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Abstract. In this paper, the operator denoted by Dm : A→ A, is defined by Dm[ f ](z) = (1−
λ)Rm[ f ](z)+λLm[ f ](z), z ∈U , a differential-integral operator, where Rm is Ruscheweyh differ-
ential operator and Lm is Libera integral operator. By using the operator Dm the class of univalent
functions denoted by M( m,λ,α), 0 ≤ λ ≤ 1, 0 ≤ α < 1, is defined and several differential sub-
ordinations are studied.
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1. INTRODUCTION AND PRELIMINARIES

The concept of differential subordination was introduced in [5, 6] by S.S. Miller
and P.T. Mocanu. This theory had a great impact in the field of complex analysis and
developed rapidly. Some recent published work can be seen in [7, 9, 10, 10–12].

Studying subordination properties associated with various operators is a topic of
interest at this time. Many researchers continue the study of the operators and classes
of univalent functions using the methods of the theory of differential subordination.
In [17], the authors have generalized and improved some of the previously published
results by introducing a general family of analytic and bi-univalent functions in the
open unit disk defined by applying the principle of differential subordination between
analytic functions and the Tremblay fractional derivative operator. By making use
of the linear operator introduced and studied earlier by Srivastava and Attiya, in
paper [16] the authors have investigated classes of admissible functions and have
presented properties of the third-order differential subordinations establishing vari-
ous sandwich-type theorems for a class of univalent analytic functions involving the
celebrated Srivastava-Attiya transform. In another recent paper [15], the authors in-
troduce and investigate the Fekete-Szegő functional associated with a new subclass
of analytic functions defined by using the principle of quasi-subordination between
analytic functions, some sufficient conditions for functions belonging to this class
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being also derived. The Fekete-Szegő coefficient functional for functions in a newly
introduced class of normalized analytic functions in the open unit disc were obtained
in paper [18]. Various integral and convolution characterizations, coefficient estim-
ates and differential subordination results for functions belonging to that class were
also investigated in the paper. By making use of the principle of differential subor-
dination and the Dziok – Srivastava convolution operator, in paper [19] the authors
introduce and investigate three interesting subclasses of analytic and univalent func-
tions in the open unit disk. Inclusion relationships for those classes and that these
classes are closed under convolution with convex functions is also proved.

In this paper a new class of univalent functions and a new operator are introduced.
The new operator is used for obtaining subordination results related to this class.
Similar work containing subordination results related to a class of univalent func-
tions obtained by the use of an operator introduced by using a differential operator
and an integral one has been published recently [12] and inspired the results shown
in this paper. Also, following the same idea, in paper [13], the author introduces
new classes obtained by using the linear operator defined with the Sălăgean differ-
ential operator and the generalized Alexander operator, studying the characteristics
and other properties of these classes and obtaining Fekete-Szegő functional for these
classes.

We use the following well known notations and results:
Denote by U the unit disc of the complex plane

U = {z ∈ C : |z|< 1}.
Let H (U) be the space of holomorphic functions in U and let

An = { f ∈H (U) : f (z) = z+an+1zn+1 +an+2zn+2 + . . . , z ∈U},
with A1 = A.

Let S = { f ∈ A : f is univalent in U} be the class of holomorphic and univalent
functions in the open unit disc U with the conditions f (0) = 0 and f ′(0) = 1, that
is the holomorphic and univalent functions with the following power series develop-
ment

f (z) = z+a2z2 + . . . , z ∈U.

For a ∈ C and n ∈ N∗ we denote by

H [a,n] = { f ∈H (U) : f (z) = a+anzn +an+1zn+1 + . . . , z ∈U}.
Denote by

K =

{
f ∈ A : Re

(
z f ′′(z)
z f ′(z)

+1
)
> 0, z ∈U

}
the class of normalized convex func-

tions in U and let

S∗ =
{

f ∈ A : Re
z f ′(z)
f (z)

> 0, z ∈U
}

denote the class of starlike functions in U .
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Definition of subordination ([7, p.4])
If f and g are analytic functions in U , then we say that f is subordinate to g,

written f ≺ g or f (z) ≺ g(z), if there is a function w, analytic in U , with w(0) = 0
and |w(z)|< 1 for all z ∈U such that f (z) = g(w(z)) for z ∈U . If g is univalent, then
f ≺ g or f (z)≺ g(z) if and only if f (0) = g(0) and f (U)⊂ g(U).

