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Abstract. This study is motivated by the researches in the field for invariants of geodesic and
conformal mappings presented in

(
T. Y. Thomas, [17]

)
and

(
H. Weyl, [20]

)
. The Thomas pro-

jective parameter and the Weyl projective tensor are generalized in this article. Generators for
vector spaces of invariants of geometric mappings are obtained in here.
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1. INTRODUCTION

An N-dimensional manifold MN equipped with an affine connection ∇ (with tor-
sion) is called the non-symmetric affine connection space GAN

(
see [6,12–15,18,19,

21]
)
. As a special case, the manifold MN equipped with a torsion-free affine connec-

tion
0
∇ is called the symmetric affine connection space AN . More details about the

theory of symmetric affine connection spaces may be found in [9–11, 16].
T. Y. Thomas [17] and H. Weyl [20] started the research about invariants of special

diffeomorphisms between symmetric affine connection spaces for different applica-
tions in physics. Many authors have continued the Thomas’s and Weyl’s works. J.
Mikeš [1, 2, 8–11], I. Hinterleitner [10, 11], N. S. Sinyukov [16], are some of them.
Some of invariant geometrical object for diffeomorphisms of non-symmetric affine
connection spaces are obtained in [15, 18, 19, 21].

In this paper, as in the previous articles, books and monographs, the spaces GAN
and GAN will be the manifold MN equipped with the affine connections ∇ and ∇ =
f (∇). A diffeomorphism f :GAN→GAN which the affine connection ∇ of the space
GAN transforms to the affine connection ∇ of the space GAN is the mapping of the
space GAN .

The author was supported in part by the Serbian Ministry of Education, Science and Technological
Development, Grant No. 174012.

c© 2020 Miskolc University Press
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In this paper, we will obtain sets of families of invariants for diffeomorphisms
defined on affine connection spaces with and without torsion. Moreover, we will
prove that several of these families of invariants are linearly independent.

1.1. Affine connection spaces

For different applications in physics, for example in the Theory of Relativity [3–5],
affine connection spaces with torsion have been studied.

Let GAN be a non-symmetric affine connection space. The affine connection coef-
ficients Li

jk of this space are non-symmetric in the indices j and k. The symmetric
and anti-symmetric part of the coefficient Li

jk are respectively

Li
jk =

1
2

(
Li

jk +Li
k j

)
and Li

jk
∨
= 1

2

(
Li

jk−Li
k j

)
. (1.1)

The symmetric part Li
jk is the affine connection coefficient for a torsion-free affine

connection
0
∇. The manifold M N equipped with the affine connection

0
∇
(
whose

coefficients are Li
jk

)
is the associated space AN (of the space GAN).

The covariant derive of a tensor ai
j of the type (1,1) with respect to the affine

connection of the associated space AN is (see [9–11, 16])

ai
j|k = ai

j,k +Li
αkaα

j −Lα

jkai
α, (1.2)

for the partial derivatives ∂/∂xi denoted by comma.

With respect to the affine connection
0
∇ and the corresponding covariant derivative

|, one Ricci-type identity is obtained. The corresponding curvature tensor of the
associated space AN is (see [9–11, 16])

Ri
jmn = Li

jm,n−Li
jn,m +Lα

jmLi
αn−Lα

jnLi
αm. (1.3)

Based on the definitions and results from L. P. Eisenhart [6, 7], A. Einstein [3–5],
S. M. Minčić defined four kinds of covariant derivaties with respect to the affine
connection ∇ of the space GAN [12–14]

ai
j|
1
k = ai

j,k +Li
αkaα

j −Lα

jkai
α, ai

j|
2
k = ai

j,k +Li
kα

aα
j −Lα

k ja
i
α,

ai
j|
3
k = ai

j,k +Li
αkaα

j −Lα

k ja
i
α, ai

j|
4
k = ai

j,k +Li
kα

aα
j −Lα

jkai
α.

(1.4)

With respect to these generalizations of the covariant derivative (1.2),
S. M. Minčić got four curvature tensors, eight derived curvature tensors and fifteen
curvature pseudotensors of the space GAN [12–14]. Curvature tensors and derived
curvature tensors of the space GAN are elements of the family [21]

