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Abstract. In this work, set-valued optimization problems are considered according to an order
relation, which is a partial order on the family such that contains nonempty bounded sets of the
space. A generalized convexity is defined for set-valued mapping by using the partial order rela-
tion. Nonsmooth variational inequality problems are introduced with the aid of M-directionally
derivative. Some optimality criteria including the necessary and sufficient optimality conditions
are obtained for mentioned optimization problems.
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1. INTRODUCTION

One of the most encountered problems in our life is optimization problems (math-
ematical programming problems). Translating these problems into mathematical lan-
guage, give us objective functions. Optimization problems are called according to ob-
jective functions. For example, a set-valued optimization problem (shortly, (SVOp))
arises when the objective function is a set-valued mapping. (SVOp)s are a general-
ization of vector and scalar optimization problems because the set-valued mappings
are a generalization version of the vector-valued and real-valued functions.

The most important purpose of a mathematical optimization problem is to find
the best among the suitable options. Naturally, it has been attracted the attention of
scientists, who have been working in mathematics, engineering, economics, manage-
ment, economic equilibria, optimal control, nonlinear optimization transportation,
and many other disciplines. There are many methods to solve and obtain optimal-
ity conditions of the optimization problems such as scalarization [14], vectorization
[10,12], directional derivative [13], subdifferential [9, | 1], embedding space [15, 18],
variational inequality problems [1,2,4-8,19,21].

Vector variational inequality problems and their some generalizations have been
used as methods to obtain the solutions and the optimality conditions of vector-valued
optimization problems. Giannessi [8] started the vector variational inequalities. Dur-
ing the most recent decade, different kinds of variational inequality problems were
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derived as Minty variational [2, 3, 6, 7], complementarity [21], semi-monotone scalar
variational inequalities [5].

Order relation is required to obtain the solution of set-valued programming and in-
terval programming problems. Set optimization is presented by Kuroiwa [16]. Kur-
oiwa used six order relation such that some of them are pre-order relation and the
others are not pre-order relations. Karaman et al. [14] are defined two order rela-
tions. The most important feature of these two order relations is a partial order rela-
tion on the family, which contains nonempty bounded sets of the space. These partial
order relations are used in [11, 13—15] to obtain optimality criteria and solutions for
set-valued optimization problems.

The point of this paper is to gain the optimality criteria for (SVOp)s via a partial
order relation introduced in [14]. Variational inequalities and convexity are used in
order to achieve the aim. A new convexity concept called m-convexity, which is
a generalization of known convexity in the literature, is given by using partial order
relation. A relationship is obtained between m-convexity and M-directional derivative
defined in [13].

The layout of this manuscript is as tracks: Some basic notations, definitions, and
solution concepts are recalled for (SVOp)s in the second section. m-convexity and
some properties are obtained in Section 3. Variational inequality problems and some
optimality conditions including necessary and sufficient are obtained in the last sec-
tion.

2. PRELIMINARIES

Throughout this paper, we assume that R" is ordered by a convex, pointed, closed
cone C C R" (n > 1) with a nonempty interior. We denote by 2" and X" the set of
all nonempty subsets of R” and the set of all nonempty compact and convex subsets
of R”, respectively. The interior of A is represented by inf(A) for a set A C R”.

LetA,B€ P"and A € R, M := {Aa | a € A}. The algebraic sum and the algebraic
difference of A and B are denoted by A 4+ B and A — B, respectively. Also, Minkowski
(Pontryagin) difference of A and B is defined by

A-B:={xeR"|x+BCA}.

The algebraic sum, the algebraic difference and Minkowski difference have fol-
lowing properties.
It is known that C induce the following partial order relation on R” for x;,x; € R":

X1 <cxp<==xy—x1 €C.

Proposition 1 ([14,17,20]). Let A,B € K", a € R" and t > 0. The following
conditions are hold:
(i) t(A—B) =tA—tB,
(ii)) (A+B)—B=A,
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(i) (A—B)+BCA,
(iv) if B= @, then A—B = R",
(v) A—A=0.
Let’s now define m and strictly m order relations are recalled in the next definitions.

Definition 1 ([14]). Let A,B € P". m order relation is defined by
A="B:<— (B-A)NC# 2.
Note that <™ is not only a pre-order relation on " but also a partial order relation
on K" [14].
Definition 2 ([14]). Let A,B € P". Strictly m order relation is defined by
A <" B:<= (B-A)Nint(C) # .