Definition of second-order differential subordination ([7, p.16])
Let ψ : C3×U → C and let h be univalent in U . If p is analytic in U and satisfies

the second-order differential subordination
(i) ψ(p(z),zp′2 p′′(z);z)≺ h(z), z ∈U

then p is called a solution of the differential subordination.
The univalent function q is called a dominant of the solutions of the differential

subordination, or more simply, a dominant if p≺ q for all p satisfying (i).
A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (i) is said to be the best

dominant of (i). (Note that the best dominant is unique up to a rotation of U).
If we require the more restrictive condition q ∈ H [a,n] then p is called an (a,n)-

solution, q an (a,n)-dominant and q̃ the best (a,n)-dominant.

To prove our main results, we need the following definitions and lemmas:

Definition 1 (Ruscheweyh operator [14]). For f ∈ A, m ∈ N, the operator Rm is
defined by Rm : A→ A,

R0[ f ](z) = f (z) (1)

R1[ f ](z) = z · [R0 f (z)]′ = z f ′(z)
...

(m+1)Rm+1[ f ](z) = z · [Rm f (z)]′+mRm f (z), z ∈U.

Remark 1. If f ∈ A, f (z) = z+a2z2 +a3z3 + . . .= z+
∞

∑
k=2

akzk, then

Rm[ f ](z) = z+
∞

∑
k=2

akCm
m+k−1zk = z+

∞

∑
k=2

[
m+ k−1

m

]
akzk. (2)

Definition 2 ([1, Definition 1]). For f ∈ A, m ∈ N, Lm : A→ A is defined by

L0[ f ](z) = f (z) (3)

L1[ f ](z) =
2
z

∫ z

0
L0[ f ](t)dt =

2
z

∫ z

0
f (t)dt

...

Lm[ f ](z) =
2
z

∫ z

0
Lm−1[ f ](t)dt, z ∈U.
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Remark 2. a) For m = 1,

L1[ f ](z) =
2
z

∫ z

0
f (t)dt,

which is Libera integral operator [5].

b) If f ∈ A, f (z) = z+a2z2 +a3z3 + . . .= z+
∞

∑
k=2

akzk, then

Lm[ f ](z) =
2
z

∫ z

0
Lm−1[ f ](t)dt (4)

=
2
z

∫ z

0

[
t +

∞

∑
k=2

2m−1

(k+1)m−1 ·aktk

]
dt

=
2
z

[
z2

2
+

∞

∑
k=2

2m−1

(k+1)m−1 ·ak ·
zk+1

k+1

]

= z+
∞

∑
k=2

2m

(k+1)m ·akzk.

c) For f ∈ A, m ∈ N, we obtain

z(Lm[ f ](z))′ = 2Lm−1[ f ](z)−Lm[ f ](z), z ∈U. (5)

Lemma A. (Hallenbeck and Ruscheweyh [7, Th. 3.1.b, p. 71], [2]) Let h be convex
in U, with h(0) = a, γ 6= 0 and Reγ≥ 0. If p ∈H [a,n] and

p(z)+
1
γ

zp′(z)≺ h(z), z ∈U,

then
p(z)≺ q(z)≺ h(z), z ∈U,

where

q(z) =

γ

n
z

γ

n

∫ z

0
h(t)t

γ

n−1dt, z ∈U.

The function q is convex and is the best (an)-dominant.

Lemma B. ([7, Th. 3.4.h, p. 132]) Let q be univalent in U and let θ and φ be analytic
in a domain D containing q(U), with φ(w) 6= 0 when w ∈ q(U). Set

Q(z) = zq′(z)φ[q(z)], h(z) = θ[q(z)]+Q(z)

and suppose that either
(i) h is convex, or
(ii) Q is starlike.
In addition, assume that



NEW DIFFERENTIAL SUBORDINATIONS 307

(iii) Re
zh′(z)
Q(z)

> Re
[

θ′[q(z)]
φ[q(z)]

+
zQ′(z)
Q(z)

]
> 0.

