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Received 15 June, 2019

Abstract. In this study, Legendre wavelets has been applied to solve the fractional integro-
differential equations of Bratu-type. In this method, Legendre wavelet operational matrix and
numerical integration techniques have been used. Finally, this method is used for solving some
examples to illustrate the simplicity of the suggested method.
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1. INTRODUCTION

Many scientific and engineering problems, including a fractional phenomenon
so far are huge, and still are growing. Recently, advances of fractional derivatives
and integrals are illustrated by applications in fluid mechanics, viscoelasticity, tracer
transfer in underground water, mathematical biology and physics[6, 19]. Recently,
fractional behavior of different kinds of dynamical problems has been represented by
findings many researchers. This suggests that fractional calculus has an effective role
for describing the dynamical problems[4,5]. Several numerical techniques have been
introduced for the numerical solutions of fractional differential equations(FDEs),
such as Dehghan et al. [8] studied the homotopy analysis method to fractional dif-
ferential equations, Odibat and Momani [16] used generalized differential transform
method to solve the numerical solution of FDEs, Eslahchi et al. [9] applied the col-
location method for solving nonlinear fractional integro-differential equations, the
explicit and implicit Euler methods were used in the advection-diffusion equation of
fractional order by Zhuang et al. [22], and many other researches [11].

Bratu’s problem is often appeared in many branches of sciences, such as nano-
technology, the fuel ignition model of the thermal combustion theory, and chemical
reaction theory [10]. Scientists have devoted tremendous efforts to solve Bratu’s
problem. Babolian et al. [3] applied the reproducing kernel Hilbert space method for
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solving Bratu-type differential equations of fractional order, Laplace Adomian de-
composition method and Adomian decomposition method were applied for solving
Bratu’s problem by Syam and Wazwaz respectively[20]. Aksoy and Pakdemirli [1]
had solved Bratu-type equation of new perturbation iteration solutions. Yiming Chen
et al. [7] applied the Chebyshev wavelet method for solving fractional integral and
differential equations of Bratu-type, CAS wavelets was applied to study it by Mingxu
Yi et al. [21].

In recent decades, many researchers have tried to study orthogonal functions for
obtaining solutions of integral equations. Using orthogonal basis, a functional in-
tegral equation can be reduced into a system of algebraic equations. Researchers
used several different types of orthogonal functions for finding solutions of integ-
ral equations. Comparison between these orthogonal functions, orthogonal wavelet
basis are useful and powerful basis for solving functional integral equations. Over the
past thirty years, scientists have studied the fractional differential equations (FDEs),
because many physical phenomena in the other sciences can be modeled using the
fractional derivatives. Over the last two decades, since apply of wavelets by sci-
entists, these functions have proved their applications in study of many problems of
engineering, physics and applied mathematics. Wavelets have several useful proper-
ties, such as compact support, symmetry, orthogonality and closed form. Therefore,
these functions have been widely used by many researchers.

Many types of integral equations have been solved via some wavelets such as,
CAS, Haar, Legendre and Chebyshev [17,18]. Lepik applied the Haar wavelet to ob-
tain solutions of fractional integral equations and nonlinear integro-differential equa-
tions [12, 13]. The Haar wavelet is used to obtain numerical solutions of Fredholm
integral equations. Chebyshev wavelet was used by Babolian to investigate differen-
tial equations[2]. Furthermore, a CAS wavelet has been used to FDEs in [18], and so
on.

Many researchers used Legendre wavelets for their studies to solve differential
equations [14] and references therein. Our purpose of this study, is to investigate
approximate solutions of the following fractional integro-differential equations of
Bratu-type by using Legendre wavelets.

Dα
0+ζ(x)+λ

∫ x
0 k(x, t)exp(ζ(t))dt = g(x), m−1 < α≤ m, 0≤ x, t ≤ 1,

ζ( j)(0) =C j, j = 0, · · · ,m−1,
(1.1)

where Dα
0+ is the fractional derivative, ζ(x) is unknown function on the interval [0,1],

λ and C j, j = 0, · · · ,m−1, are given constant, m is a positive integer number, k(x, t)∈
L2([0,1]× [0,1]) and g(x) is a known function. The main idea is to replace a FDE
with a Volterra integral equation, and then provide an efficient numerical algorithm
according to Legendre wavelets operational matrix.
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This paper is organized as follows. Section 2 is given some preliminaries of the
fractional calculus theory. Description of the definitions of wavelets and the Le-
gendre polynomials are given in Section 3. In Section 4, we introduce the Legendre
wavelets to approximate the functions. We presented some numerical examples to
illustrate validity and simplicity of the numerical approach in Section 5. The ob-
tained numerical solutions by this method are compared with exact solutions as well.
Conclusions of this paper are summarized in Section 6.