We know that m and strictly m order relations are not only compatible with the
nonnegative scalar multiplication but also compatible with the addition. Moreover,
these order relations have the following properties, which are utilized in the next
sections.

Proposition 2. Let A,B,D,E € P". Then,

i) A=X"B=—A-D=<"B-D,

(i) A=X"Band D <"E — A+D <" B+E,
(i) AX"B<—=0=<"B-A—0=<"B—A,
(iv) A A" B <= oA A" oB for all o.> 0.

Proof. (i) Let A <™ B. There exists an s € C that s € B—A, it follows

s+ACB. 2.1
Then, s +A—D C B—D. Really, let t € A—D, that is
t+DCA. (2.2)

Then, from (2.1) and (2.2) we have s+¢+D C s+A C B. Hence, s+t € B—D
and we obtain s+A—D C B—D. Since s € C and s € (B—D)—(A—D) we
obtain A=-D <™ B-D.
(ii-iv) These can be proved with the aid of Proposition 1 and definitions of <" and
<™,
O

Note that given all properties via m order relation in Proposition 2 are satisfied for
strictly m order relation.

Some efficient sets of a family with aid of <" and <™ are remembered in the next
definition.
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Definition 3 ([14]). Let § C X" and A € S. Then,

(i) A is called m-minimal (resp. m-maximal) set of S if there isn’t any B € §
such that B <™ A (resp. A =" B) and A # B,

(ii) A is called weakly m-minimal (resp. weakly m-maximal) set of S if there
isn’t any B € § such that B <" A (resp. A <" B).

Let SCR™and T : § = R" be a nonempty, compact and convex valued set-valued
mapping. Epigraph of the set-valued mapping 7T is described as Epi(T') := {(x,a) €
SxR"| T(x) <™ a}. We consider the following constraint (SVOp)

min(max) 7T (x)
(SVOp) { st.x€S.

Set optimization criteria are derived from a comparison between the values of
the set-valued mapping 7. Namely, we search efficient sets of the family 7 (S) :=
{T(x) | x € S} to solve a (SVOp) via set optimization. Ordering relations defined
on sets are used to investigate the efficient sets. So, we will use = and <" order
relations to determine the efficient sets of Z'(S) in this study. If we consider the
(SVOp) with respect to m order relation, then we use the notation (m — SV Op).

We say that £ is a minimal (resp. maximal) solution of (m — SVOp) if T(X) is
an m-minimal (resp. m-maximal) set of 7'(S). Similarly, we say that £ is a weakly
minimal (resp. weakly maximal) solution of (m — SVOp) if T(X) is a weakly m-
minimal (resp. weakly m-maximal) set of 7(S). If T(%) <" T'(x) (resp. T(x) <"
T (%)) for all x € S, then £ is called strongly m-minimal (resp. strongly m-maximal)
solution of (m — SVOp). % is called stritly m-minimal (resp. strictly m-maximal)
solution of (m —SVOp) if T(X) <" T (x) (resp. T (x) <™ T (%)) forall x € S.

If £ is a strongly m-minimal solution of (m — SVOp), then it is also m-minimal
and weakly m-minimal solution of the problem. Also, if £ is an m-minimal solution
of (m —SVOp), then it is also a weakly m-minimal solution of the problem. These
conditions can also be applied to maximal solutions.

Definition 4 ([13]). Let T : R” = R” be a set-valued mapping, S C R™, % € int(S)
and 47 € R™. The limit
T(R+th)-T (%
T (8 1) = Timsup Lo =T
t—0*t t

is called M-directional derivative of T at £ in direction & where limsup 7'(x) := {y €
X' —x
R” | liminf d(y,T(x")) = 0} denotes the Painlevé-Kuratowski upper/outer limit of
X' —x
T at x. If TM(#;h) # @ for an £ € int(S) and for all # € R™, then T is called M-
directionally differentiable at x.

T is called M-directionally differentiable on S if 7Y (£; /) # @ for all £ € int(S) and

for all h € R™. Besides, TY (%; h) is positively homogenous in &, that is TM (£; 0h) =
o™ (%;h) for all o > 0 [13].
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Karaman et al. [13] obtained some optimality conditions for (m — SVOp) and
existence theorems for M-directional derivative.

