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Abstract  

In the electronics technology, the metallic β-Sn (white tin) is the basic material of solder 

alloys and surface finishes. The “tin pest” phenomenon is the spontaneous allotropic 

transition of ß-Sn to the semiconductor α-Sn (gray tin) under the temperature of 13.2°C. In 

this work, the tin pest susceptibility of the widely used Sn99Ag0.3Cu0.7 solder alloy was 

investigated and compared to Sn99Cu1 alloy (as a well know reference). Bulk solder bars 

were prepared by metal casting and the samples were inoculated by InSb, CdTe and α-Sn 

powders to enhance the allotropic transition process. The inoculator materials were pressed 

onto the surfaces of the samples by a mechanic lamination. The samples were stored at -10 °C 

temperature for 8 weeks. The allotropic transition was monitored by optical inspection and by 

electrical resistance measurements. The microstructural changes of the samples – caused by 

the transition of crystal structure of Sn – were investigated by metallurgical cross-sections. 

The results showed, that in all cases the Sn99Ag0.3Cu0.7 solder alloy is much less 

susceptible to tin pest development than the Sn991Cu, which might be explained by the 

suppression effect of the Ag alloying. Furthermore, it was found that the process of transition 

highly depends on the applied inoculator material.  
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1. Introduction 

In the electronics technology, the metallic β-Sn (white tin) is the basic material of solder 

alloys and surface finishes [1]. β-Sn has BCT crystal structure, and it is stable temperature 



above 13.2°C (with the melting point at 231.9 °C). Sn has further three more allotropes the α-, 

γ- and σ-Sn. From the aspect of microelectronics applications, the γ- and σ-Sn are less known, 

since they can from only at harsh conditions, temperature above 161°C and pressures above 

several GPa in high pressure [2]. α-Sn (gray Sn) has diamond cubic crystal structure and it is 

stable temperature below 13.2°C. α-Sn is a nonmetallic material, since its atoms are in 

covalent structure, in which electrons are not freely movable. It is a semiconductor and 

powdery material.  

So called “tin pest” phenomenon marks the allotropic transition of β to α-Sn below 

13.2°C [3]. The first sign of the transition is the appearance of discolored spots / warts on the 

surface of the objects, (Fig. 1). Further result of the transition is the decomposition of the 

objects into powder, since the transition causes ~27% volume increase [4]. The allotropic 

transition can have three main phases: “the nucleation”, when new phases starts to develop via 

self-organization or new thermodynamic phases form; “the growth”, when the transition 

proceeds and “the saturation”, when the transition stops, and some α-Sn remains in metastable 

state [5]. The speed of the transition highly depends on the temperature and the presence of 

materials with the same crystal structure with similar lattice parameters to the α-Sn, like CdTe 

or InSb [6]. 

 

 

Figure 1: Tin pest warts on the surface of Sn99Ag0.3Cu0.7 alloy inoculated with InSb 

after 10 weeks of storage at -10°C. 

 

Tin pest can occur not only in pure Sn objects, but in high Sn content alloys as well [3, 

6]. However, alloying of electropositive metals (like Pb, Bi, Sb), which are soluble in the 

solid Sn, usually suppress the transition [7]. After the application of RoHS directives since 

2006, mostly the lead-free SnAgCu (SAC) solder alloys are applied in microelectronics [8]. In 



these alloys, the Sn content is over than 95 wt%, so the risk of the tin pest phenomenon might 

be increased considerably in microelectronic appliances [3, 6].  

In addition, a further trend in the soldering technology is to reduce more and more 

expensive Ag from SAC solder alloys [9]. Among the so called “low Ag content SAC alloys”, 

the Sn99Ag0.3Cu0.7 (SAC0307) alloy is the most widespread in the electronics industry. The 

solder joints made from SAC0307 have the similar quality and reliability properties (electrical 

conductivity, mechanical stability, long-term durability, corrosion susceptibility, etc.) as the 

solder joints made from the widely applied SAC305 or SAC405 alloys [10]. The price of 

SAC0307 is ~20-30% lower than the prices of SAC305, however, the even 99 wt% Sn 

content could increase further the possibility of the allotropic transition of tin.  

