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Abstract
Using the covering involution on the double branched cover of S3 branched along
a knot, and adapting ideas of Hendricks–Manolescu and Hendricks–Hom–Lidman,
we define new knot (concordance) invariants and apply them to deduce novel linear
independence results in the smooth concordance group of knots.

1 Introduction

Concordance questions of knots have been effectively studied by 4-dimensional topo-
logical methods by several authors. For a knot K in the three-sphere S3 one can
consider the double branched cover �(K ) of S3 branched along K . If K is a slice
knot (i.e. it bounds a smoothly embedded disk in the 4-disk D4) then �(K ) bounds a
four-manifold X having the same rational homology as D4: this X can be chosen to
be the double branched cover of D4 along the slice disk. The existence of such four-
manifold then can be obstructed by various methods, leading to sliceness obstructions
of knots. For example, Donaldson’s diagonalizability theorem applies in case�(K ) is
known to bound a negative definite four-manifold with intersection form which does
not embed into the same rank diagonal lattice. This line of reasoningwas used by Lisca
in his work about sliceness properties of 2-bridge knots, see [8,17,21]. A numerical
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invariant (in the same spirit) was introduced by Manolescu–Owens [22] utilizing the
Ozsváth–Szabó correction term of the unique spin structure of �(K ).

Different knots might admit diffeomorphic double branched covers, though; for
example, if K and K ′ differ by a Conway mutation, then �(K ) and �(K ′) are dif-
feomorphic. This implies that if K is slice, all slice obstructions coming from the
above strategy must vanish for K ′ as well. A long-standing problem of this type was
whether the Conway knot is slice; it admits a mutant (the Kinoshita–Terasaka knot)
which is slice, hence merely considering the double branched cover will not provide
sliceness obstruction. (The fact that the Conway knot is not slice has been recently
proved by Piccirillo [36], relying on four-dimensional topological methods and results
from Khovanov homology.)

The information we neglect in the above approach is that the three-manifold
�(K ) (viewed as the double branched cover of S3 along K ) comes with a self-
diffeomorphism τ , where pairs of points in �(K ) mapping to the same point of S3

are interchanged by τ . In this paper we introduce modifications of the usual Heegaard
Floer homology groups of �(K ) which take this Z/2Z-action into account, leading
to new knot invariants.

Heegaard Floer homology associates to a closed, oriented, smooth three-manifold a
finitely generated F[U ]-module HF−(Y ) (where F[U ] is the polynomial ring over the
field F of two elements): it is the homology of a chain complex (CF−(Y ), ∂) (defined
up to chain homotopy equivalence) and the homology naturally splits according to the
spinc structures of Y as

HF−(Y ) =
⊕

s∈Spinc(Y )

HF−(Y , s).

If Y is a rational homology sphere (i.e., b1(Y ) = 0) then HF−(Y , s) admits a natural
Q-grading, and the graded F[U ]-module HF−(Y , s) is a diffeomorphism invariant of
the spinc three-manifold (Y , s), while the local equivalence class of (CF−(Y , s), ∂)

(for the definition of this notion see Definition 3.2) provides an invariant of the rational
spinc homology cobordism class of (Y , s). In this case the local equivalence class of
CF−(Y , s) can be characterised by a single rational number d(Y , s), the Ozsváth–
Szabó correction term of the spinc three-manifold (Y , s).

More recently, exploiting a symmetry built in the theory, Hendricks andManolescu
in [13] introduced involutive Heegaard Floer homology. The main idea of their con-
struction is that, by making use of naturality, one can construct geometrically a
grading-preserving chain map ι : CF−(Y ) → CF−(Y ) which is (up to homotopy)
an involution. The mapping cone of the map ι + id leads to involutive Floer homol-
ogy HFI(Y ), a module over the ring F[U , Q]/(Q2). This group is interesting only
for those spinc structures which originate from a spin structure, and provides a new
and rather sensitive diffeomorphism invariant of the underlying spin three-manifold.
A further application of the above involution appeared in the work of Hendricks, Hom
and Lidman [11], where (through the appropriate use of ι) connected Heegaard Floer
homology HF−

conn(Y ), a submodule of HF−(Y ) was defined. This submodule turned
out to be a homology cobordism invariant.
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Connected Floer homology 1429