2. PRELIMINARIES

In this section, we illustrate fractional calculus, which are used throughout this
paper [15].

Definition 1. The Riemann-Liouville fractional integration operator Iα
0+ of order

α (α ≥ 0) and Caputo fractional derivative operator Dα
0+ of order α (α ≥ 0) on the

usual Lebesgue space L[0,T ] are defined as:
• Riemann-Liouville fractional integration operator:

Iα
0+ζ(t) = 1

Γ(α)

∫ t

0
(t− τ)(α−1)

ζ(τ)dτ, I0
0+ζ(t) = ζ(t), t > 0,

• Caputo fractional derivative operator:

Dα
0+ζ(t) = 1

Γ(m−α)

∫ t

0
(t− τ)m−α−1

ζ
(m)(τ)dτ, m−1 < α≤ m, t > 0.

where m is a positive integer number and Γ(.) is well-known Euler’s gamma function.

Some of the basic and main properties of the Riemann-Liouville fractional integral
and Caputo fractional derivative operators are given below:

(i) Iα
0+Iµ

0+ζ(t) = Iα+µ
0+ ζ(t),

(ii) Iα
0+Iµ

0+ζ(t) = Iµ
0+Iα

0+ζ(t),

(iii) Iα
0+tµ = Γ(µ+1)

Γ(α+µ+1) t
α+µ,

(iv) Iα
0+ Dα

0+ζ(t) = ζ(t)−∑
m−1
q=0 ζ(q)(0+) tq

q! , t > 0
(v) Dα

0+Jα
0+ζ(t) = ζ(t),

(vi)
∫ 1

0 τα−1(1− τ)µ−1 dτ = Γ(α)Γ(µ)
Γ(α+µ) .

3. LEGENDRE WAVELETS

Wavelets constitute of a family of functions constructed by translation and dilation
of a single function called mother wavelet ψ(x), which is defined as follows:

ψa,b(x) =
1√
| a |

ψ(
x−b

a
), a,b ∈ R, a 6= 0.

Here a and b are the dilation and translation parameters.
By restricting the parameters a and b to discrete values as a = a− j

0 , b = kb0a− j
0 where
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a0 > 1, b0 > 1, j,k ∈ N, we obtain a family of discrete wavelets as:

ψ j,k(x) =| a0 |
j
2 ψ(a j

0x− kb0).

If a0 = 2 and b0 = 1, the above ψ j,k(x) may construct an orthonormal basis for certain
ψ, that is 〈

ψ j,k,ψl,m
〉
= δ jlδkm,

where δ jl indicates the Kronecker delta.
The Legendre polynomial of order m can be defined by the following recurrence
formula on the interval [−1,1]

p0(x) = 1,
p1(x) = x,

pm+1(x) =
2m+1
m+1

x pm(x)−
m

m+1
pm−1(x) m = 1,2,3, . . . .

Legendre wavelets defined on the interval [0,1) as:

ψn,m(x) =

 (2m+1)
1
2 2

k
2 pm(2kx− n̂), n̂−1

2k ≤ x < n̂+1
2k ,

0, otherwise,

where n = 1,2,3, . . . ,2k−1, k = 2,3, . . ., n̂ = 2n− 1 and m = 0,1,2, . . . ,M− 1. m is
the order of Legendre polynomials and M is a positive integer.

4. FUNCTIONS APPROXIMATION BY LEGENDRE WAVELETS

For any function u(x) with square integrable on [0,1), we can express it in terms
of the Legendre wavelet polynomials as follows:

u(x) =
∞

∑
n=1

∞

∑
m=0

cnmψn,m(x), (4.1)

where
cnm = 〈u(x),ψn,m(x)〉 .

If the infinite series in (4.1) is truncated, then equation (4.1) can be written as follows:

u(x)∼= um̂(x) =
2k−1

∑
n=1

M−1

∑
m=0

cnmψn,m(x) =CT
Ψ(x), (4.2)

where C and Ψ(x) are two m̂×1(m̂ = 2k−1M) matrices given by

C = [c10,c11, . . . ,c1M−1,c20,c21, . . . ,c2M−1, . . . ,c2k−10, . . . ,c2k−1M−1]
T ,

Ψ(x) = [ψ10,ψ11, . . . ,ψ1M−1,ψ20, . . . ,ψ2M−1, . . . ,ψ2k−10, . . . ,ψ2k−1M−1]
T .
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For simplicity the equation (4.2) can be rewritten as follows:

u(x)∼= um̂(x) =
m̂

∑
i=1

ciψi(x) =CT
Ψ(x),

where ci = cnm, ψi(x) = ψnm, i = M(n−1)+m+1. Here, we rewrite the matrices Ψ

and C as follows:

C = [c1,c2, . . . ,cm̂]
T , Ψ(x) = [ψ1(x), . . . ,ψm̂(x)]T .