Ki
jmn = Ri

jmn +uLi
jm
∨
|n +u′Li

jn
∨
|m + vLα

jm
∨

Li
αn
∨
+ v′Lα

jn
∨

Li
αm
∨
+wLα

mn
∨

Li
α j
∨
, (1.5)
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for the curvature tensor Ri
jmn of the associated space AN and real coefficients u,u′,v,

v′,w. Five of twelve curvature tensors from the family (1.5) are linearly independent
[13], while the rest can be expressed in terms of these five tensors and the curvature
tensor Ri

jmn of the associated space AN .
Special kind of non-symmetric affine connection spaces are N-dimensional dif-

ferentiable manifolds equipped with the non-symmetric metric tensor gi j of the type
(0,2). The symmetric and anti-symmetric part of the metric gi j are

gi j =
1
2

(
gi j +g ji

)
and gi j

∨
= 1

2

(
gi j−g ji

)
. (1.6)

These spaces are the generalized Riemannian spaces GRN (see [7]). The affine con-
nection coefficients of the space GRN are the generalized Christoffel symbols of the
second kind

Γ
i
jk =

1
2

giα(g jα,k−g jk,α +gαk, j
)
, (1.7)

for
[
gi j] = [gi j

]−1. After symmetrizing the symbols Γi
jk in the indices j and k, we

get that they reduce to the corresponding Christoffel symbols Γi
jk obtained from the

symmetric metric gi j of the associated space RN .

2. ABOUT INVARIANTS

Many invariants of mappings for torsion-free spaces are obtained. Some of them
are the Thomas projective parameter, the Weyl projective tensor, the Weyl conformal
curvature, and many others. These invariants may be found in the next monographs,
books and papers: Mikeš [1, 2, 8–11], Sinyukov [16], Hinterleitner [10], Berezovski
[1, 2, 10], etc.

In this paper, the author’s main purpose is to search inceptive invariants of different
mappings defined on affine connection spaces. We will start the generalization of the
basic invariants in here. The next aim of this article is to discover how many of the
basic invariants are linearly independent.

Let f : GAN → GAN be a mapping between non-symmetric affine connection
spaces GAN and GAN .

The deformation tensor Pi
jk = Li

jk−Li
jk of this mapping is

Pi
jk = ω

i
jk−ω

i
jk + τ

i
jk− τ

i
jk, (2.1)

for geometrical objects ωi
jk,ω

i
jk,τ

i
jk,τ

i
jk of the type (1,2) such that ωi

jk = ωi
k j, ωi

jk =

ωi
k j, τi

jk = −τi
k j, τi

jk = −τi
k j. If the mapping f is equitorsion [15, 19, 21], i.e. if

Li
jk
∨
= Li

jk
∨

, the equation (2.1) reduces to

Pi
jk = ω

i
jk−ω

i
jk. (2.2)
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After symmetrizing the equations (2.1, 2.2) in the indices j and k, we get

Pi
jk = ω

i
jk−ω

i
jk. (2.3)

The deformation tensor Pi
jk of the inverse map f−1 : GAN →GAN is

Pi
jk = Li

jk−Li
jk =−Pi

jk.

So, the following equalities hold

Pi
jk = Li

jk−Li
jk = ω

i
jk−ω

i
jk =

(
− 1

2
Pi

jk

)
−
(
− 1

2
Pi

jk

)
. (2.4)

Hence, the next equation is satisfied

Pi
jk = ω

i
(1). jk−ω

i
(1). jk = ω

i
(2). jk−ω

i
(2). jk = ω

i
(3). jk−ω

i
(3). jk, (2.5)

for the geometrical objects

ωi
(1). jk = Li

jk, ωi
(2). jk = ωi

jk, ωi
(3). jk =−

1
2 Pi

jk, (2.6)

and the corresponding ωi
(1). jk,ω

i
(2). jk,ω

i
(3). jk.

Here and after, the symbol (p) means that the equal-index summation convention
does not apply to the index p.

After anti-symmetrizing the equation (2.1) in the indices j and k, we get

Pi
jk
∨
= ξ

i
jk = Li

jk
∨
−Li

jk
∨
= τ

i
jk− τ

i
jk. (2.7)

2.1. Invariants in symmetric affine connection space

With respect to the equation (2.5), we get

T̃ i
(1). jk = T̃ i

(1). jk, T̃ i
(2). jk = T̃ i

(2). jk, T̃ i
(3). jk = T̃ i

(3). jk,

for the geometrical objects

T̃ i
(1). jk = 0, T̃ i

(2). jk = Li
jk−ωi

jk, T̃ i
(3). jk =

1
2

(
Li

jk +Li
jk

)
, (2.8)

and the corresponding T̃ i
(1). jk, T̃

i
(2). jk, T̃

i
(3). jk.

