)-comparison function is called (c)-comparison functions when s = 1. It can
be shown that a (c)-comparison function is a comparison function, but the converse
is not true in general. Berinde [23] also proved the following important property of
(b)-comparison functions.

Lemma 3 ([23]). Let φ : [0,∞)→ [0,∞) be a (b)-comparison function. Then

(1) the series
∞

∑
k=0

sk
φ

k(t) converges for any t ∈ [0,∞);

(2) the function bs : [0,∞)→ [0,∞) defined as bs =
∞

∑
k=0

sk
φ

k(t) is increasing and

is continuous at t = 0.

Remark 2. Any (b)-comparison function φ satisfies φ(t)< t and lim
n→∞

φn(t) = 0 for
each t > 0.

In order to unify several existing fixed point results in the literature, Khojasteh et
al. [19] introduced the notion of simulation functions and investigate the existence
and uniqueness of a fixed point for different types of contractive mappings.

Definition 7. A simulation function is a mapping ζ : [0,∞)× [0,∞)→R satisfying
the following conditions:
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(ζ1): ζ(t,s)< s− t for all t,s > 0;
(ζ2): if (tn)n∈N ,(sn)n∈N are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0, then limsup
n→∞

ζ(tn,sn)< 0.

In [19], the condition ζ(0,0) = 0 was added, but Argoubi et al. [8] dropped it.
Let Z denote the family of all simulation functions ζ : [0,∞)× [0,∞)→ R, that is,
verifying (ζ1) and (ζ2).

Due to the axiom (ζ1), we have

ζ(t, t)< 0 for all t > 0.

The following example is derived from [6, 16, 19].

Example 7. Let φi : [0,∞)→ [0,∞) be continuous functions such that φi(t) = 0 if
and only if, t = 0. For i = 1,2,3,4,5,6, we define the mappings ζi : [0,∞)× [0,∞)→
R, as follows

(i): ζ1(t,s) = φ1(s)−φ2(t), for all t,s ∈ [0,∞), where φ1,φ2 : [0,∞)→ [0,∞)
are two continuous functions such that φ1(t) = φ2(t) = 0 if and only if t = 0
and φ1(t)< t ≤ φ2(t) for all t > 0.

(ii): ζ2(t,s) = s− f (t,s)
g(t,s)

t, for all t,s ∈ [0,∞), where f ,g : [0,∞)× [0,∞)→

(0,∞) are two continuous functions with respect to each variable such that
f (t,s)> g(t,s), for all t,s > 0.

(iii): ζ3(t,s) = s−φ3(s)− t, for all t,s ∈ [0,∞).
(iv): ζ4(t,s) = s ϕ(s)− t, for all s, t ∈ [0,∞), where ϕ : [0,∞)→ [0,1) is a func-

tion such that limsup
t→r+

ϕ(t)< 1, for all r > 0.

(v): ζ5(t,s) = η(s)− t, for all s, t ∈ [0,∞), where η : [0,∞)→ [0,∞) is an upper
semi-continuous mapping such that η(t)< t, for all t > 0 and η(0) = 0.

(vi): ζ6(t,s) = s−
∫ t

0 φ(u)du, for all s, t ∈ [0,∞), where φ : [0,∞)→ [0,∞) is a
function such that

∫
ε

0 φ(u)du exists and
∫

ε

0 φ(u)du > ε, for each ε > 0.
It is clear that each function ζi (i = 1,2,3,4,5,6) forms a simulation function.

Suppose (X ,d) is a metric space, T is a self-mapping on X and ζ ∈Z. We say that
T is a Z-contraction with respect to ζ [19], if

ζ(d(T (x) ,T (y)),d(x,y))≥ 0, for all x,y ∈ X .

Theorem 1 ([17]). Let (X ,dθ) be an extended-bMS such that dθ is a continuous
functional. Let T : X → X satisfy:

dθ(T (x) ,T (y))≤ kdθ(x,y), (1.1)

for all x,y ∈ X, where k ∈ [0,1) be such that for each x0 ∈ X, lim
n,m→∞

θ(xn,xm) <
1
k ,

here xn = T n (x0), n = 1,2, .... Then T has precisely one fixed point u. Moreover, for
each y ∈ X, T n (y)→ u.
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The notion of α-admissible mappings and the concept of triangular α-admissible
mappings [18] are reconsidered and refined by Popescu [21] in the following way:

Definition 8 ([21]). Let α : X ×X → [0,∞) be a mapping and X 6= ∅. A self-
mapping T : X → X is said to be an α−orbital admissible if for all s ∈ X , we have

α(s,T (s))≥ 1⇒ α(T (s) ,T 2 (s))≥ 1.