Similar constructions apply for any chain complex equipped with a homotopy
involution. In this paper we will define the branched knot Floer homology of K as
HFB−(K ) = H∗(Cone(τ#+id)), where τ : �(K ) → �(K ) is the covering involution,
τ# is the map induced by τ on the Heegaard Floer chain complex CF−(�(K ), s0),
with s0 the unique spinc structure on �(K ), and Cone is the mapping cone of the map
τ# + id. (Related constructions have been examined in [12]; cf. also [2].)

Theorem 1.1 The group HFB−(K ), as a graded F[U , Q]/(Q2)-module, is an isotopy
invariant of the knot K ⊂ S3.

A simple argument shows that, as an F[U ]-module, HFB−(K ) is isomorphic to
F[U ](δ(K )) ⊕ F[U ](δ(K )) ⊕ A, where δ(K ), δ(K ) ∈ Q and A is a finitely generated,
graded U -torsion module over F[U ].
Theorem 1.2 The rational numbers δ(K ) and δ(K ) are knot concordance invariants.

Adapting the method of [11] for defining new homology cobordism invariants
of rational homology spheres, we define the connected branched Floer homol-
ogy HFB−

conn(K ) of a knot K ⊂ S3 as follows. Consider a self-local equivalence
fmax : CF−(�(K ), s0) → CF−(�(K ), s0) which commutes (up to homotopy) with
τ# and has maximal kernel among such endomorphisms. Then take HFB−

conn(K ) =
H∗(Im fmax).

Theorem 1.3 The module HFB−
conn(K ) (up to isomorphism) is independent of the

choice of the map fmax with maximal kernel, and the isomorphism class of the graded
module HFB−

conn(K ) is a concordance invariant of the knot K .

It follows from the construction that HFB−
conn(K ) is an F[U ]-submodule, indeed

a direct summand of HF−(�(K ), s0). As a finitely generated F[U ]-module,
HFB−

conn(K ) is the sum of cyclic modules, and since it is of rank one, it can be
written as

HFB−
conn(K ) = F[U ] ⊕ HFB−

red-conn(K ),

where the second summand (the U -torsion submodule) is the reduced connected
homology of K .

It is not hard to see that if HF−(�(K ), s0) = F[U ] holds—for example if �(K )

is an L-space, which is the case when K is a quasi-alternating knot—then τ# is chain
homotopic to the identity map, implying the following.

Theorem 1.4 If K is concordant to a quasi-alternating knot, then the reduced group
HFB−

red-conn(K ) vanishes.

Somewhat more surprisingly, the same vanishing holds for torus knots (a behaviour
similar to the one presented by the analogue of the upsilon-invariant defined in the
seeting of Khovanov homology by Lewark and Lobb [19,27]):

Theorem 1.5 For the torus knot Tp,q we have that HFB−
red-conn(Tp,q) = 0.
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Finally we use lattice cohomology of Némethi [23] to get a computational scheme
for the above invariants in the case of Montesinos knots. This second class of compu-
tation is based on results by Dai and Manolescu [4] and applies in particular to pretzel
knots.

1.1 Topological applications

In [20] Lidman and Moore showed that a pretzel knot P(a1, . . . , ak) is an L-space
knot (i.e. it has L-space surgeries) if and only if it is a torus knot of the form T2,2n+1,
or a pretzel knot of the form P(−2, 3, q) for some q ≥ 7 odd. In [39] the question of
which linear combinations of L-space knots is concordant to a linear combination of
algebraic knots was studied. In [1, Theorem 1.1] the first author showed that pretzel
knots of the form P(−2, 3, q) are not concordant to positive sums of algebraic knots.
It is conjectured that these knots are linearly independent in the quotient of the knot
concordance groupmodulo algebraic knots. Note that for the pretzel knots P(−2, 3, q)

the obstruction found in [39, Corollary 3.5] vanishes.
Our calculations for the connected homologies of pretzel knots in combination

with the vanishing theorem above allow us to prove certain independence results in
the smooth concordance group going in this direction. To state the results, let us
introduce the following notations: let C denote the (smooth) concordance group of
knots in S3 and QA (respectively T ) those subgroups of C which are generated by
all quasi-alternating (respectively torus) knots. In addition, QA + T is the subgroup
generated by quasi-alternating knots and torus knots.