If p is analytic in U, with p(0) = q(0), p(U)⊂ D and

θ[p(z)]+ zp′(z) ·φ[p(z)]≺ θ[q(z)]+ zq′(z) ·φ[q(z)] = h(z),

then p(z)≺ q(z) and q is the best dominant.

2. MAIN RESULTS

In this paper, we define a differential-integral operator, Dm : A→ A, we introduce
a class of holomorphic univalent functions and we study several differential subor-
dinations.

Definition 3. Let m ∈ N, 0≤ λ≤ 1, denote by Dm : A→ A,

Dm[ f ](z) = (1−λ)Rm[ f ](z)+λLm[ f ](z), (6)

where Rm is given by (1) and Lm is given by (3).

Remark 3. a) If f ∈ A, f (z) = z+
∞

∑
k=2

akzk and using (2) and (4), we have

Dm[ f ](z) (7)

= (1−λ)

(
z+

∞

∑
k=2

[
m+ k−1

m

]
akzk

)
+λ

(
z+

∞

∑
k=2

2m

(k+1)m akzk

)

= z+
∞

∑
k=2

akzk
{[

m+ k−1
m

]
(1−λ)+λ

2m

(k+1)m

}
.

b) For λ = 1, differential-integral operator Dm coincides with Libera integral op-
erator (Definition 2).

c) For λ = 0, differential-integral operator Dm coincides with differential operator
Ruscheweyh (Definition 1).

Definition 4. If 0≤ α < 1, 0≤ λ≤ 1, m∈N, we let M( m,λ,α) stand for the class
of functions f ∈ A, which satisfy the inequality

Re(Dm[ f ](z))′ > α, z ∈U, (8)

where the differential-integral operator Dm[ f ] is given by (6).

Remark 4. a) For m = 0, 0≤ λ≤ 1, α = 0, the operator Dm[ f ] becomes

D0[ f ](z)= (1−λ)R0[ f ](z)+λL0[ f ](z) = (1−λ) f (z)+λ f (z) = f (z), z∈U,

then M( m,λ,α) becomes

M(0,λ,0) = R = { f ∈ A : Re f ′(z)> 0, z ∈U}
called the class of functions with bounded rotation.
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This class of functions was studied by J.W. Alexander [1] and he proved that R⊂ S,
J. Kurzyz [3] and P.T. Mocanu [8] have proved that R 6⊂ S∗. A more systematic study
of the class R was done by Mac Gregor [4].

b) For m = 0, 0≤ α < 1, 0≤ λ≤ 1, we have

M( 0,λ,α) = { f ∈ A : Re f ′(z)> α} ⊂ R.

Theorem 1. The set M( m,λ,α) is convex.

Proof. Let the functions

f j(z) = z+
∞

∑
k=2

Ck jz j, j = 1,2, z ∈U,

where

Ck j = ak j

{
(1−λ)

[
m+ k−1

m

]
+

2m

(k+1)m

}
,

be in the class M( m,λ,α). It is sufficient to show that the function

h(z) = µ1 f1(z)+µ2 f2(z), z ∈U,

with µ1,µ2 ≥ 0 and µ1 +µ2 = 1 is in M( m,λ,α).
Since h(z) = µ1 f1(z)+µ2 f2(z), z ∈U , then

Dm[h](z) (9)

= z+
∞

∑
k=2

{
(1−λ)

[
m+ k−1

m

]
+λ

2m

(k+1)m

}
(µ1ak1 +µ2ak2)zk.

Differentiating (9), we have

(Dm[h](z))′=1+
∞

∑
k=2

{
(1−λ)

[
m+ k−1

m

]
+λ

2m

(k+1)m

}
(µ1ak−1 +µ2ak2)kzk−1.

Hence
Re(Dm[h](z))′ (10)

= 1+µ1Re
∞

∑
k=2

{
(1−λ)

[
m+ k−1

m

]
+λ

2m

(k+1)m

}
ak1kzk−1

+µ2Re

{
∞

∑
k=2

(1−λ)

[
m+ k−1

m

]
λ

2m

(k+1)m

}
ak2kzk−1.