Consequently, the study of tin pest susceptibility of low Ag content SAC solder alloys is 

important for electronic devices working in sub-zero temperature in aerospace, automobile 

and aeronautical applications. 

 

2. Materials and Methods 

In this work, the tin pest susceptibility of the SAC0307 solder alloy was investigated 

and compared to Sn99Cu1 alloy. The tin pest susceptibility of the Sn99Cu1 alloy is well 

researched [5, 6]. Bulk solder bars were casted with the size of 45x6x3 mm (Fig. 2). For 

shortening the nucleation phase different inoculator powders: InSb, CdTe and α-Sn itself were 

used. 

 

 

Figure 2: The inoculated sample. 

 

Inoculating powders were pressed onto the surfaces of the samples by a mechanic laminator, 

applied 30kN force. Fifteen - fifteen samples were prepared from the six different sample 

types. The samples were stored at -10 °C temperature for 8 weeks. 

Basically, the tin pest development was monitored by optical inspections. After the first 

tin pest sign appeared, the progress of the transition was characterized by electrical resistance 

measurements as well, since the transition (from metal to semiconductor) increases the 

electrical resistance of the samples. The measurements were carried out by 4-wire method 

with an AGILENT 4338B mΩ meter. At mΩ range the measurement accuracy of the 



instrument is under 3% and the repeatability error was under 2%. The initial average 

resistance value of the samples was between 0.23 – 0.25mΩ.  

Metallurgical cross-sections were also prepared and analyzed by an Olympus BX51 

metal microscope in order study the microstructural changes of the samples caused by the 

changing of the crystal structure of Sn. 

 

3. Results and Discussion 

Fig. 3 shows the average electrical resistance changes of Sn99Cu1 samples inoculated 

with InSb, CdTe and α-Sn in logarithmic scale. During the first 3 weeks of the study, no 

detectable resistance change was observed. However, minor tin pest warts (see Fig. 1) already 

appeared on the surface of the samples after 2-3 weeks storage at -10 °C. At 4 weeks, the 

samples inoculated with InSb and α-Sn showed resistance increases, between 30–150% for 

InSb and 5–20% for α-Sn inoculation. In the case of CdTe inoculation, 5-20% resistance 

increase was detected only after 4 weeks of storage. Hence, the nucleation phase of the 

transition has been found to be 3 and 5 weeks, at InSb, α-Sn and CdTe inoculation, 

respectively.  

 

 

Figure 3: Electrical resistance changes of the Sn99Cu1 samples during 8 weeks of 

storage at -10°C. 

 

During the rest of the study, the samples with different inoculation showed very 

different behavior. The samples with InSb inoculation showed a considerable resistance 

increase between 3–6 weeks (in the growth phase). After 6 weeks, the changes of the 

resistance increase reached the saturation phase. After 8 weeks, the samples started to 

decompose (Fig. 4). The decomposition of the samples usually occurred when the electrical 



resistance had increased of 25-30 times as compared to the initial value. The highest detected 

resistance increase of the samples with InSb inoculation was ~33 times (8.3mΩ) after 8 weeks 

of storage at -10 °C. 

In the case of Sn99Cu1 samples with CdTe inoculation, considerable increase of the 

electrical resistance was noticeable between the 5 – 8 weeks of the study. In this case no 

saturation phase was observed (Fig. 3). Di Maio and Hunt found similar results in the case of 

different SnCu alloys inoculated with CdTe [11]. Here, the highest resistance increase was 

~32 times (8.13mΩ) after 8 weeks of storage at -10 °C. After 8 weeks the decomposition of 

the samples begun. 

 

 

Figure 4: Decomposed Sn99Cu1 sample with InSb inoculation after 8 weeks of storage 

at -10°C. 

 

Generally, the high deviation of the electrical resistances of the samples with InSb and CdTe 

inoculation is the result of the not totally even inoculation, and the autocatalytic nature of the 

transition. The differences in the appearance of α-Sn on the samples result in differences in 

the transition rates.  