From the equation

T̃ i
(p). jm,n− T̃ i

(p). jn,m + T̃ α

(p). jmT̃ i
(p).αn− T̃ α

(p). jnT̃ i
(p).αm

= T̃ i
(p). jm,n− T̃ i

(p). jn,m + T̃ α

(p). jmT̃ i
(p).αn− T̃ α

(p). jnT̃ i
(p).αm,

p = 1,2,3, one obtains that the following equalities are satisfied

W̃ i
(p). jmn = W̃ i

(p). jmn,

for the geometrical objects

W̃ i
(p). jmn = Ri

jmn−ω
i
(p). jm|n +ω

i
(p). jn|m +ω

α

(p). jmω
i
(p).αn−ω

α

(p). jnω
i
(p).αm, (2.9)
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and the corresponding W̃ i
(p). jmn.

Therefore, the following lemma holds.

Lemma 1. Let f : GAN → GAN be a mapping of the associated space AN char-
acterized by the deformation tensor (2.5).

The geometrical objects T̃ i
(p). jk, p = 1,2,3, given by the equation (2.8) are invari-

ants of the mapping f .
The geometrical objects W̃ i

(p). jmn, p = 1,2,3, given by the equation (2.9) are in-
variants of the mapping f .

An invariant T̃ i
(p). jk, for p = 1,2,3, of the mapping f : GAN→GAN is the (basic)

p-th class associated invariant of the Thomas type. An invariant W̃ i
(p). jk, for p =

1,2,3, of the mapping f : GAN → GAN is the basic p-th class associated invariant
of the Weyl type.

Remark 1. The equalities

ω
α

(3). jmω
i
(3).αn =

1
4

Pα

jmPi
αn =

1
4

Pα
jmPi

αn = ω
α

(3). jmω
i
(3).αn,

are satisfied. Thus, the invariant W̃ i
(3). jmn reduces to

W̃ i
(3). jmn = Ri

jmn−ω
i
(3). jm|n +ω

i
(3). jn|m. (2.10)

This invariant is important for researches about invariants of mappings characterized
by deformation tensors Pi

jk which are not expressed in the form (2.3). The almost

geodesic mappings of the first kind are an example of maps such that
(
see [1,2,10]

)
.

Corollary 1. Let in the equation (2.6) be ωi
(2). jk = δi

jρk +δi
kρ j +σi

jk, for a 1-form
ρ j and a geometrical object σi

jk of the type (1,2) symmetric in the indices j and k.
The geometrical objects

T̃ i
(2). jk = Li

jk−σ
i
jk−

1
N +1

((
Lα

jα−σ
α
jα
)
δ

i
k +
(
Lα

kα−σ
α

kα

)
δ

i
j

)
, (2.11)

W̃ i
(2). jmn = Ri

jmn−σ
i
jm|n +σ

i
jn|m +σ

α
jmσ

i
αn−σ

α
jnσ

i
αm

+
1

N +1
δ

i
j
(
R[mn]+σ

α

α[m|n]
)
+

N
N2−1

δ
i
[mR jn]+

1
N2−1

δ
i
[mRn] j

− 1
N2−1

δ
i
m

(
σ

α

α[ j|n]+(N +1)
(
σ

α

jn|α−σ
α

jα|n−σ
α
jnσ

β

αβ
+σ

α

jβσ
β

nα

))
+

1
N2−1

δ
i
n

(
σ

α

α[ j|m]+(N +1)
(
σ

α

jm|α−σ
α

jα|m−σ
α
jmσ

β

αβ
+σ

α

jβσ
β

αm
))
(2.12)

are the invariants of the mapping f of the Thomas and the Weyl type respectively.
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Proof. The geometrical objects

T̃ i
(2). jk = Li

jk−δ
i
kρ j−δ

i
jρk−σ

i
jk (2.13)

W̃ i
(2). jmn = Ri

jmn−δ
i
jρ[m|n]−δ

i
m
(
ρ j|n +ρ jρn +σ

α
jnρα

)
+δ

i
n
(
ρ j|m +ρ jψm +σ

α
jmρα

)
−σ

i
jm|n +σ

i
jn|m +σ

α
jmσ

i
αn−σ

α
jnσ

i
αm,

(2.14)

are the second class basic associated invariants of the mapping f of the Thomas and
the Weyl type.

If we contract the identity T̃ i
(2). jk− T̃ i

(2). jk = 0 over i and k, we get

(N +1)
(
ρ j−ρ j

)
= Lα

jα−σ
α
jα−Lα

jα +σ
α
jα. (2.15)

After substituting the equation (2.15) into the equality T̃ i
(2). jk− T̃ i

(2). jk = 0, one con-
firms that the following equality holds

T̃ i
(2). jk = T̃ i

(2). jk,

for T̃ i
(2). jk from the equation (2.11) and the corresponding T̃ i

(2). jk.
Let be ρi j = ρ j|n +ρ jψn +σα

jnρα and ρi j = ρ j‖n +ρ jρn +σ
α
jnρ

α
, for the covariant

derivative with respect to the affine connection of the torsion-free space AN denoted
by ‖.