Furthermore, an α−orbital admissible mapping T is called triangular α-orbital ad-
missible if

(TO) α(s, t)≥ 1 and α(s,T (t))≥ 1 implies that α(s,T (t))≥ 1, for all s, t ∈ X .

In this paper, we investigate the existence of a fixed point of an admissible exten-
ded Z-contraction in the context of extended b-metric spaces.

2. MAIN RESULTS

We start this section by introducing nonlinear contractive mappings in the setting
of extended b-metric spaces as follows.

Definition 9. Let (X ,d) be an extended-bMS and θ : X ×X → [1,∞). A mapping
T : X→ X is called an admissible extended Z-contraction mapping if there is a ζ∈Z
such that

ζ(α(x,y)dθ(T (x) ,T (y)),φ(M(x,y)))≥ 0, for all x,y ∈ X , (2.1)

where φ ∈Ψ and

M(x,y) = max{dθ(x,y),dθ(x,T (x)),dθ(y,T (y))}. (2.2)

Remark 3. Note that for admissible extended Z-contraction mappings we have

α(x,y)dθ(T x,Ty)≤ φ(M(x,y))) for all x,y ∈ X . (2.3)

In what follows we shall express the main theorem of this paper.

Theorem 2. Let (X ,dθ) be a complete extended b-metric space and T : X → X
a mapping. Suppose that exists a sequence (qn)n∈N , qn > 1, for all n ∈ N such that
θ(xn,xm)< qn, for all m > n. If T is an admissible extended Z-contraction mapping
satisfying

(i) T is triangular α−orbital admissible;
(ii) there exists x0 ∈ X such that α(x0,T (x0))≥ 1;
(iii) T is continuous,

then it has a fixed point u. In the case of existence of a fixed point u, we have T n (y)→
u for each y ∈ X.

Proof. Due to (ii) there exists x0 ∈ X such that α(x0,T x0)≥ 1. Define an recursive
sequence {xn} by xn = T n (x0) for n ∈ N. If for some n0 ∈ N, we have xn0 = xn0+1 =
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T (xn0), then xn0 is a fixed point of T . From now on, we assume that xn 6= xn+1 for all
n ∈ N.

On the other hand, employing (ii) and regarding that T is α−orbital admissible,
we find, by iteration, that

α(xn,xn+1)≥ 1, for all n = 0,1, . . . . (2.4)

Furthermore, by taking (i) into account, we deduce also

α(xn,xm)≥ 1, for all m > n. (2.5)

By letting x = xn and y = xn+1 in (2.3) and keeping (2.4) in mind, we derive

dθ(xn,xn+1) = dθ(T (xn−1) ,T (xn))

≤ α(xn−1,xn)dθ(T (xn−1) ,T (xn))≤ φ(M(xn−1,xn)),

where

M (xn−1,xn) = max{dθ (xn−1,xn) ,dθ (xn−1,T (xn−1)) ,dθ (xn,T (xn))}
= max{dθ (xn−1,xn) ,dθ (xn−1,xn) ,dθ (xn,xn+1)}
= max{dθ (xn−1,xn) ,dθ (xn,xn+1)}

If for some n ∈ N, we get

M(xn−1,xn) = max{dθ(xn−1,xn),dθ(xn,xn+1)}= dθ(xn,xn+1),

then
0 < dθ(xn,xn+1)≤ φ(dθ(xn,xn+1))< dθ(xn,xn+1),

which is a contradiction. Thus, for all n≥ 1,

M(xn−1,xn) = max{dθ(xn−1,xn),dθ(xn,xn+1)}= dθ(xn−1,xn).