3. M-CONVEXITY FOR SET-VALUED MAPPINGS

A convexity notation is introduced for the set-valued mappings by using m or-
der relation, and a relationship between convexity and M-directional differentiable is
derived in this section.

Definition 5. Let S C R™ be a convex set and 7 : § = R" be a set-valued mapping.
T is called m-convex set-valued mapping on § if

T(Ax+(1=A)y) 2" AT (x)+ (1 =M)T (),
forallx,y € Sand all A € (0,1).

Note that m-convexity is reduced the C-convexity defined on R" if we take f :
R™ — R”" vector-valued function instead of the set-valued mapping 7' : R == R".
Moreover, if we take g : R” — R real-valued function instead of the set-valued map
T, we obtain convexity defined on R. So, m-convexity is a generalization of the
known convexity in the literature.

Proposition 3. Let T : R" = R" be a set-valued mapping. The following condi-
tions are equivalent:

(1) T is m-convex,
(i) Epi(T) is convex,
(ii1) T(l].)C] +txo+ ...+ tnxn) <M"H T(X]) —l—[zT(Xz) +... +tnT(xn)f0r alln €N,
for all x1,x2,...,x, € R™ and for all t,ty, ....t, € (0,1) such that Y3_, tx = 1
(Jensen’s Inequality).

Proof. The proof is immediate from Definition 5. ([l

Proposition 4. Let T,G : R™ = R" be set-valued mappings. The undermentioned
assertions are satisfied.:
(i) If T is m-convex, then T (x) +C and T (x) 4 int(C) are m-convex,
(i) if T and G are m-convex, T + G is also m-convex.
Definition 6. A vector-valued mapping T : R”™ — R" is called affine iff
T (o + (1 —a)y) = o (x) + (1 — )T (y),
for all x,y € R™ and all o € R.
Definition 7. Let 7 : R™ — R” be a vector-valued mapping and x,y € R™. h is
called

(i) m-increasing iff x <"y implies h(x) <" h(y),
(ii) m-decreasing iff x <" y implies A(y) =" h(x).
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Proposition 5. Let T,G : R" = R” be set-valued mappings and vector-valued
function h : R — R™ be m-increasing. Then,

() If T is m-convex set-valued map and h is m-convex, then T oh : R = R" is
also an m-convex set-valued mapping,

(i1) Let G be an affine set-valued mapping. T is m-convex iff T + G is m-convex
set-valued mapping.

Theorem 1. Let S C R™ be a convex set and T : R™ = R" be compact, convex
valued and M-directionally differentiable set-valued mapping on S. If T is m-convex
set-valued map, TM (x;y —x) <" T(y) — T (x) for all x,y € S.

Proof. Because T is m-convex set-valued mapping. Then, we have
T(oy+(1—a)x) 2" ol (y)+ (1 — )T (x) 3.1)

for all x,y € S and for all o € (0,1). As T is convex valued map we can write the
inequality (3.1) as

T(x+ofy—x)) 2" ol (y) +T(x) — ol (x).
From Proposition 2 (iii) we get
T(x+a(y—x))—T(x) <" [aT(y) —oT (x)+ T (x)] =T (x).
By using Proposition 1 (ii) we yield
T(x+a(y—x)-T(x) <" aT(y) — oT (x).
Since <™ is compatible with the nonnegative scalar multiplication, we obtain
Txtoaly—x)-T(x) _, UTy)-TK)

= =T)—T(x).
_ < _ 0)-T()
By taking Painlevé-Kuratowski upper limit for o0 — 0%, we attain T™ (x;y — x) <™
T(y)—T(x) forall x,y € S. O

Remark 1. Let S C R™ be a convex set and T : R™ = R” be compact, convex val-
ued and M-directionally differentiable set-valued mapping on S. If T (x;y — x) <™
T(y) — T (x) for all x,y € S, T may not be an m-convex set-valued mapping. For ex-
ample, set-valued mapping 7 : R = R? is defined as T (x) = B((x,x?),|1 —x|) for all
x € R, where B(x,r) denotes the open ball centered x € R with radius r. Although
T is not m-convex set-valued mapping, the inequality condition 7 (x;y — x) <"
T(y) — T (x) is satisfied for all x,y € S.
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Definition 8. Let S C R™ be a convex, T : R™ = R" be an M-directionally differ-
entiable. Then, T is called

(i) m-pseudoconvex iff for all x,y € S

FM(x;y—x) 2" 0 = F(y) 2" F(x),
(ii) strongly m-pseudoconvex iff for all x,y € §

0 =" FM(xiy—x) = F(x) =" F(y),
(iii) weakly m-pseudoconvex iff for all x,y € §

FM(x;y—x) A0 = F(y) A" F(x).