Theorem 1.6 Let K be the connected sum of pretzel knots of the form P(−2, 3, q),
with q ≥ 7 odd. Then K is not concordant to any linear combination of torus knots.
Indeed, [K ] is a nonzero in the quotient C/(T + QA).

Furthermore, relying on computations from [4,15], and ideas and results from [3],
we prove the following.

Theorem 1.7 The pretzel knots {P(−2q − 1, 4q + 1, 4q + 3) | q ≥ 1} are linearly
independent in the quotient group C/(T + QA). Indeed, Z

∞ is a direct summand of
C/(T + QA).

Note that P(−2q − 1, 4q + 1, 4q + 3) has trivial Alexander polynomial, thus
is topologically slice. It was previously known that there exists an infinte family of
topologically slice knots which is linearly independent in C/QA. Our result proves
that we can also find such a family, not just up to quasi-alternating knots, but up to
connected sums of quasi-alternating knots and torus knots. For independence from
L-space knots, see [40].

1.2 Organization of the paper

The paper is organized as follows. In Sect. 2 we introduce branched knot Floer homol-
ogy, and in Sect. 3 we discuss the details of the definition of the connected Floer
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homology group HFB−
conn(K ) of a knot K ⊂ S3. Section 4 is devoted to the proof of

the vanishing results above, while in Sect. 5 we give a way to compute the invariants
for Montesinos knots. Finally in Sect. 6 we derive some independence results in the
smooth concordance group.

We would like to thank András Némethi for numerous highly informative discus-
sions.We specially thank the anonymous referee for providing a number of suggestions
and advises which greatly improved the paper. The first and the third authors acknow-
eldge support from the NKFIH Élvonal project KKP126683. The second author
was partially supported by the European Research Council (ERC) under the Euro-
pean Union Horizon 2020 research and innovation programme (grant agreement No
674978).

2 Definition of branched knot Floer homology

Let H = (�,α,β, z) be a pointed Heegaard diagram which represents a rational
homology sphere Y , and let Js be a generic path of almost-complex structures on the g-
fold symmetric product Symg(�) (compatible with a symplectic structure constructed
in [35]). Heegaard Floer homology [31] assigns to the pair (H, Js) a finitely generated,
Q-graded chain complex CF−(H, Js) over the polynomial ring F[U ], graded so that
degU = −2. This chain complex is defined as the free F[U ]-module generated by the
intersection points of the Lagrangian tori Tα = α1 ×· · ·×αg and Tβ = β1 ×· · ·×βg

in Symg(�), and is equipped with the differential

∂x =
∑

y∈Tα∩Tβ

∑

{φ∈π2(x,y)|μ(φ)=1}
#

(M(φ)

R

)
U nz(φ) · y (1)

where #(M(φ)/R) is the (mod2) number of points in the unparametrizedmoduli space
M(φ)/R of Js-holomorphic strips with index μ(φ) = 1 representing the homotopy
class φ ∈ π2(x, y), and nz(φ) is the intersection number of φ with the divisor Vz =
{z} × Symg−1(�). For more details about Heegaard Floer homology see [30–33].

For a knot K ⊂ S3, let�(K )denote the double branched cover of S3 branched along
K . The three-manifold�(K ) comeswith a naturalmap τ : �(K ) → �(K ) (called the
covering involution) which interchanges points with equal image under the branched
covering map π : �(K ) → �(K )/τ � S3. The fixed point set Fix(τ ) = K̃ maps
homeomorphically to K under π . As the notation suggests (since H1(S3\K ; Z) ∼= Z),
the branched cover �(K ) in this case is determined by the branch locus K ⊂ S3.