With respect to this substitution, the equality 0 = W̃ i
(2). jmn−W̃ i

(2). jmn transforms
to

0 = Ri
jmn−Ri

jmn−δ
i
j
(
ρ[mn]−ρ[mn]

)
−δ

i
m
(
ρ jn−ρ jn

)
+δ

i
n
(
ρ jm−ρ jm

)
−σ

i
jm‖n +σ

i
jn‖m +σ

α
jmσ

i
αn−σ

α
jnσ

i
αm +σ

i
jm|n−σ

i
jn|m−σ

α
jmσ

i
αn +σ

α
jnσ

i
αm.

(2.16)
After contracting the equation (2.16) in the indices i and j and using the relations
Rα

αmn = −
(
Rmn−Rnm

)
≡ −R[mn], for the alternation in the indices m and n denoted

by the square brackets, we get

(N +1)
(
ρ[mn]−ρ[mn]

)
=−R[mn]+R[mn]−σ

α

αm‖n +σ
α

αn‖m +σ
α

αm|n−σ
α

αn|m,

i.e.

0 = Ri
jmn +

1
N +1

δ
i
j
(
R[mn]+σ

α

α[m‖n]
)
+δ

i
n
(
ρ jm−ρ jm

)
−δ

i
m
(
ρ jn−ρ jn

)
−σ

i
jm‖n +σ

i
jn‖m +σ

α
jmσ

i
αn−σ

α
jnσ

i
αm−Ri

jmn−
1

N +1
δ

i
j
(
R[mn]+σ

α

α[m|n]
)

+σ
i
jm|n−σ

i
jn|m−σ

α
jmσ

i
αn +σ

α
jnσ

i
αm.

(2.17)
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If we contract the last equation over i and n, we obtain that the following equation is
satisfied

(N−1)
(
ρ jm−ρ jm

)
=−R jm +

1
N +1

(
R[ jm]+σ

α

α[ j‖m]

)
+R jm−

1
N +1

(
R[ jm]+σ

α

α[ j|m]

)
+σ

α

jm‖α−σ
α

jα‖m−σ
α
jmσ

β

αβ
+σ

α

jβσ
β

αm

−σ
α

jm|α +σ
α

jα|m +σ
α
jmσ

β

αβ
−σ

α

jβσ
β

αm.

(2.18)

Based on the equations (2.17, 2.18), one gets

W̃ i
(2). jmn = W̃ i

(2). jmn,

for the geometrical object W̃ i
(2). jmn from the equation (2.12) and the corresponding

W̃ i
(2). jmn. �

The invariants (2.11, 2.12) are the (second kind) derived associated invariants of
the mapping f of the Thomas and Weyl type, respectively.

Remark 2. If the deformation tensor Pi
jk of a studied mapping is expressed in the

form (2.1) all invariants of the Weyl type reduce to the corresponding invariants of
the second class. If the deformation tensor Pi

jk of a mapping satisfies a differential
equation, it may be obtained just the Weyl type invariants of the third class. The
invariants of the first and the second class of the Thomas type produce the multiplied
families of invariants for mappings. Hence, it is enough to obtain invariants W i

(p). jmn

for one p. All other invariants W̃ of the Weyl type reduce to the obtained one.

2.2. Invariants in non-symmetric affine connection space

We will generalize the invariants (2.8, 2.9) in this part of the paper.
With respect to the equation (2.7), one gets

T̂ i
jk = T̂ i

jk,

for the geometrical object
T̂ i

jk = Li
jk
∨
− τ

i
jk, (2.19)

and the corresponding T̂ i
jk. Based on the equations (2.8, 2.19), one obtains that it is

satisfied the equalities

T i
(1). jk = T i

(1). jk, T i
(2). jk = T i

(2). jk, T i
(3). jk = T i

(3). jk,

for the geometrical objects

T i
(1). jk = Li

jk
∨
− τ

i
jk, T i

(2). jk = Li
jk−ω

i
jk− τ

i
jk, T i

(3). jk = Li
jk +

1
2

Pi
jk− τ

i
jk, (2.20)
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and the corresponding T i
(1). jk,T

i
(2). jk,T

i
(3). jk.

Lemma 2. Let f : GAN → GAN be a mapping of the non-symmetric affine con-
nection space GAN . The geometrical objects T̂ i

jk and T i
(p). jk, respectively given by

the equations (2.19, 2.20), are invariants of the mapping f .