Hence
0 < dθ(xn,xn+1)≤ φ(dθ(xn−1,xn))< dθ(xn−1,xn), ∀ n≥ 1. (2.6)

We deduce
0 < dθ(xn,xn+1)≤ φ

n(dθ(x0,x1)), ∀ n≥ 0. (2.7)
Letting n→ ∞ in (2.7), because φ is a (b)-comparison function, we get

lim
n→∞

dθ(xn,xn+1) = 0.

We claim that (xn) is a Cauchy sequence. For all m > n,

dθ(xn,xm)≤ θ(xn,xm)(dθ(xn,xn+1)+dθ(xn+1,xm))

≤ θ(xn,xm)dθ(xn,xn+1)+θ(xn,xm)θ(xn+1,xm)dθ(xn+1,xn+2)

+ ...+θ(xn,xm)θ(xn+1,xm)...θ(xm−1,xm)dθ(xm−1,xm)

≤ θ(xn,xm)φ
n (dθ(x0,x1))+θ(xn,xm)θ(xn+1,xm)φ

n+1(dθ(x0,x1))

+ ...+θ(xn,xm)θ(xn+1,xm)...θ(xm−1,xm)φ
m−1(dθ(x0,x1))

≤ θ(x1,xm)θ(x2,xm)...θ(xn,xm)φ
n(dθ(x0,x1))
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+θ(x1,xm)θ(x2,xm)...θ(xn+1,xm)φ
n+1(dθ(x0,x1))

+ ...+θ(x1,xm)θ(x2,xm)...θ(xm−1,xm)φ
m−1(dθ(x0,x1)).

Choose for all n ∈ N

Sn =
n

∑
j=1

φ
j(dθ(x0,x1))

j

∏
i=1

θ(xi,xm).

We deduce that
dθ(xn,xm)≤ Sm−1−Sn−1, ∀ m > n.

Consider the series
∞

∑
n=1

φ
n(dθ(x0,x1))

n

∏
i=1

θ(xi,xm).

Let q = max{q1, ...,qn} . We have

un = φ
n(dθ(x0,x1))

j

∏
i=1

θ(xi,xm)≤ φ
n(dθ(x0,x1))qn = vn.

From Lemma 3, we have that the series
∞

∑
j=0

φ j(dθ(x0,x1))q j converges. Using com-

parison criteria for the convergence of series, we obtain that
∞

∑
n=1

φ
n(dθ(x0,x1))

n

∏
i=1

θ(xi,xm)

converges, and hence
lim

n,m→∞
dθ(xn,xm) = 0

that is, (xn)n∈N is a Cauchy sequence.
Since (X ,d) is a complete extended b-metric space, there exists z ∈ X such that

lim
n→∞

dθ(xn,z) = 0.

Since T is continuous, we derive that

lim
n→∞

dθ(T (xn) ,T (z)) = 0 = lim
n→∞

dθ(xn+1,T (z)) = dθ(z,T (z)).

Regarding the uniqueness of the limit, we conclude that T z = z. �

Theorem 3. Let (X ,dθ) be a complete extended b-metric space and T : X → X
a mapping. Suppose that exists a sequence (qn)n∈N , qn > 1, for all n ∈ N such that
θ(xn,xm)< qn, for all m > n. If T is an admissible extended Z-contraction mapping
satisfying

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0,T (x0))≥ 1;



ON CONTRACTIONS VIA SIMULATION FUNCTIONS ON EXTENDED b-METRIC SPACES 135

(iii) if {xn} is a sequence in X such that α(xn,xn+1)≥ 1 for all n and xn→ x∈X as
n→∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k),x)≥
1 for all k.

then it has a fixed point u. In the case of existence of a fixed point u, we have T n (y)→
u for each y ∈ X.

Proof. Following the proof of Theorem 1, we know that the sequence {xn} defined
by xn+1 = T (xn) for all n≥ 0, converges for some u ∈ X . From condition (iii), there
exists a subsequence {xn(k)} of {xn} such that α(xn(k),u) ≥ 1 for all k. Applying
(2.1), for all k, we get that

0≤ ζ(α(xn(k),u)dθ(T xn(k),Tu),φ(M(xn(k),u)))

= ζ(α(xn(k),u)dθ(xn(k)+1,Tu),φ(M(xn(k),u)))

< M(xn(k),u)−α(xn(k),u)d(xn(k)+1,Tu),

which is equivalent to

dθ(xn(k)+1,T (u)) = dθ(T
(
xn(k)

)
,T (u))

≤ α(xn(k),u)dθ(T
(
xn(k)

)
,T (u))

≤ φ(M(xn(k),u))

= φ(max{dθ(xn(k),u),dθ(xn(k),T
(
xn(k)

)
),dθ(u,T (u))}).