Pulling back the Heegaard surface, as well as the α- and the β-curves of a doubly-
pointed Heegaard diagram D = (�,α,β, w1, w2) representing K ⊂ S3, we get a
pointed Heegaard diagram

HD =
(
�̃ = π−1(�), α̃ = π−1(α), β̃ = π−1(β), z = π−1(w1)

)

of the double branched cover�(K ). The covering projection π : �(K ) → S3 restricts
to a double branched cover of Riemann surfaces π |�̃ : �̃ → � with branch set
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1432 A. Alfieri et al.

{w1, w2}. The restriction τ |�̃ : �̃ → �̃ of the covering involution τ represents the cov-
ering involution of π |�̃ : �̃ → �, and τ |�̃ : �̃ → �̃ induces a self-diffeomorphism
of the symmetric product

σ : Symg̃(�̃) → Symg̃(�̃), (2)

leaving Tα̃ and Tβ̃ , as well as the divisor Vz = {z} × Symg̃−1(�̃) invariant.

Pick a generic path of almost-complex structures Js ∈ J (Symg̃(�̃)) (satisfying
the usual compatibility conditions with the chosen symplectic form on the symmetric
product) and consider the Heegaard Floer chain complex CF−(HD, Js) associated to
(HD, Js). Recall that there is a direct sum decomposition of CF−(HD, Js) indexed
by spinc structures:

CF−(HD, Js) =
⊕

s∈Spinc(�(K ))

CF−(HD, Js; s) .

The first (singular) homology group of the double branched cover �(K ) can be
presented by θ + θ t , where θ is a Seifert matrix for K . Thus, |H1(�(K ), Z)| =
det(θ + θ ′) = det(K ), which is an odd number. In particular, �(K ) has a unique
spin structure s0. We will focus on CF−(HD, Js; s0), the summand of CF−(HD, Js)

associated to s0.
Note that if the path of almost-complex structures Js ∈ J (Symg̃(�̃)) is chosen

generically, transversality is achieved for both Js and the push-forward σ∗ Js (where
σ is given in Equation (2)). For such a choice of almost-complex structures we have
well-definedHeegaard Floer chain complexesCF−(HD, Js) andCF−(HD, σ∗ Js), and
we can consider the map

η : CF− (HD, Js) → CF− (HD, σ∗ Js) (3)

sending a generator x = x1 + · · · + xg̃ ∈ Tα̃ ∩ Tβ̃ ⊂ Symg̃(�̃) to σ(x) = τ(x1) +
· · · + τ(xg̃).

Lemma 2.1 The map η is an isomorphism of chain complexes. Furthermore, η maps
the summand CF−(HD, Js; s0) of the spin structure s0 into CF−(HD, σ∗ Js; s0).
Proof It is obviously an isomorphism of free F[U ]-modules; indeed, η2 = id since τ

is an involution. To see that η commutes with the differential, notice that u → σ ◦ u
provides a diffeomorphism between the moduli space of Js-holomorphic representa-
tives of a homotopy class φ ∈ π2(x, y) and the moduli space of σ∗ Js-holomorphic
representatives of σ ◦ φ ∈ π2(σ (x), σ (y))).

To show that η preserves the spin structure we argue as follows. According to
[31, Sect. 2.6] the choice of a basepoint z of HD determines a map sz : Tα̃ ∩ Tβ̃ →
Spinc(�(K )) and

CF−(HD, Js; s) =
⊕

sz(x)=s

F[U ] · x .
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It follows from the definition of sz that τ∗(sz(x)) = sz(τ (x)). Thus if sz(x) = s0, we
have that

sz(τ (x)) = τ∗(sz(x)) = τ∗(s0) = τ∗(s0) = τ∗(s0) = sz(τ (x))

proving that sz(τ (x)) is a self-conjugate spinc structure, i.e. spin. The claim now
follows from the fact that �(K ) has a unique spin structure. ��

We define τ# : CF−(HD, Js; s0) → CF−(HD, Js; s0) as the map
η : CF−(HD, Js; s0) → CF−(HD, σ∗ Js; s0) followed by the continuation map

�−
Js,t

: CF−(HD, σ∗ Js; s0) → CF−(HD, Js; s0)

from [31, Sect. 6], induced by a generic two-parameter family Js,t of almost-complex
structures interpolating between Js and τ∗ Js :

τ# = �−
Js,t

◦ η.