Since f1, f2 ∈M( m,λ,α), we have

µ1Re
∞

∑
k=2

{
(1−λ)

[
m+ k−1

m

]
+λ

2m

(k+1)m

}
ak1kzk−1>µ1(α−1) (11)

µ2Re
∞

∑
k=2

{
(1−λ)

[
m+ k−1

m

]
+λ

2m

(k+1)m

}
ak2kzk−1>µ2(α−1) (12)
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Using (11) and (12), we have

Re(Dm[h](z))′ > 1+µ1(α−1)+µ2(α−1)

and since µ1 +µ2 = 1, we deduce

Re(Dm[h](z))′ > α, z ∈U

i.e. M( m,λ,α) is convex.

Theorem 2. If 0≤ α < 1, 0≤ λ≤ 1 and m ∈ N, then we have

M( m,λ,α)⊂M( m,λ,δ),

where δ = 2α−1+2(1−α) ln2, δ≈ 0,62α+0,38 < 1.

Proof. We will prove that δ≈ 0,62α+0,38 < 1.
We know that ln2≈ 0,69. From 0≤ α < 1, it follows

0≤ 0,62α < 0,62, 0,38≤ 0,62α+0,38 < 0,62+0,38,

0,38≤ 0,62α+0,38 < 1, 0,38≤ δ < 1.
Consider the convex function

h(z) =
1+(2α−1)z

1+ z
, z ∈U. (13)

For z ∈U , Reh(z)> α and h(0) = 1.
We let f ∈M( m,λ,α). From Definition 4, we have

Re(Dm[ f ](z))′ > α, z ∈U. (14)

Let

p(z) =
Dm[ f ](z)

z
, z ∈U. (15)

Using (7) in (15), we have

p(z) = 1+
∞

∑
k=2

akzk−1
{[

m+ k−1
m

]
(1−λ)+λ

2m

(k+1)m

}
and p(0) = 1, p ∈H [1,1]. From (15), we have

Dm[ f ](z) = zp(z), z ∈U. (16)

Differentiating (16), we get

(Dm[ f ](z))′ = p(z)+ zp′(z), z ∈U. (17)

Using (17), then (14) becomes

Re [p(z)+ zp′(z)]> α, z ∈U. (18)

Relation (18) can be written as a subordination of the form

p(z)+ zp′(z)≺ h(z) =
1+(2α−1)z

1+ z
, z ∈U. (19)
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Using Lemma A, for γ = 1, n = 1, it follows

p(z)≺ q(z),

where

q(z) =
1
z

∫ z

0

1+(2α−1)t
1+ t

dt.

i.e.
Lm[ f ](z)

z
≺ q(z) =

1
z

∫ z

0

1+(2α−1)t
1+ t

dt

=
1
z

∫ z

0

[
2α+1+

2(1−α)

1+ t

]
dt

= 2α−1+2(1−α)
ln(1+ z)

z
, z ∈U.

The function q is convex and is the best dominant.
Since q is a convex function and p(z)≺ q(z), z ∈U , we have

Re p(z)> Req(1) = δ = 2α−1+2(1−α) ln2. (20)

Using (15), then (20) becomes

Re
Dm[ f ](z)

z
> δ = 2α−1+2(1−α) ln2. (21)

Using (7), we have

Re
Dm[ f ](z)

z
(22)

= Re

z+
∞

∑
k=2

akzk
{[

m+ k−1
m

]
(1−λ)+λ

2m

(k+1)m

}
z

= Re

(
1+

∞

∑
k=2

akzk−1
{[

m+ k−1
m

]
(1−λ)+λ

2m

(k+1)m

})

= Re

(
z+

∞

∑
k=2

ak

k
zk
{[

m+ k−1
m

]
(1−λ)+λ

2m

(k+1)m

})′

= Re

(
z+

∞

∑
k=2

bkzk
{[

m+ k−1
m

]
(1−λ)+λ

2m

(k+1)m

})′
= Re [Dm[g](z)]′,

where

g(z) = z+
∞

∑
k=2

bkzk.
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Using (22) in (21) we get

Re
Dm[ f ](z)

z
= Re(Dm[g](z))′ > δ.