Corollary 2. The invariants (2.8, 2.19, 2.20) satisfy the equation

T i
(p). jk = T̃ i

(p). jk + T̂ i
jk, (2.21)

for p = 1,2,3.

The invariant T i
(p). jk, for p = 1,2,3, is the p-th class general invariant of the

Thomas type. The invariant T̂ i
jk is the anti-symmetric invariant of the Thomas type.

From the difference T̂ i
jm‖n− T̂ i

jm|n and the equality T̂ α
jmT̂ i

αn− T̂ α
jmT̂ i

αn = 0, we
obtain the following transformation rules

Li
jm
∨
‖n−Li

jm
∨
|n = τ

i
jm‖n +ω

i
(p1).αn

(
Lα

jm
∨
− τ

α
jm
)

−ω
α

(p2). jn

(
Li

αm
∨
− τ

i
αm
)
−ω

α

(p3).mn

(
Li

jα
∨
− τ

i
jα
)

− τ
i
jm|n−ω

i
(p1).αn

(
Lα

jm
∨
− τ

α
jm
)

+ω
α

(p2). jn

(
Li

αm
∨
− τ

i
αm
)
+ω

α

(p3).mn

(
Li

jα
∨
− τ

i
jα
)
,

(2.22)

Lα

jm
∨

Li
αn
∨
−Lα

jm
∨

Li
αn
∨
= Lα

jm
∨

τ
i
αn +Li

αn
∨

τ
α
jm− τ

α
jmτ

i
αn

−Lα
jm
∨

τ
i
αn−Li

αn
∨

τ
α
jm + τ

α
jmτ

i
αn,

(2.23)

for p1, p2, p3 = 1,2.

Remark 3. The following equalities are satisfied

ω
i
(3). jkT̂ l

mn−ω
i
(3). jkT̂ l

mn =−
1
2

Pi
jkT̂ l

mn+
1
2

Pi
jkT̂ l

mn

= ω
i
(1). jkT̂ l

mn−ω
i
(1). jkT̂ l

mn.

Hence, the geometrical objects ωi
(1). jk,ω

i
(2). jk, are enough to express all transforma-

tion rules (2.22) with respect to a mapping f : GAN →GAN .

Let us currently express the invariants (2.9) in the form

W̃ i
(p). jmn = Ri

jmn− D̃ i
(p). jmn,
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for the corresponding geometrical objects D̃ i
(p). jmn. From this expression, and the

equalities W̃ i
(p). jmn−W̃ i

(p). jmn = 0, p = 1,2,3, we get

Ri
jmn−Ri

jmn = D̃ i
(p). jmn− D̃ i

(p). jmn. (2.24)

With respect to the equation (1.5), we obtain that the following equation holds

Ki
jmn−Ki

jmn = Ri
jmn−Ri

jmn +u
(
Li

jm
∨
‖n−Li

jm
∨
|n
)

+u′
(
Li

jn
∨
‖m−Li

jn
∨
|m
)
+ v
(
Lα

jm
∨

Li
αn
∨
−Lα

jm
∨

Li
αn
∨

)
+ v′

(
Lα

jn
∨

Li
αm
∨
−Lα

jn
∨

Li
αm
∨

)
+w
(
Lα

mn
∨

Li
α j
∨
−Lα

mn
∨

Li
α j
∨

)
.

(2.25)

After substituting the results (2.22, 2.23, 2.24) into the equation (2.25), we get

W i
(p).(p1).(p2). jmn = W i

(p).(p1).(p2). jmn,

for p = 1,2,3, p1
1, . . . , p2

3 = 1,2, the family geometrical objects

W i
(p).(p1).(p2). jmn = Ki

jmn−ω
i
(p). jm|n +ω

i
(p). jn|m +ω

α

(p). jmω
i
(p).αn−ω

α

(p). jnω
i
(p).αm

−u
(

τ
i
jm|n +ω

i
(p1

1).αn

(
Lα

jm
∨
− τ

α
jm
)
−ω

α

(p1
2). jn

(
Li

αm
∨
− τ

i
αm
))

−u′
(

τ
i
jn|m +ω

i
(p2

1).αm

(
Lα

jn
∨
− τ

α
jn
)
−ω

α

(p2
2). jm

(
Li

αn
∨
− τ

i
αn
))

+
(
uω

α

(p1
3).mn +u′ωα

(p2
3).mn

)(
Li

jα
∨
− τ

i
jα
)
,

(2.26)

the real coefficients u,u′,v,v′,w and the corresponding W̃ i
(p).(p1).(p2). jmn.