Lemma 2.2 τ 2# � id, where � denotes chain homotopy equivalence.

Proof Consider

�−
Js,t

(x) =
∑

y∈Tα̃∩Tβ̃

∑

{φ∈π2(x,y) | μ(φ)=0}
#

(
MJs,t (φ)

)
U nz(φ) · y

where MJs,t (φ) denotes the moduli spaces of Js,t -holomorphic strips.
Given x ∈ Tα̃ ∩ Tβ̃ one computes

η ◦ �−
Js,t

(x) =
∑

y∈Tα̃∩Tβ̃

∑

{φ∈π2(x,y) | μ(φ)=0}
#

(
MJs,t (φ)

)
U nz(φ) · τ(y)

=
∑

y∈Tα̃∩Tβ̃

∑

{φ∈π2(x,τ (y)) | μ(φ)=0}
#

(
MJs,t (φ)

)
U nz(φ) · y

=
∑

y∈Tα̃∩Tβ̃

∑

{φ∈π2(τ (x),y) | μ(φ)=0}
#

(
MJs,t (τ ◦ φ)

)
U nz(σ◦φ) · y

=
∑

y∈Tα̃∩Tβ̃

∑

{φ∈π2(τ (x),y) | μ(φ)=0}
#

(
MJs,t (φ)

)
U nz(φ) · y

= �−
τ∗ Js,t

(τ (x)) ,

hence the identity η ◦ �−
Js,t

= �−
σ∗ Js,t

◦ η follows. Thus,

τ 2# = �−
Js,t

◦ η ◦ �−
Js,t

◦ η = �−
Js,t

◦ �−
σ∗ Js,t

◦ η2 = �−
Js,t

◦ �−
σ∗ Js,t

,
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where the last identity holds because η2 = id (a consequence of the fact that
τ : �(K ) → �(K ) is an involution).

By concatenating Js,t and σ∗ Js,t we obtain a one-parameter family of paths of
almost-complex structures describing a closed loop based at the path Js . Since the
space of almost complex structures (compatible with the fixed symplectic structure) is
contractible, we can find a three-parameter family of almost complex structures Js,t,x

interpolating between the juxtaposition of Js,t and σ∗ Js,t , and Js,t,1 ≡ Js . As pointed
out in [31, Sect. 6], a generic choice of Js,t,x produces smooth moduli spaces

MJs,t,x (φ) =
⋃

c∈[0,1]
MJs,t,c(φ) φ ∈ π2(x, y)

of dimension μ(φ) + 1. These can be used to produce a chain homotopy equivalence

H−
Js,t,x

(x) =
∑

y∈Tα̃∩Tβ̃

∑

{φ∈π2(x,y) | μ(φ)=−1}
#

(
MJs,t,x (φ)

)
U nz(φ) · y

between �−
Js,t

◦ �−
σ∗ Js,t

and id, concluding the argument. ��

In summary, for a knot K ⊂ S3 there is a homotopy involution τ# : CF−(�(K ), s0)
→ CF−(�(K ), s0) associated to the covering involution τ : �(K ) → �(K ). In order
to derive knot invariants from the pair (CF−(H, s0), τ#), we follow ideas from [13]
and form the mapping cone of τ# + id : CF−(�(K ), s0) → CF−(�(K ), s0), written
equivalently as

CFB−(K ) =
(
CF−(�(K ), s0)[−1] ⊗ F[Q]/(Q2), ∂cone = ∂ + Q · (τ# + id)

)
,

where deg Q = −1. Recall that CF−(�(K ), s0) admits an absolute Q-grading, and
τ# preserves this grading, hence CFB−(K ) also admits an absolute Q-grading. Taking
homologywe get the groupHFB−(K ) = H∗(CFB−(K )), which is now amodule over
the ring F[U , Q]/(Q2). We call HFB−(K ) the branched Heegaard Floer homology
of the knot K ⊂ S3. Now we are ready to turn to the proof of the first statement
announced in Sect. 1:

Proof of Theorem 1.1 The proof is similar to the one of [13, Proposition 2.8]. Indepen-
dence from the chosen path of almost-complex structures is standard Floer theory.
For independence from the chosen doubly pointed Heegaard diagram of K , we
argue as follows: A doubly pointed Heegaard diagram D = (�,α,β, w1, w2) rep-
resenting the knot K ⊂ S3 can be connected to any other doubly pointed diagram
D′ = (�′,α′,β ′, w′

1, w
′
2) of K by a sequence of isotopies and handleslides of the

α-curves (or β-curves) supported in the complement of the two basepoints, and by
stabilizations (i.e., forming the connected sum of � with a torus T 2 equipped with
a new pair of curves αg+1 and βg+1 which meet transversally in a single point). A
sequence of these moves lifts to a sequence of pointed Heegaard moves of the pull-
back diagramsHD andHD′ with underlying three-manifold the double branched cover
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�(K ). According to [16] the choice of such a sequence of Heegaard moves yields a
natural chain homotopy equivalence ψ : CF−(HD) → CF−(HD′) which fits into the
diagram

CF−(HD)
τ#

ψ

CF−(HD)

ψ

CF−(HD′)
τ ′
# CF−(HD′)

(4)

that commutes up to chain homotopy. Let � : CF−(HD) → CF−(HD′) be a map
realizing the chain homotopy equivalence. Then the map f : Cone(τ# + id) →
Cone(τ ′

# + id) defined by f = ψ + Q · (ψ + �) is a quasi-isomorphism. Indeed, f is
a filtered map with respect to the two step filtration of the mapping cones, and since it
induces an isomorphism on the associated graded objects, it is a quasi-isomorphism.

��
Notice that themapping cone exact sequence associated to CFB−(K ) = Cone(τ#+

id) reads as an exact triangle

HF−(�(K ), s0) HF−(�(K ), s0)

HFB−(K )

τ∗+id

j∗p∗
(5)

in which j∗ preserves the grading, and p∗ drops it by one. In particular, if τ∗ = id, the
horizontal map in the above triangle is zero, and in that case HFB−(K ) is the sum of
two copies of HF−(�(K ), s0) (with the grading on one copy shifted by one).

A close inspection of the exact triangle above reveals that, as F[U ]-modules, we
have

HFB−(K ) = F[U ](δ) ⊕ F[U ](δ+1) ⊕ (F[U ]−torsion) .

We set δ(K ) = δ and δ(K ) = δ, which (by the above discussion) are knot invariants.
Notice that δ(K ), δ(K ) ∈ Q, δ(K ) ≡ δ(K ) ≡ δ(K ) mod 2, and δ(K ) ≤ δ(K ) ≤
δ(K ), where δ(K ) is the Ozsváth-Szabó correction term of (�(K ), s0), i.e. δ(K ) is
half the Manolescu-Owens invariant of K introduced in [22].

3 Concordance invariants from (CF−(6(K), s0), �#)

Adapting ideas from [11], the chain complex CF−(�(K ), s0), equipped with τ#, pro-
vides concordance invariants of the knot K as follows. First, recall [11, Definition 2.5]
regarding ι-complexes:

Definition 3.1 An ι-complex (C, ι) is a finitely generated, free, Q-graded chain com-
plexC over F[U ] together with a map ι : C → C whereC is supported in degree d +Z
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1436 A. Alfieri et al.

for some d ∈ Q (multiplication by U drops the Q-grading by two), the homology of
the localization U−1H∗(C) = H∗(C ⊗F[U ] F[U , U−1]) is isomorphic to F[U , U−1]
via an isomorphism preserving the relative Z-grading, and ι is a grading preserving,
U -equivariant chain map which is a homotopy involution.

We will consider ι-complexes up to local equivalence (see [11, Definitions 2.6 and
2.7]).

Definition 3.2 A local equivalence f : C → C ′ of two ι-complexes (C, ι) and (C ′, ι′)
is a grading preserving, U -equivariant chain map f : C → C ′ such that

• ι′ ◦ f � f ◦ ι, i.e. the two compositions are chain homotopy equivalent, and
• f induces an isomorphisms floc on the localization U−1H∗(C).