Letting limsup as k → ∞ in the equality above, we have dθ(u,Tu) = 0, that is,
u = Tu. �

For the uniqueness of a fixed point of a α-admissible Z-contraction with respect
to ζ, we shall suggest the following hypothesis.

(U) For all x,y ∈ Fix(T ), we have α(x,y)≥ 1.

Here, Fix(T ) denotes the set of fixed points of T .

Theorem 4. Adding condition (U) to the hypotheses of Theorem 1 (resp. Theorem
3), we obtain that u is the unique fixed point of T .

Proof. We shall prove that z is unique. Assume that z and w two fixed points of T
with z 6= w. By (2.1),

dθ(z,w) = dθ(T (z) ,T (w))≤ α(z,w)dθ(T (z) ,T (w))

≤ φ(M(z,w)) = φ(max{dθ(z,w),dθ(z,T (z)),dθ(w,T (w))})
= φ(dθ(z,w))< dθ(z,w),

which is a contradiction. So the fixed point of T is unique. �
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3. ULAM STABILITY AND WELL-POSEDNESS OF THE FIXED POINT PROBLEM

Definition 10. Let (X ,dθ) be an extended b-metric space and T : X → X be an
operator. The fixed point problem

x = T (x), x ∈ X , (3.1)

is called generalized Ulam stable if and only if there exists ψ : R+→R+, increasing,
continuous in 0 and ψ(0) = 0, such that, for each ε > 0 and for each solution y∗ ∈ X
of the inequality

dθ(y,T (y))≤ ε, (3.2)
there exists a solution x∗ of the fixed point problem (3.1) such that

dθ(x∗,y∗)≤ ψ(ε).

Theorem 5. Let (X ,dθ) be a complete extended b-metric space and T : X → X a
mapping. Suppose that all the hypotheses of Theorem 2 (or Theorem 3) hold. Addi-
tionally we suppose that

(i) for any solution y∗ ∈ X of (3.2), we have that α(xn,y∗) ≥ 1 and
lim
n→∞

θ(xn+1,y∗)< q = max{q1, ...,qn} , where xn = T n (x0), n ∈ N;

(ii) β : [0,∞)→ [0,∞), β(r) := r−qφ(r) is strictly increasing and onto;
(iii) φ is continuous.
Then, the fixed point problem (3.1) is generalized Ulam stable.

Proof. Since the conditions of Theorem 2 hold, the fixed point problem (3.1) has
a unique solution x∗ ∈ X . Let y∗ ∈ X be a solution of (3.2). We have

dθ (x∗,y∗) = lim
n→∞

dθ (xn+1,y∗) = lim
n→∞

dθ (T (xn) ,y∗) (3.3)

≤ lim
n→∞

θ(T (xn) ,y∗) [dθ (T (xn) ,T (y∗))+dθ (y∗,T (y∗))]

Since T is an admissible extended Z-contraction mapping, we have

0≤ ζ(α(xn,y∗)dθ(T (xn) ,T (y∗)),φ(M(xn,y∗)))

< φ(M(xn,y∗))−α(xn,y∗)dθ(T (xn) ,T (y∗))

≤ φ(M(xn,y∗))−dθ(T (xn) ,T (y∗)).

Hence, we have
dθ(T (xn) ,T (y∗))≤ φ(M(xn,y∗)).

Accordingly, the inequality (3.3) becomes

dθ (x∗,y∗)≤ lim
n→∞

θ(T (xn) ,y∗) [φ(M(xn,y∗))+ ε]

dθ (x∗,y∗)≤ q lim
n→∞

φ(M(xn,y∗))+qε (3.4)

Now, we consider

M(xn,y∗) = max{dθ (xn,y∗) ,dθ (xn,T (xn)) ,dθ (y∗,T (y∗))}
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M(xn,y∗)≤max{dθ (xn,y∗) ,dθ (xn,T (xn)) ,ε}

lim
n→∞

M(xn,y∗)≤max
{

lim
n→∞

dθ (xn,y∗) ,ε
}
= max{dθ (x∗,y∗) ,ε}

If max{dθ (x∗,y∗) ,ε}= ε, then (3.3) turns into

dθ (x∗,y∗)≤ qφ(ε)+qε = ψ(ε) .