Using Definition 4, we have f ∈ M( m,λ,δ), with δ given by (20). Since f ∈
M( m,λ,α) was taken arbitrary and we have proved that f ∈ M( m,λ,δ), we con-
clude that M( m,λ,α)⊂M( m,λ,δ).

From Theorem 2 we deduce the following corollary:

Corollary 1. If f ∈M( m,λ,δ), then

Re
Dm[ f ](z)

z
> 2α−1+2(1−α) ln2 = δ.

Proof. From the proof of Theorem 2, we can see that

Lm[ f ](z)
z

≺ q(z) =
1
z

∫ z

0

1+(2α−1)t
1+ t

dt

= 2α−1+2(1−α)
ln(1+ z)

z
, z ∈U.

Since q is convex function, we have that

Re
Dm[ f ](z)

z
> Req(1) = 2α−1+2(1−α) ln2 = δ.

Theorem 3. Let h be a convex function in U with h(0) = 1.
If f ∈ A, 0≤ λ≤ 1, m ∈ N and satisfies the differential subordination

((1−λ)Rm[ f ](z)+λLm[ f ](z))′ ≺ h(z), z ∈U, (23)

then
(1−λ)Rm[ f ](z)+λLm[ f ](z)

z
≺ q(z) =

1
z

∫ z

0
h(t)dt

and this result is sharp.

Proof. We let

p(z) =
(1−λ)Rm[ f ](z)+λLm[ f ](z)

z
, z ∈U. (24)

Using (7) in (24), we obtain

p(z) =

z+
∞

∑
k=2

akzk
{[

m+ k−1
m

]
(1−λ)+λ

2m

(k+1)m

}
z

= 1+
∞

∑
k=2

akzk−1
{[

m+ k−1
m

]
(1−λ)+λ

2m

(k+1)m

}
= 1+ p1z+ p2z2 + . . . , p ∈H [1,1].



312 GEORGIA IRINA OROS

From (24) we have

(1−λ)Rm[ f ](z)+λLm[ f ](z) = zp(z), z ∈U. (25)

Differentiating (25), we obtain

((1−λ)Rm[ f ](z)+λLm[ f ](z))′ = p(z)+ zp′(z), z ∈U,

then the differential subordination (23) becomes

p(z)+ zp′(z)≺ h(z) = q(z)+ zq′(z), z ∈U. (26)

By using Lemma A, for n = 1, γ = 1, we have

p(z)≺ q(z),

i.e.
(1−λ)Rm[ f ](z)+λLm[ f ](z)

z
≺ q(z), z ∈U,

where

q(z) =
1
z

∫ z

0
h(t)dt,

and the function q is convex and is the best dominant.

Theorem 4. Let q be convex function in U, with q(0) = 1, and let θ and ϕ be
analytic in a domain D containing q(U). Set

Q(z) = zq′(z)ϕ[q(z)] and h(z) = θ[q(z)]+Q(z).

Let m ∈ N, f ∈ A, 0≤ λ≤ 1 and satisfies the differential subordination

Dm[ f ](z)
Dm−1[ f ](z)

+ z
(

Dm[ f ](z)
Dm−1[ f ](z)

)′
≺ q(z)+ zq′(z) (27)

then
Dm[ f ](z)

Dm−1[ f ](z)
≺ q(z), z ∈U

and q is the best dominant. The operator Dm[ f ] is defined in (6).

Proof. We let

p(z) =
Dm[ f ](z)

Dm−1[ f ](z)
, z ∈U. (28)

Using (7) in (28) we obtain

p(z) =

z+
∞

∑
k=2

akzk
{[

m+ k−1
m

]
(1−λ)+λ

2m

(k+1)m

}
z+

∞

∑
k=2

akzk
{[

m+ k−1
m

]
(1−λ)+λ

2m−1

(k+1)m−1

}
= 1+ p1z+ p2z2 + . . . , p ∈H [1,1].
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Differentiating (28) and after a short calculation, we obtain

zp′(z) = z
(

Dm[ f ](z)
Dm−1[ f ](z)

)′
, z ∈U,

and

p(z)+ zp′(z) =
Dm[ f ](z)

Dm−1[ f ](z)
+ z
(

Dm[ f ](z)
Dm−1[ f ](z)

)′
, z ∈U. (29)

Using (29), the subordination (27) becomes

p(z)+ zp′(z)≺ q(z)+ zq′(z), z ∈U.