4. SET VARIATIONAL INEQUALITY PROBLEMS AND OPTIMALITY CRITERIA FOR
SET OPTIMIZATION

Variational inequality problems and some optimality conditions for (m — SVOp)
are introduced in this section.

Definition 9. Let S C R” be a convex set and x € S be an arbitrary element. Then,
the set-valued mapping 7 : R” = R? is called

(i) m-upper sign continuous if for all y € S and all o € (0, 1)
T(x+a(y—x)) A" 0=T(x) A" 0,
(ii) strongly m-upper sign continuous if for all y € S and all o € (0, 1)
0="T(x+a(y—x))=0=<"T(x),
(iii) weakly m-upper sign continuous if for all y € S and all o € (0, 1)
T(x+a(y—x)) A" 0=T(x) A" 0.
The m-variational inequality problem (shortly (m — VIp)): Find x € S such that

T (x;y —x) ™0, Vy€S.
The inverse m-variational inequality problem (shortly (m —IVIp)): Find x € S such
that

04" TM (x;y—x), Vy€S.
The strongly m-variational inequality problem (shortly (m —SVIp)): Find x € S
such that

0=<"TM(x;y—x), Vyes.
The inverse strongly m-variational inequality problem (shortly (m — ISV Ip)): Find
x € S such that
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TM(x;y—x) <"0, Vyes.
Similarly, the weakly m-variational inequality problem (shortly (m —WVIp)): Find
x € S such that

T (x;y —x) A™0, Vy€S.

The inverse weakly m-variational inequality problem (shortly (m —IWVIp)): Find

x € S such that
04" TM (x;y—x), Vy€S.

We denote by sol(m — SVIp), sol(m —VlIp) and sol(m — WV Ip) the set of all solu-
tions of (m —SVIp), (m—VIp) and (m — WVIp), respectively. It is obvious that
sol(m—SVIp) C sol(m—VIp) C sol(m—WVIp). Similarly, there is the same rela-
tionship in the inverse version of the variational inequality problems. The converse
implications may not be generally true.

Minty m-variational inequality problem (m — MVIp): Find x € S so that

™ (y;y—x) 2”0, VyeSs,
Minty strongly m-variational inequality problem (m — MSVIp): Find x € S so that

0="T"(yy—x), Wyes,
Minty weakly m-variational inequality problem (m — MWV Ip): Find x € S so that

™ (y;y—x) ™0, Vy€S.

We denote by sol(m —MSV1p), sol(m —MVIp) and sol(m — MWV Ip) the set of all
solutions of (m—MSVIp), (m—MVIp) and (m— MWV Ip), respectively. It is obvious
that sol(m — MSVIp) C sol(m — MV 1p) C sol(m—MWVIp), but the converse inclu-
sion may not be generally true. Similarly, there is the same relationship in inverse
version of variational inequality problems.

Proposition 6. Let S C R”" be a nonempty convex set and set-valued mapping
T : R" = R? be M-directionally differentiable on S. Then
() if T™ is m-upper sign continuous, then sol(m—MVIp) C sol(m—VIp),
(i) if T is strongly m-upper sign continuous, then sol(m —MSVIp) C sol (m —
SVlIp),
(iii) if TV is weakly m-upper sign continuous, then sol(m —MWVIp) C sol(m —
WVIp).

Proof. (i) Let X' € S is a solution of (m —MVIp). Then, TY (y;y —x') 2" 0
forall y € S. Since S is a convex set, X' +A(y —x') € Sforall A € (0,1). So,
we have

T (X + Ay = );x + Ay =) —x) 270,
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equivalently from positively homogenously of M-directionally differentiable
ATM (X + My —x);y—x') £™0.
By Proposition 2 (iv), we yield T (¥ + My —x');y —x') 2" 0. TY (x';y —

x') ™ 0 yields by using m-upper sign continuity of 7M. Therefore, x' €
sol(m—Vlp).