If max{dθ (x∗,y∗) ,ε}= dθ (x∗,y∗), then (3.3) becomes

dθ (x∗,y∗)≤ qφ(dθ (x∗,y∗))+qε

That is β(dθ (x∗,y∗))≤ qε. Since β is strictly increasing and onto, we have

dθ (x∗,y∗)≤ β
−1 (qε) = ψ(ε) ,

and the proof is complete. �

Theorem 6. Let (X ,dθ) be a complete extended b-metric space and T : X → X a
mapping. Suppose that all the hypotheses of Theorem 2 (or Theorem 3) hold. Addi-
tionally we suppose that

(i) for any solution y∗ ∈ X of (3.2) , there exists a solution x∗ of (3.1) such that
α(x∗,y∗)≥ 1 and θ(x∗,y∗)< q = max{q1, ...,qn};

(ii) β : [0,∞)→ [0,∞), β(r) := r−qφ(r) is strictly increasing and onto;
Then, the fixed point problem (3.1) is generalized Ulam stable.

Proof. Since the conditions of Theorem 2 hold, the fixed point problem (3.1) has
a unique solution x∗ ∈ X . Let y∗ ∈ X be a solution of (3.2). We have

dθ (x∗,y∗)≤ θ(x∗,y∗) [dθ (T (x∗) ,T (y∗))+dθ (y∗,T (y∗))]

≤ θ(x∗,y∗) [dθ (T (x∗) ,T (y∗))+ ε] . (3.5)

Since T is an admissible extended Z-contraction mapping, we have

dθ (T (x∗) ,T (y∗))≤ φ(M(x∗,y∗)).

Attendantly, the inequality ( 3.5 ) turns into

dθ (x∗,y∗)≤ q [φ(M(x∗,y∗))+ ε] (3.6)

Now, we shall consider

M(x∗,y∗) = max{dθ (x∗,y∗) ,dθ (x∗,T (x∗)) ,dθ (y∗,T (y∗))}
M(xn,y∗)≤max{dθ (x∗,y∗) ,ε} .

If max{dθ (x∗,y∗) ,ε}= ε, then (3.6) becomes

dθ (x∗,y∗)≤ qφ(ε)+qε = ψ(ε) .

If max{dθ (x∗,y∗) ,ε}= dθ (x∗,y∗), then (3.6) turns into

dθ (x∗,y∗)≤ qφ(dθ (x∗,y∗))+qε
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That is
β(dθ (x∗,y∗))≤ qε.

Since β is strictly increasing and onto, we have

dθ (x∗,y∗)≤ β
−1 (qε) = ψ(ε) ,

and the proof is complete. �

Definition 11. Let (X ,dθ) be an extended b-metric space with constant and T :
X → X be an operator. The fixed point problem (19) is well-posed if

(i) FixT = {x∗} ;
(ii) If (xn)n∈N is a sequence such that dθ (xn,T (xn))→ 0, as n→∞, then xn→ x∗,

as n→ ∞.

Theorem 7. Let (X ,dθ) be a complete extended b-metric space and T : X → X a
mapping. Suppose that all the hypotheses of Theorem 2 (or Theorem 3) hold. Addi-
tionally we suppose that

(i) for any solution x∗ ∈ X of (3.1) , we have that α(xn,x∗) ≥ 1 and
lim
n→∞

θ(xn,x∗)< q = max{q1, ...,qn} , where xn = T n (x0), n ∈ N;

(ii) β : [0,∞)→ [0,∞), β(r) := r−qφ(r) is strictly increasing and onto;
Then, the fixed point problem (3.1) is well-posed.