In the case of α-Sn inoculation, after the moderate (5–20%) resistance increase at 4 

weeks, no further changes were detected. The highest resistance increase was ~0.4 times 

(0.351mΩ) after 8 weeks of storage at -10 °C. Here, the decomposition of the samples was not 

observed at all, the transition could not develop in the whole sample volume and it was 

limited only on the surface of the samples.  

Fig. 5 shows the average electrical resistance changes of SAC0307 samples inoculated 

with InSb, CdTe and α-Sn in logarithmic scale. The samples inoculated with InSb and CdTe 

were totally resistant to the transition, no any visible tin pest signs or electrical resistance 

changes during the study were observed. In the case of SAC0307 samples inoculated with α-



Sn, similar effect was observed as at the Sn99Cu1 samples inoculated with α-Sn. The first tin 

pest warts appeared after 2 weeks of storage at -10°C (Fig. 6) and after 3 weeks 15-25% 

resistance increase was detected, without any considerable changes later (Fig. 5). 

 

 

Figure 5: Electrical resistance changes of the SAC0307 samples during 8 weeks of 

storage at -10°C. 

 

 

Figure 6: Tin pest warts on the SAC0307 samples inoculated α-Sn after 3 weeks of 

storage at -10°C. 

 

According to the obtained results, two main findings can be concluded: i) the α-Sn 

inoculation resulted in the allotropic transition at both alloy, however the resistance changes 

were moderate; ii) the InSb and CdTe inoculation resulted in considerable and fast changes 

but only in the case of the Sn99Cu1 alloy. In order to explain the followings, metallurgical 

cross-sections were prepared from the samples.  

Fig. 7 shows the cross-sections of Sn99Cu1 samples inoculated with α-Sn (Fig. 7a) and 

InSb (Fig. 7b) after storage at -10°C for 8 weeks. In the case of α-Sn inoculation, the 



transition does not develop into the whole sample volume, it was limited to the surface of the 

samples, causing the peeling of the outer layer of material after a while. In the case of InSb or 

CdTe inoculation, the inoculators can diffuse into the sample body, so the allotropic transition 

starts at several places inside the sample body and not only on the surface (Fig. 7b), finally 

leading to the decomposition of the sample. The brittle α-Sn is not visible in Fig. 7b, due to 

falling out from the sample during the polishing. 

 

 

Figure 7: Cross-sections of Sn99Cu1 samples after 8 weeks of storage at -10°C: a) α-Sn 

inoculation; b) InSb inoculation. 

 

Different tin pest susceptibility of the similar solder alloys (Sn99Cu1 and 

Sn99Ag0.3Cu0.7) might be explained by the Ag content of the SAC0307 alloy. Addition of 

Ag to the solder alloy, enhances the creation of Ag3Sn intermetallic compounds (IMCs) in the 

joint after its solidification. Although in the low Ag content solder alloys, the amount of 

Ag3Sn IMCs is relatively lower compared to the classical SAC305 or SAC405, but their 

dispersion around the grain boundaries of the Sn grains is usually even [12]. The presence of 

the Ag3Sn at the Sn grain boundaries can decrease the grain-boundary diffusion which results 

in larger grains and lower number of the grain boundaries. This could decrease the allotropic 

transition rate. Similar effect of the Sn grain structure on Sn whisker growth was already 

found [13]. However, further research is necessary to prove this theory.  

 

4. Conclusions 

In this paper, the tin pest susceptibility of the Sn99Ag0.3Cu0.7 (SAC0307) solder alloy 

was investigated and compared to Sn99Cu1 alloy with different inoculator materials 

application. The main findings are the following: the SAC0307 alloy is much less prone for 

the Sn transition than the Sn99Cu1. This might be explained with the presence of Ag in the 



solder alloy, since Ag3Sn IMCs can decrease the grain-boundary diffusion. Therefore, from 

reliability aspects, silver cannot be totally eliminated from solder alloys. Furthermore, process 

of the allotropic transition highly depends on the inoculator material. The non-Sn inoculators 

can diffuse into the body of the samples and start the transition inside the samples as well, 

which can lead to the fast decomposition of the samples. In the case of α-Sn itself inoculation, 

the process is limited to the surface of the samples which results in much slower degradation 

of the samples. 
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