O

Theorem 2. Let S CR™ be a convex set and set-valued map T : R™ = R" be com-
pact, convex valued and M-directionally differentiable on S. Then, x¢y is a maximal
solution of (m — SV Op) if and only if it is also a solution of (m — IV Ip).

Proof. Let xo be a maximal solution of (m —SVOp). We have

T(xo) 2" T(y) 4.1
forall y € S\ {xo} such that T'(y) # T (xo). Then, we can obtain easily that
02" T (y)=T (x0)- (4.2)

Because S is convex set, we can write oy + (1 — ot)xp instead of y in (4.2) for a0 €
(0,1). Hence,

0 A" T (xo +ay —x0))—T (xo)-
From Proposition 2 (iv), we have

(x0 + 0y —x0)) =T (x0)
" .
Since T is M-directionally differentiable and 7' (xo+ ct(y —x0))—7 (xo) is compact, by
taking Painlevé-Kuratowski upper limit o — 0™ in (4.3) we yield 0 2™ T™ (xp;y — x0).
Therefore, x is a solution of (m —IVIp).
For the inverse statement, let xy be a solution of 0 A” T (x;y —x) for all y € S.
Assume that xo is not a solution of (m — SV Op). There exists an x’ € S such that

T(xo) X" T (). 4.4)

0z L 4.3)

Since S is convex set and xo,x” € S, there exists ay € S and a € [0, 1] such that x' =
oy + (1 —o)xp. From (4.4) and Proposition 2 (iii), 0 <" T (xo + oy — x0))—T (xo)
yield. By multiplying both sides with é and by taking Painlevé-Kuratowski upper
limit o« — 0", we obtain 0 <™ TM(xq;y — x¢). This contradicts the assumption.
Hence, x is a maximal solution of (m —SVOp). O

Theorem 3. Let S C R™ be convex set and set-valued map T : R™ = R" be com-
pact, convex valued and M-directionally differentiable on S. Then, xy is a minimal
solution of (m — SV Op) if and only if it is a solution of (m — VIp).

Proof. 1t can be obtained similar to the proof of previous theorem. O
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Theorem 4. Let S C R™ be convex set and set-valued map T : R™ = R" be com-
pact, convex valued and M-directionally differentiable on S. Then,

(i) xo is a strongly minimal (resp. strongly maximal) solution of (m — SV Op) if
and only if it is also a solution of (m— SVIp) (resp. (m —ISVIp)),

(ii) xo is a weakly minimal (resp. weakly maximal) solution of (m— SV Op) if and
only if it is also a solution of (m—WVIp) (resp. (m —IWVIp)).

Proposition 7. Let S C R" be convex set and set-valued map T : R™ = R" be
compact, convex valued and M-directionally differentiable on S. Then,

(i) if X is a strongly minimal (resp. strongly maximal) solution of (m —SVOp),
then % is also not only a solution of (m —VlIp) (resp. (m—1VIp)) but also a
solution of (m—WVIp) (resp. (m—IWVIp)),

(ii) if X is a minimal (resp. maximal) solution of (m — SVOp), then % is also a
solution of (m—WVIp) (resp. (m—IWVIp)).

Theorem 5. Let S C R™ be convex set and T : R"™ = R" be M-directionally dif-
ferentiable set-valued map on S C. The following assertions are ture:

(i) if T is m-pseudoconvex, then every solution of (m—V Ip) is a minimal solution
of (m—SVOp),

(i) if T is m-pseudoconvex, then every solution of (m —MVIp) is a maximal
solution of (m—SVOp),

(i) if T is weakly m-pseudoconvex, then every solution of (m—WVIp) is a weak
minimal solution of (m — SVOp),

(i) if T is weakly m-pseudoconvex, then every solution of (m — MWVIp) is a
weak maximal solution of (m — SV Op),

(ii) if T is strongly m-pseudoconvex, every solution of (m— SV Ip) is also a strongly
minimal solution of (m — SVOp),

(ii) if T is strongly m-pseudoconvex, every solution of (m — MSVIp) is also a
strongly maximal solution of (m — SV Op).

Proof. The proof can be proved easily by using the definitions. O
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