The following theorem holds.

Theorem 1. Let f : GAN →GAN be a mapping of the non-symmetric affine con-
nection space GAN . The set W i

(p).(p1).(p2). jmn, p = 1,2,3, pk = (pk
1, pk

2, pk
3),

k = 1,2, pk
r = 1,2, of families of geometrical objects given in the equation (2.26)

is the set of families of invariants of the Weyl type for the mapping f .
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Corollary 3. The invariants (2.9, 2.26) of the mapping f satisfy the equation

W i
(p).(p1).(p2). jmn = W̃ i

(p). jmn

+u
(

Li
jm
∨
|n− τ

i
jm|n−ω

i
(p1

1).αn

(
Lα

jm
∨
− τ

α
jm
)
+ω

α

(p1
2). jn

(
Li

αm
∨
− τ

i
αm
))

+u′
(

Li
jn
∨
|m− τ

i
jn|m−ω

i
(p2

1).αm

(
Lα

jn
∨
− τ

α
jn
)
−ω

α

(p2
2). jm

(
Li

αn
∨
− τ

i
αn
))

+
(
uω

α

(p1
3).mn +u′ωα

(p2
3).mn

)(
Li

jα
∨
− τ

i
jα
)
+ v
(
Lα

jm
∨
− τ

α
jm
)(

Li
αn
∨
− τ

i
αn
)

+ v′
(
Lα

jn
∨
− τ

α
jn
)(

Li
αm
∨
− τ

i
αm
)
+w
(
Lα

mn
∨
− τ

α
mn
)(

Li
α j
∨
− τ

i
α j
)
,

(2.27)
for p = 1,2,3, p1

1, . . . , p2
3 = 1,2.

Corollary 4. Let f : GAN → GAN be an equitorsion mapping between
non-symmetric affine connection spaces GAN and GAN . The invariants (2.20) of this
mapping reduce to the corresponding invariants (2.8). The invariant (2.19) coincides
with the anti-symmetric part Li

jk
∨

of the affine connection coefficient Li
jk.

The set (2.26) of families of invariants of the mapping f reduces to

W i
(p).(p1).(p2). jmn = Ki

jmn−ω
i
(p). jm|n +ω

i
(p). jn|m +ω

α

(p). jmω
i
(p).αn−ω

α

(p). jnω
i
(p).αm

−u
(

ω
i
(p1

1).αnLα
jm
∨
−ω

α

(p1
2). jn

Li
αm
∨

)
−u′

(
ω

i
(p2

1).αmLα
jn
∨
−ω

α

(p2
2). jm

Li
αn
∨

)
+
(
uω

α

(p1
3).mn +u′ωα

(p2
3).mn

)
Li

jα
∨
,

(2.28)
for p = 1,2,3, p1

1, . . . , p2
3 = 1,2.

The equation (2.27) reduces to

W i
(p).(p1).(p2). jmn = W̃ i

(p). jmn +
(
uω

α

(p1
3).mn +u′ωα

(p2
3).mn

)
Li

jα
∨

+u
(

Li
jm
∨
|n−ω

i
(p1

1).αnLα
jm
∨
+ω

α

(p1
2). jn

Li
αm
∨

)
+u′

(
Li

jn
∨
|m−ω

i
(p2

1).αmLα
jn
∨
−ω

α

(p2
2). jm

Li
αn
∨

)
+ vLα

jm
∨

Li
αn
∨
+ v′Lα

jn
∨

Li
αm
∨
+wLα

mn
∨

Li
α j
∨
,

(2.29)

for p = 1,2,3, p1
1, . . . , p2

3 = 1,2.

The sets of invariants W i
(p).(p1).(p2). jmn, given by the equations (2.26, 2.28), are the

sets of the (p.p1.p2)-th class invariants of the Weyl type.
The families of invariants in the set (2.26), and in the set (2.28) as well, are equival-

ent invariants of the mapping f : GAN →GAN . Because these families are different
in general, we are aimed to find how many of these families are linearly independent.
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The set W i
(p).(p1).(p2). jmn of invariants may be expressed as

W i
(p).(p1).(p2). jmn

= W̃ i
(p). jmn+uT̂ i

jm|n+u′T̂ i
jn|m+vT̂ α

jmT̂ i
αn+v′T̂ α

jnT̂ i
αm+wT̂ α

mnT̂ i
α j

− c1
puLi

αnT̂ α
jm− c2

puω
i
(p).αnT̂ α

jm + c3
puLα

jnT̂ i
αm + c4

puω
α

(p). jnT̂ i
αm

− c7
pu′Li

αmT̂ α
jn− c8

pu′ωi
(p).αmT̂ α

jn + c9
pu′Lα

jmT̂ i
αn + c10

p u′ωα

(p). jmT̂ i
αn

+
(
c5

pu+ c11
p u′
)
Lα

mnT̂ i
jα +

(
c6

pu+ c12
p u′
)
ω(p).mnT̂ i

jα, (2.30)

for the corresponding coefficients ck
p ∈ {0,1},k = 1, . . . ,12.