Proof. Since the conditions of Theorem 2 hold, the fixed point problem (3.1) has
a unique solution x∗ ∈ X . Let (xn)n∈N be a sequence such that d (xn,T (xn))→ 0,
as n→ ∞.

dθ (xn,x∗)≤ θ(xn,x∗) [dθ (xn,T (xn))+dθ (T (xn) ,T (x∗))] . (3.7)

Since T is an admissible extended Z-contraction mapping, we have

0≤ ζ(α(xn,x∗)dθ(T (xn) ,T (x∗)),φ(M(xn,x∗)))

< φ(M(xn,x∗))−α(xn,x∗)dθ(T (xn) ,T (x∗))

≤ φ(M(xn,x∗))−dθ(T (xn) ,T (x∗)).

Hence
dθ(T (xn) ,T (x∗))≤ φ(M(xn,x∗)).

(3.7) yields

dθ (xn,x∗)≤ θ(xn,x∗) [dθ (xn,T (xn))+φ(M(xn,x∗))] (3.8)

Now

M(xn,y∗) = max{dθ (xn,x∗) ,dθ (xn,T (xn)) ,dθ (x∗,T (x∗))}= dθ (xn,x∗)

Hence, (3.8) implies

dθ (xn,x∗)≤ θ(xn,x∗) [dθ (xn,T (xn))+φ(dθ(xn,x∗))] (3.9)
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Letting n→ ∞ in (3.9) we obtain

lim
n→∞

[dθ (xn,x∗)−qφ(dθ(xn,x∗))]≤ 0

which is
lim
n→∞

β(dθ (xn,x∗)) = 0.

From here
lim
n→∞

d (xn,x∗) = 0,

and the proof is complete. �

In what follows we shall give a data dependence result.

Theorem 8. Let (X ,dθ) be a complete extended b-metric space and T1,T2 : X→ X
two mappings such that

(i) The conditions of Theorem 2 (or Theorem 3) hold for T1;
(ii) FixT2 6=∅;
(iii) For any x∗ ∈ FixT1 and y∗ ∈ FixT2 we have α(x∗,y∗)≥ 1 and θ(x∗,y∗)< q =

max{q1, ...,qn};
(iv) There exits η > 0, such that dθ (T1 (x) ,T2 (y))≤ η, for all x,y ∈ X;

Then, we have
dθ (x∗,y∗)≤ sup{ t ∈ R+| t−qϕ(t)≤ 2qη} .

Proof. Since the conditions of Theorem 2 hold for T1, there exists a unique fixed
point x∗ of T1, and because FixT2 6=∅, there exists y∗ a fixed point of T2. So, we have

dθ (x∗,y∗)≤ θ(x∗,y∗) [dθ (T1 (x∗) ,T1 (y∗))+dθ (T1 (y∗) ,T2 (y∗))]

≤ θ(x∗,y∗) [dθ (T1 (x∗) ,T1 (y∗))+η] . (3.10)

Since T1 is an admissible extended Z-contraction mapping, we have

dθ (T1 (x∗) ,T1 (y∗))≤ φ(M(x∗,y∗)).

(3.10) implies that
dθ (x∗,y∗)≤ q [φ(M(x∗,y∗))+η] (3.11)

Consider now

M(x∗,y∗) = max{dθ (x∗,y∗) ,dθ (x∗,T1 (x∗)) ,dθ (y∗,T1 (y∗))}
M(xn,y∗)≤max{dθ (x∗,y∗) ,η} .

If max{dθ (x∗,y∗) ,η}= η, then (3.11) turns into

dθ (x∗,y∗)≤ qφ(η)+qη < 2qη. (3.12)

If max{dθ (x∗,y∗) ,η}= dθ (x∗,y∗), then (3.11) becomes

dθ (x∗,y∗)≤ qφ(dθ (x∗,y∗))+qη < qφ(dθ (x∗,y∗))+2qη. (3.13)

From (3.12) or (3.13) we reach the conclusion. �
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4. DISCUSSION AND CONCLUSION

It wouldn’t be wrong to say that our results yields several consequences most of
which were announced in the literature. More precisely, by substituting the mapping
ζ in a proper way like in the Example 7, we find a number of corollaries. On the
other hand, by proper choice of the auxiliary function α together with the selection
of φ in Theorem 1-Theorem 4, we are enable to derive some more existing fixed point
theorems in the various settings (in the context of partially ordered set endowed with
a metric, in the setting of cyclic contraction etc.). We omit the details since they are
straightforward.
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