Definition 3.3 Two ι-complexes (C, ι) and (C ′, ι′) are locally equivalent if there exist
local equivalences f : C → C ′ and g : C ′ → C . If in addition we have f ◦ g � id
and g ◦ f � id, then (C, ι) and (C ′, ι′) are chain homotopy equivalent ι-complexes.

Given an ι-complex (C, ι), we can look at the set Endloc(C, ι) of its self-local
equivalences f : C → C . This can be partially ordered by defining f � g if and only
if Ker f ⊂ Ker g. We say that f ∈ Endloc(C) is amaximal self-local equivalence if it
is maximal with respect to this ordering. Since we assumed C to be finitely generated,
maximal self-local equivalences always exist. The following lemma summarises the
results of [11, Section 3].

Lemma 3.4 Let (C, ι) be an ι-complex. Then

(1) if f ∈ Endloc(C, ι) is a maximal self-local equivalence, then ι induces a homotopy
involution ιIm f : Im f → Im f . Furthermore, (Im f , ιIm f ) is locally equivalent
to (C, ι);

(2) if f , h ∈ Endloc(C, ι) are two maximal self-local equivalences, then there is a
chain homotopy equivalence (Im f , ιIm f ) � (Im h, ιIm h) of ι-complexes;

(3) if (C ′, ι′) is an ι-complex locally equivalent to (C, ι) and f ∈ Endloc(C, ι), and
h ∈ Endloc(C ′, ι′) are self-local equivalences then there is a chain homotopy
equivalence (Im f , ιIm f ) � (Im h, ιIm h) of ι-complexes.

��
Since

H∗(CF−(�(K ), s0) ⊗F[U ] F[U , U−1]) = HF∞(�(K ), s0) = F[U , U−1] ,

the pair (CF−(�(K ), s0), τ#) of the Heegaard Floer chain complex of the double
branched cover �(K ) of a knot K ⊂ S3 (equipped with the homotopy involution
τ# induced by the covering involution) is an ι-complex associated to K . Given a
maximal self-local equivalence fmax : CF−(�(K ), s0) → CF−(�(K ), s0) we define
HFB−

conn(K ), the connected Floer homology of the knot K ⊂ S3 as H∗(Im fmax).
As an application of Lemma 3.4, it is then easy to see that the resulting group, up to
isomorphism, is a knot invariant:
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Theorem 3.5 The chain homotopy type of Im fmax is independent of the choice
of the maximal self-local equivalence fmax ∈ Endloc(CF−(�(K ), s0), τ#), hence
HFB−

conn(K ) is a knot invariant. ��
We now turn to the proof of the concordance invariance of the groups HFB−

conn(K ).
The following naturality statement will be crucial in the proof.

Lemma 3.6 (Ozsváth & Szabó [34], Zemke [41]) Let Y and Y ′ be two three-manifolds
equipped with self-diffeomorphisms τ : Y → Y and τ ′ : Y ′ → Y ′. Suppose that
W : Y → Y ′ is a cobordism and that there exists a self-diffeomorphism T : W → W
restricting to τ and τ ′ on the two ends of W . Then

τ ′
# ◦ F−

W ,t = F−
W ,T∗t ◦ τ#

maps CF−(Y , t|Y ) → CF−(Y ′, t|Y ′) for every t ∈ Spinc(W ). ��
Proof of Theorem 1.3 Suppose that K ′ ⊂ S3 is concordant to K , i.e. there exists a
smoothly embedded annulus C ⊂ S3 × [0, 1] with ∂C = C ∩ S3 × [0, 1] = K ×
{1} ∪ K ′ × {0}. By taking the double branched cover �(C) of S3 × [0, 1] branched
along C we get a smooth rational homology cobordism from �(K ′) to �(K ). By
adapting [10, Lemma 2.1] for n = 2, we get that the four-manifold �(C) comes with
a distinguished spin structure t restricting to the canonical spin structure on the two
ends. In addition, this spin structure is invariant under the covering involution of the
double branched cover �(C). Let F−

C : CF−(�(K ), s0) → CF−(�(K ′), s0) denote
the cobordism map induced by (�(C), t).