There are 64 families of invariants in the set (2.30) characterized by the corres-
ponding 11-tuples

ck =
(
1,−c1

pku,−c2
pku,c3

pku,c4
pku,−c7

pku′,−c8
pku′,

c9
pku′,c10

pku′,c5
pku+ c11

pku′,c6
pku+ c12

pku′
)
,

k = 1, . . . ,64, for cr
pk = cr

p in the k-th of families of invariants in the set

W̃ i
(p).(p1).(p2). jmn.

The rank of the matrix

 c1
...

c64

 of the type 64×13 is 6.

The following theorem holds.

Theorem 2. The set (2.26) of invariants of a mapping f : GAN→GAN , generates
the 6-dimensional vector space.

3. APPLICATIONS AND EXAMPLES

From the above obtained results, we will search invariants of equitorsion geodesic
mappings defined on a generalized Riemannian space GRN . Furthermore, we will
obtain an associated basic invariant of Weyl type of an almost geodesic mapping
[1, 2, 10] defined on a Riemannian space RN . These invariants will be applied in the
examples after theoretical researches.
Equitorsion geodesic mappings. Let f : GRN → GRN be an equitorsion geodesic
mapping. This mapping is characterized by the following equation

Pi
jk = ψ jδ

i
k +ψkδ

i
j, (3.1)

for the deformation tensor Pi
jk = Li

jk−Li
jk and a 1-form ψ j.

After symmetrizing this equation in the indices j and k, we get

Pi
jk = ψ jδ

i
k +ψkδ

i
j. (3.2)
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If we contract the last equation over i and k, we will obtain the following expression
of the 1-form ψ j

ψ j =
1

N +1
(
Γ

α

jα−Γ
α
jα
)
.

After substituting this expression into the equation (3.2) and recalling the equation
(2.3), we get

ω
i
(2). jk =

1
N +1

δ
i
jΓ

α

kα +
1

N +1
δ

i
kΓ

α
jα. (3.3)

If we substitute this expression into the equations (2.8, 2.9), we obtain that the geo-
metrical objects

T̃ i
(2). jk = Γ

i
jk−

1
N +1

(
δ

i
jΓ

α

kα +δ
i
kΓ

α
jα
)
, (3.4)

W̃ i
(2). jmn = Ri

jmn−
1

(N +1)2 δ
i
m
(
(N +1)Γα

jα|n +Γ
α
jαΓ

α
nα

)
+

1
(N +1)2 δ

i
n
(
(N +1)Γα

jα|m +Γ
α
jαΓ

α
mα

)
,

(3.5)

are the basic associated invariants of the Thomas and the Weyl type of the mapping
f .

Example 1. Let GR3 be a generalized Riemannian space equipped with the non-
symmetric metric

gi j =


(
x1
)2 x1 x2

−x1
(
x2
)2 x3

−x2 −x3
(
x3
)2

 . (3.6)

The symmetric and anti-symmetric part of this metric are

gi j =


(
x1
)2 0 0

0
(
x2
)2 0

0 0
(
x3
)2

 and gi j
∨
=

 0 x1 x2

−x1 0 x3

−x2 −x3 0

 . (3.7)

The contravariant metric tensor
[
gi j]= [gi j

]−1 of the space GR3 is

gi j =


(
x1
)−2 0 0
0

(
x2
)−2 0

0 0
(
x3
)−2

 . (3.8)

To obtain the invariants (2.29), we need to search the corresponding invariant (2.9),
the geometrical objects ωi

(1). jk and ωi
(2). jk and the anti-symmetric part Γi

jk
∨

of the gen-

eralized Christoffel symbol Γi
jk given by the equation (1.7).
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The affine connection coefficients of the associated space R3 are the Chrisfoffel
symbols

Γ
i
jk = ω

i
(1). jk =

{ (
xi
)−1

, i = j = k
0, otherwise.