In order to prove the theorem, we shall use Lemma B.
For this, we show that the necessary conditions are satisfied.
Let the functions θ : C→ C, and ϕ : C→ C, with

θ(w) = w, ϕ(w) = 1. (30)

We check the conditions from the hypothesis of Lemma B. Using (30), in the hypo-
thesis of the theorem, we have

Q(z) = zq′(z)ϕ(q(z)) = zq′(z) (31)

and
h(z) = θ[q(z)]+Q(z) = q(z)+Q(z) = q(z)+ zq′(z), z ∈U. (32)

Differentiating (31) and after short calculation, we obtain

zQ′(z)
Q(z)

= 1+
zq′′(z)
q′(z)

.

Since q is convex function in U , we have

Re
zQ′(z)
Q(z)

= Re
(

1+
zq′′(z)
q′(z)

)
> 0, z ∈U,

hence the function Q is starlike.
Differentiating (32) and after short calculation, we obtain

zh′(z)
Q(z)

=
zq′(z)+ zQ′(z)

Q(z)
=

zq′(z)
zq′(z)

+
zQ′(z)
Q(z)

= 1+
zQ′(z)
Q(z)

.

Since Q is starlikeness we have

Re
zh′(z)
Q(z)

> 0, z ∈U. (33)

Using (30), we get θ[p(z)] = p(z), ϕ(p(z)) = 1, then the subordination (27) becomes

θ[p(z)]+ zp′(z)ϕ[p(z)]≺ θ[q(z)]+ zq′(z)ϕ[q(z)].

Using Lemma C, we have
p(z)≺ q(z),
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i.e.
Dm[ f ](z)

Dm−1[ f ](z)
≺ q(z), z ∈U.

Theorem 5. Let q be a convex function q(0) = 1, and let θ and ϕ be analytic in a
domain D containing q(U). Set

Q(z) = zq′(z)ϕ[q(z)] and h(z) = θ[q(z)]+Q(z).

If f ∈ A, λ≥ 0, m ∈ N, and satisfies the differential subordination

(Dm[ f ](z))′+ z(Dm[ f ](z))′′ ≺ h(z), z ∈U, (34)

then
(Dm[ f ](z))′ ≺ q(z), z ∈U,

and q is the best dominant.

Proof. We let
p(z) = (Dm[ f ](z))′, z ∈U. (35)

Using (6) in (35), we get

p(z) =

(
z+

∞

∑
k=2

akzk
{[

m+ k−1
m

]
(1−λ)+λ

2m

(k+1)m

})′
= 1+

∞

∑
k=2

kakzk−1
{[

m+ k−1
m

]
(1−λ)+λ

2m

(k+1)m

}
,

p(0) = 1 and p ∈H [1,1].

Multiplying (35) by z, we obtain

zp(z) = z(Dm[ f ](z))′. (36)

Differentiating (36), we get

p(z)+ zp′m[ f ](z))′m[ f ](z))′′, z ∈U. (37)

Using (37), the differential subordination (34) becomes

p(z)+ zp′(z)≺ h(z), z ∈U. (38)

In order to prove the theorem, we shall use Lemma B.
For this, we show that the necessary conditions are satisfied.
Let the function θ : C→ C, and ϕ : C→ C, with

θ(w) = w and ϕ(w) = 1. (39)

We check the conditions from the hypothesis of Lemma B. Using (39) in the hypo-
thesis of the theorem, we have

Q(z) = zq′(z)ϕ[q(z)] = zq′(z) (40)
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and
h(z) = θ[q(z)]+Q(z) = q(z)+Q(z) = q(z)+ zq′(z), z ∈U. (41)

Differentiating (40), we have

zQ′(z)
Q(z)

= 1+
zq′′(z)
q′(z)

, z ∈U.

Since q is convex function,

Re
zQ′(z)
Q(z)

> 0, z ∈U, (42)

hence the function Q is starlike.
Differentiating (41) and after short calculation, we obtain

zh′(z)
Q(z)

=
zq′(z)+ zQ′(z)

Q(z)
=

zq′(z)
zq′(z)

+
zQ′(z)
Q(z)

= 1+
zQ′(z)
Q(z)

.