Similarly, for expanding of two variables functions such as k(x,y)∈ L2([0,1]× [0,1])
in terms of Legendre wavelet functions we can write:

k(x,y)∼=
m̂

∑
i=1

m̂

∑
j=1

ki jψi(x)ψ j(y) = Ψ(x)T KΨ(y),

where Km̂×m̂ is given as follows:

K = [ki j]m̂×m̂, ki j =
〈
ψi(x),

〈
k(x,y),ψ j(y)

〉〉
, i, j = 1,2, . . . , m̂.

Theorem 1. For solving Fredholm-Volterra integral equation, the operational
matrix P of integration is given as follows

Pm̂×m̂ =


L F F . . . F
0 L F . . . F
0 0 L . . . F
...

...
...

. . .
...

0 0 0 · · · L


where F and L are square matrices of order M given by

FM×M =
1
2k


2 0 . . . 0
0 0 · · · 0
...

...
...

...
0 0 0 0
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LM×M =

1
2k



1
1√
3

0 0 . . . 0 0

−
√

3
3

0

√
3

3
√

5
0 . . . 0 0

0 −
√

5
5
√

3
0

√
5

5
√

7
. . . 0 0

0 0 −
√

7
7
√

5
0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0
√

2M−3
(2M−3)

√
2M−1

0 0 0 0 . . . −
√

2M−1
(2M−1)

√
2M−3

0


Proof. First we get the operational matrix of integration for k = 2 and M = 3. Then

we give the general matrix P. The basis functions ψnm(x), n = 1,2, m = 0,1,2 and
consequently the matrix

Ψ6×1(x) = [ψ10(x) ψ11(x) ψ12(x) ψ20(x) ψ21(x) ψ22(x)]T ,

for k = 2 and M = 3 are computed as

ψ10(x) =
√

2,

ψ11(x) =
√

6(4x−1),

ψ12(x) =
√

10
[

3
2
(4x−1)2− 1

2

]
,

 0≤ x <
1
2
, (4.3)

and
ψ20(x) =

√
2,

ψ21(x) =
√

6(4x−3),

ψ22(x) =
√

10
[

3
2
(4x−3)2− 1

2

]
,


1
2
≤ x < 1, (4.4)

By integrating (4.3) and (4.4), we obtain the following relations:

∫ x

0
ψ10(t)dt =


√

2x, 0≤ x <
1
2
,

1√
2
,

1
2
≤ x < 1,

=
1
4

ψ10(x)+

√
2

4
√

6
ψ11(x)+

1
2

ψ20(x) =
[

1
4
,

√
2

4
√

6
,0,

1
2
,0,0

]
Ψ6×1(x).
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∫ x

0
ψ11(t)dt =


2
√

6x2−
√

6x, 0≤ x <
1
2
,

0,
1
2
≤ x < 1,

=−
√

3
12

ψ10(x)+

√
3

12
√

5
ψ12(x) =

[
−
√

3
12

,0,

√
3

12
√

5
,0,0,0

]
Ψ6×1(x).

Similarly, we have∫ x

0
ψ12(t)dt =−

√
5

20
√

3
ψ11(x) =

[
0,−

√
5

20
√

3
,0,0,0,0

]
Ψ6×1(x),

∫ x

0
ψ20(t)dt =

1
4

ψ20(x)+

√
2

4
√

6
ψ21(x) =

[
0,0,0,

1
4
,

√
2

4
√

6
,0
]

Ψ6×1(x),

∫ x

0
ψ21(t)dt =−

√
3

12
ψ20(x)+

√
3

12
√

5
ψ22(x) =

[
0,0,0,−

√
3

12
,0,

√
3

12
√

5

]
Ψ6×1(x),

∫ x

0
ψ22(t)dt =−

√
5

20
√

3
ψ21(x) =

[
0,0,0,0,−

√
5

20
√

3
,0
]

Ψ6×1(x),

Therefore, we have ∫ x

0
Ψ6×1(t)dt = P6×6Ψ6×1(x),

where P6×6 is a square matrix of order 6 which it can be given as the following form:

P6×6 =

[
L3×3 F3×3
03×3 L3×3

]
where

L3×3 =
1
22


1

√
2√
6

0

−
√

3
3

0

√
3

3
√

5

0 −
√

5
5
√

3
0

 and F3×3 =
1
22

2 0 0
0 0 0
0 0 0

 .