(3.9)

Furthermore, based on the equation (3.3) we get

ω
i
(2). jk =

1
N +1

(
δ

i
j
(
xk)−1

+δ
i
k
(
x j)−1

)
. (3.10)

For this reason, the curvature tensor of the associated space R3 is Ri
jmn = 0. Moreover,

the associated invariant of Weyl type (3.5) is

W̃ i
(2). jmn =−

1
(N +1)2 δ

i
m

(
(N +1)

((
x j)−1

)
|n
+
(
x j)−1(xn)−1

)
+

1
(N +1)2 δ

i
n

(
(N +1)

((
x j)−1

)
|m
+
(
x j)−1(xm)−1

)
.

(3.11)

Because Γi
jk
∨
=

1
2

giα
(
g jα
∨
,k−g jk

∨
,α +gαk

∨
, j
)
, we get

Γ
1
23
∨
=

1
2
(
x1)−2

=−Γ
1
32
∨
, Γ

2
31
∨
=

1
2
(
x2)−2

=−Γ
2
13
∨
, Γ

3
12
∨
=

1
2
(
x3)−2

=−Γ
3
21
∨
,

(3.12)
and Γi

jk
∨
= 0 in all other cases.

After substituting the expression (3.9) into the equation (2.29) and with respect to
the equations (3.10 - 3.12), for p1

1, . . . , p2
3 ∈ {1,2}, we get that the set of invariants of

Weyl type of the mapping f is

W̃ i
(2).(p1).(p2). jmn =−

1
(N +1)2 δ

i
m

(
(N +1)

((
x j)−1

)
|n
+
(
x j)−1(xn)−1

)
+

1
(N +1)2 δ

i
n

(
(N +1)

((
x j)−1

)
|m
+
(
x j)−1(xm)−1

)
+
(
uω

α

(p1
3).mn +u′ωα

(p2
3).mn

)
+u
(

Γ
i
jm
∨
|n−ω

i
(p1

1).αnΓ
α
jm
∨
+ω

α

(p1
2). jn

Γ
i
αm
∨

)
+u′

(
Γ

i
jn
∨
|m−ω

i
(p2

1).αmΓ
α
jn
∨
−ω

α

(p2
2). jm

Γ
i
αn
∨

)
+ vΓ

α
jm
∨

Γ
i
αn
∨
+ v′Γα

jn
∨

Γ
i
αm
∨
+wΓ

α
mn
∨

Γ
i
α j
∨

Γ
i
jα
∨
.

Almost geodesic mappings. N. S. Sinyukov [16], J. Mikeš [1, 2, 8, 10] and many
other authors have developed the concept of geodesics. We will search an associated
basic invariant of the mapping f : RN → RN characterized by the equation

Pi
nm| j +Pi

jm|n +Pα
jmPi

αn +Pα
nmPi

α j = δ
i
jamn +δ

i
nam j, (3.13)
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for the tensor ai j of the type (0,2) symmetric by the indices i and j. This mapping is
called the almost geodesic mapping of the type π̃1.

After replacing the indices m↔ n, we get

Pi
jn|m +Pi

mn| j +Pα
jnPi

αm +Pα
mnPi

α j = δ
i
janm +δ

i
man j. (3.14)

If we subtract the equations (3.13) and (3.14), we will obtain that the following equa-
tion is satisfied

Pi
jm|n−Pi

jn|m =−Pα
jmPi

αn +Pα
jnPi

αm +δ
i
na jm−δ

i
ma jn. (3.15)

Based on the equations (2.10, 3.15) and the invariance Pα

jmPi
αn =

Pα
jmPi

αn, we obtain that the geometrical object

W̃ i
(3). jmn = Ri

jmn +
1
2

δ
i
ma jn−

1
2

δ
i
na jm, (3.16)

is the associated basic invariant of the Weyl type of the mapping f .

After contracting the equality W̃ i
(3). jmn−W̃ i

(3). jmn = 0 by the indices i and n, we
obtain that the curvature tensor Ri

jmn is the derived invariant of this mapping.

Example 2. Let R3 be a Riemannian space equipped with the symmetric metric
gi j given in the equation (3.7). Let also f : R3→ R3 be an almost geodesic mapping
of the type π̃1.

As we obtained in the previous example, the curvature tensor of the space R3 is
Ri

jmn = 0. For this reason, the geometrical objects

W̃ i
(3). jmn = δi

ma jn−δi
na jm and W̃ i

(3). jmn = 0, (3.17)

are the associated basic and the associated derived invariant of the Weyl type of the
mapping f .
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[13] S. M. Minčić, “Independent curvature tensors and pseudotensors of spaces with non-symmetric

affine connexion.” Coll. Math. Soc. János Bolayai, 31. Dif. geom., Budapest (Hungary), pp. 445–
460, 1979.
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