Since Q is starlike, we have

Re
zh′(z)
Q(z)

= Re
(

1+
zQ′(z)
Q(z)

)
> 0, z ∈U. (43)

Using (39), we get
θ[p(z)] = p(z), ϕ[p(z)] = 1,

then the subordination (34) becomes

θ[p(z)]+ zp′(z)ϕ[p(z)]≺ θ[q(z)]+ zq′(z)ϕ[q(z)].

Using Lemma B, we have
p(z)≺ q(z),

i.e.
(Dm[ f ](z))′ ≺ q(z), z ∈U.

Example 1. Let the convex function

h(z) =
1− z
1+ z

, h(0) = 1,

and
f (z) = z+

1
2

z+
1
3

z3, λ =
1
4
, m = 1,

then (
1− 1

4

)
R1[ f ](z)+

1
4

L1[ f ](z)

z
= 1+

5
6

z2 +
19
24

z3.

Using Theorem 3 we get:
If

5
3

z+
19
8

z2 ≺ 1− z
1+ z

,
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then

1+
5
6

z2 +
19
24

z3 ≺ q(z) =
1
z

∫ z

0

1− t
1+ t

dt =
1
z

∫ z

0

(
−1+

2
1+ t

)
dt

=−1+
2ln(1+ z)

z

and this result is sharp.
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functions defined by sălăgean integro-differential operator,” Acta Univ. Apulensis, Math. Inform.,
vol. 57, pp. 147–158, 2019.

[14] S. Ruscheweyh, “New criteria for univalent functions.” Proc. Am. Math. Soc., vol. 49, pp.
109–115, 1975, https://doi.org/10.1090/S0002-9939-1975-0367176-1, zbMATH03473988, doi:
10.2307/2039801.

[15] H. M. Srivastava, S. Hussain, A. Raziq, and M. Raza, “The fekete-szegö functional for a subclass
of analytic functions associated with quasi-subordination,” Carpathian Journal of Mathematics,
vol. 34, no. 1, pp. 103–113, 2018. [Online]. Available: http://www.jstor.org/stable/90021608

http://dx.doi.org/10.2307/2007212
http://dx.doi.org/10.2307/2040127
https://ci.nii.ac.jp/naid/10010237867/en/
http://dx.doi.org/10.2307/1993803
http://dx.doi.org/10.1016/0022-247X(78)90181-6
http://dx.doi.org/10.1307/mmj/1029002507
http://dx.doi.org/10.18514/MMN.2018.2457
http://dx.doi.org/10.2307/2039801
http://www.jstor.org/stable/90021608


NEW DIFFERENTIAL SUBORDINATIONS 317

[16] H. Srivastava, A. Prajapati, and P. Gochhayat, “Third-order differential subordination and
differential superordination results for analytic functions involving the srivastava-attiya oper-
ator,” Applied Mathematics and Information Sciences, vol. 12, pp. 469–481, 05 2018, doi:
10.18576/amis/120301.

[17] H. M. Srivastava, A. Motamednezhad, and E. A. Adegani, “Faber polynomial coefficient estim-
ates for bi-univalent functions defined by using differential subordination and a certain fractional
derivative operator,” Mathematics, vol. 8, no. 2, p. 172, 2020.

[18] H. M. Srivastava, D. Răducanu, and P. Zaprawa, “A certain subclass of analytic functions defined
by means of differential subordination,” Filomat, vol. 30, no. 14, pp. 3743–3757, 2016.

[19] Q.-H. Xu, H.-G. Xiao, and H. M. Srivastava, “Some applications of differential subordination and
the dziok–srivastava convolution operator,” Applied Mathematics and Computation, vol. 230, pp.
496–508, 2014.

Author’s address

Georgia Irina Oros
University of Oradea, Faculty of Sciences, Department of Mathematics and Computer Sciences, Str.

Universitatii, No.1, 410087 Oradea, Romania
E-mail address: georgia oros ro@yahoo.co.uk, ORCID: 0000-0003-2902-4455

http://dx.doi.org/10.18576/amis/120301

	1. Introduction and preliminaries
	2. Main results
	References