If the theorem be true for M-1 and K-1, then it is simple to show for general case M
and k. we have ∫ x

0
Ψm̂×1(t)dt = Pm̂×m̂Ψm̂×1(x), (m̂ = 2k−1M),
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Here, Pm̂×m̂ can be written as follow

Pm̂×m̂ =


L F F . . . F
0 L F . . . F
0 0 L . . . F
...

...
...

. . .
...

0 0 0 · · · L


where F and L are square matrices of order M given by

FM×M =
1
2k


2 0 . . . 0
0 0 · · · 0
...

...
...

...
0 0 0 0


LM×M =

1
2k



1
1√
3

0 0 . . . 0 0

−
√

3
3

0

√
3

3
√

5
0 . . . 0 0

0 −
√

5
5
√

3
0

√
5

5
√

7
. . . 0 0

0 0 −
√

7
7
√

5
0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0
√

2M−3
(2M−3)

√
2M−1

0 0 0 0 . . . −
√

2M−1
(2M−1)

√
2M−3

0


�

Now, we will apply our method to problem I and II.

PROBLEM I

We demonstrate this method to the following fractional integro-differential equa-
tion of Bratu type:

Dα
0+ζ(x)+λ

∫ x
0 (x− t)p exp(ζ(t))dt = g(x), m−1 < α≤ m, 0≤ x, t ≤ 1,

ζ( j)(0) =C j, j = 0, · · · ,m−1.
(4.5)

Using Riemann-Liouville fractional integration from Eq. (4.5), we have

ζ(x)+
1

Γ(α)

∫ x

0
(x− t)α−1

(
λ

∫ t

0
(t− τ)p exp(ζ(τ))dτ

)
dt
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=
1

Γ(α)

∫ x

0
(x− t)α−1g(t)dt. (4.6)

We first rewrite Eq. (4) as

ζ(x) = G(x)− λ

Γ(α)

∫ x

0

∫ t

0
(x− t)α−1(t− τ)p exp(ζ(τ))dτdt,

where G(x) = 1
Γ(α)

∫ x
0 (x−t)α−1g(t)dt. However, by changing the order of integration

in Eq. (4), we have

ζ(x) = G(x)− λ

Γ(α)

∫ x

0

(∫ x

τ

(x− t)α−1(t− τ)p dt
)

exp(ζ(τ))dτ, (4.7)

Now, using the change of variables s = x−t
x−τ

, and according to
∫ 1

0 sα−1(1− s)p ds =
Γ(α)Γ(p+1)
Γ(α+p+1) , Eq. (4.7) is converted to following Volterra integral equation

ζ(x) = G(x)− λ Γ(p+1)
Γ(α+ p+1)

∫ x

0
(x− τ)α+p exp(ζ(τ))dτ. (4.8)

We rewrite Eq. (4.8) as

ζ(x) = F(x,ζ(x)), 0≤ x≤ 1, (4.9)

where F(x,ζ(x)) = G(x)− λ Γ(p+1)
Γ(α+p+1)

∫ x
0 (x− τ)α+p exp(ζ(τ))dτ.

PROBLEM II

Consider the following fractional integro-differential equation of Bratu type:

Dα
0+ζ(x)+λ

∫ x
0 (x−a)p(t−b)q exp(ζ(t))dt = g(x), m−1 < α≤ m,

0≤ x, t ≤ 1,

ζ( j)(0) =C j, j = 0, · · · ,m−1.

(4.10)

Using Riemann-Liouville fractional integration from Eq. (4.10), we have

ζ(x)+
1

Γ(α)

∫ x

0
(x− t)α−1

(
λ

∫ t

0
(t−a)p(τ−b)q exp(ζ(τ))dτ

)
dt

=
1

Γ(α)

∫ x

0
(x− t)α−1g(t)dt. (4.11)

We first rewrite Eq. (4.11) as

ζ(x) = G(x)− λ

Γ(α)

∫ x

0

∫ t

0
(x− t)α−1(t−a)p(τ−b)q exp(ζ(τ))dτdt,
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where G(x) = 1
Γ(α)

∫ x
0 (x− t)α−1g(t)dt. However, by changing the order of integra-

tions in Eq. (4.11), we have

ζ(x) = G(x)− λ

Γ(α)

∫ x

0
(τ−b)q

(∫ x

τ

(x− t)α−1(t−a)p dt
)

exp(ζ(τ))dτ, (4.12)

then, using the change of variables s = x−t
x−τ

, and according to
∫ 1

0 sα−1(1− s)p−k ds =
Γ(α)Γ(p−k+1)
Γ(α+p−k+1) , Eq. (4.12) is converted to following Volterra integral equation

ζ(x) = G(x)−
p

∑
k=0

λp!
k!Γ(α+ p− k+1)

∫ x

0
(x− τ)α+p−k(τ−a)k(τ−b)q exp(ζ(τ))dτ.

(4.13)
We rewrite Eq. (4.13) as

ζ(x) = F(x,ζ(x)), 0≤ x≤ 1, (4.14)

where
F(x,ζ(x)) = G(x)−∑

p
k=0

λp!
k!Γ(α+p−k+1)

∫ x
0 (x− τ)α+p−k(τ−a)k(τ−b)q exp(ζ(τ))dτ.

Theorem 2. The fractional integro-differential equations of Bratu type Eq. (1.1)
as well as Eqs. (4.9) and (4.14) have a unique solutions([5]).

5. NUMERICAL EXAMPLES

In this section, in order to test the validity of our method, three examples are solved
and the numerical results are compared with their exact solution.

Example 1. Assume the following fractional integro-differential equations of Bratu-
type:

Dα
0+ζ(x)+3

∫ x
0 (x− t)exp(ζ(t))dt = 1

x+1 +
1
2 x3 + 3

2 x2, 0 < x, t < 1,

ζ(0) = 0, 0 < α≤ 1.
(5.1)

The exact solution for α = 1 is ζ(x) = ln(x+1). The numerical results for the exact
solution of this example for α= 1 and approximate solutions for α= 0.5, 0.6, 0.7, 0.8,
0.9, 1.0, k = 2, M = 7 are shown in Fig. 1.

Example 2. We assume the following fractional integro-differential equations of
Bratu-type:

Dα
0+ζ(x)+

∫ x
0 x(t− 1

2)exp(ζ(t))dt = Γ(3)
Γ(2.5)x

1.5− Γ(2)
Γ(1.5)x

0.5

+ x
2(exp(x2− x)−1), 0 < x, t < 1,

ζ(0) = 0, 0 < α≤ 1.

(5.2)
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FIGURE 1. Comparison between the exact solution for α = 1 and approx-
imate solutions for α = 0.2, 0.3, 0.4 0.5, 0.6, 0.7, 0.8, k = 2, M = 7 for
Example 1.

The exact solution for α = 0.5 is ζ(x) = x2− x. The numerical results for the exact
solution of this example for α = 0.5 and approximate solutions for α = 0.5, 0.6, 0.7,
0.8, 0.9, 1.0, k = 2, M = 7 are shown in Fig. 2.

FIGURE 2. Comparison between the exact solution for α = 0.5 and ap-
proximate solutions for α = 0.2, 0.3, 0.4 0.5, 0.6, 0.7, 0.8, k = 2, M = 7
for Example 2.

Example 3. We consider the following fractional integro-differential equations of
Bratu-type:

D0.75
0+ ζ(x)+ 1

4
∫ x

0 (x− t)exp(ζ(t))dt = 8 4√x
Γ(0.25) +

exp(2x)−2x−1
16 , 0 < x, t < 1,

ζ(0) = 0.
(5.3)
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The exact solution for α= 0.75 is ζ(x) = 2x. The numerical results for the exact solu-
tion of this example for α= 0.75 and approximate solutions for α= 0.5, 0.6, 0.7, 0.8,
0.9, 1.0, k = 2, M = 7 are shown in Fig. 3.

FIGURE 3. Comparison between the exact solution for α = 0.5 and ap-
proximate solutions for α = 0.2, 0.3, 0.4 0.5, 0.6, 0.7, 0.8, k = 2, M = 7
for Example 3

6. CONCLUDING REMARKS

The aim of this paper is to improve an efficient and precise method for solving
non-linear fractional integro-differential equations of Bratu-type. In this paper, in
addition to use the properties of the Legendre wavelets, we use the Gauss quadrature
rules. Then, we converted the problem into a system of nonlinear algebraic equations.
Finally, we applied the Newton iteration method for solving the resulted system.
Examples are provided to explain and interpret the simplicity and applicability of
this technique.
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