Since �(C) is a rational homology cobordism, it follows that

F−
C : CF−(�(K ), s0) → CF−(�(K ′), s0)

and

F−
−C : CF−(�(K ′), s0) → CF−(�(K ), s0) ,

are local equivalences. (Recall that according to [34], a rational homology cobordism
induces an isomorphism on HF∞ = U−1HF−.) The fact that F−

C and F−
−C both

homotopy commute with the homotopy Z/2Z-actions follows from Lemma 3.6 and
the fact that (in the notations of that lemma) we have T∗t = t. Then Lemma 3.4
concludes the argument. ��
Proof of Theorem 1.2 Let f ∈ Endloc(CF−(�(K ), s0), τ#) be a maximal self-local
equivalence. As a consequence of Lemma 3.4, the chain homotopy type of themapping
cone of the restriction τ

Im f
# + id : Im f → Im f is a concordance invariant of K . On

the other hand,

H∗
(
Cone(τ Im f

# + id)
)

= F[U ]δ(K ) ⊕ F[U ]δ(K )+1 ⊕ (F[U ]−torsion),

implying the claim. ��
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Since HF−(�(K ), s0) is of rank one (as an F[U ]-module), and fmax is a local
equivalence, it follows that the summand HFB−

conn(K ) ⊂ HF−(�(K ), s0) is also of
rank one. The U -torsion submodule of HFB−

conn(K ) is the reduced connected Floer
homology of K , and it will be denoted by HFB−

red-conn(K ). The following simple
adaptation of [11, Proposition 4.6] allows us to prove triviality of HFB−

red-conn(K ).

Proposition 3.7 HFB−
red-conn(K ) = 0 if and only if δ(K ) = δ(K ) = δ(K ). ��

Given a knot K ⊂ S3 we denote by −K its mirror image.

Lemma 3.8 For a knot K ⊂ S3 we have that δ(K ) = −δ(−K ).

Proof The double branched cover of−K is−�(K ). The argument of [13, Proposition
5.2] provides the claimed identity. ��
Lemma 3.9 If K = K1#K2 for two knots K1 and K2 ⊂ S3, then

δ(K1) + δ(K2) ≤ δ(K ) ≤ δ(K ) ≤ δ(K1) + δ(K2). (6)

Proof Suppose that Di is a doubly pointed Heegaard diagram for Ki ⊂ S3 (i = 1, 2).
Then a doubly pointed Heegaard diagram D can be constructed for K by taking the
connected sums of Di (along w1

2 in D1 and w2
2 in D2). Then a simple argument

shows that the Heegaard diagram HD of �(K ) originating from D can be given as
the connected sum of HD1 and HD2 , implying that CF−(HD) is the tensor product
of CF−(HD1) and CF−(HD2). It follows that the map ηD of Equation (3) for HD is
the tensor product of the similar maps ηD1 and ηD2 forHD1 andHD2 . Since the map
induced on CF− by Heegaard moves on HD1 and HD2 splits as the tensor product of
maps induced on CF−(HD1) and CF

−(HD2) respectively (note that this fact was also
used by Hendricks–Manolescu–Zemke in the proof of [14, Theorem 1.1]), we see that
(τD)# and (τD1)#⊗(τD2)# are chain homotopic maps, fromwhich a simple adaptation
of the proof of [14, Proposition 1.3] implies the result. ��

4 Vanishing results

In some cases HFB−(K ) and HFB−
conn(K ) can be easily determined. As is customary

in Heegaard Floer theory, these invariants do not capture any new information for
quasi-alternating knots. It is a more surprising (and as we will see, very convenient)
feature of HFB−

conn that it is rather trivial for torus knots as well. In this section we
show some vanishing results about the group HFB−

red-conn(K ), while the next section
provides methods to determine our invariants for Montesinos (and more generally for
arborescent) knots. We start with a simple motivating example.

4.1 An example

Consider the Brieskorn sphere �(2, 3, 7); it can be given as (−1)-surgery on the
right-handed trefoil knot T2,3. It is an integral homology sphere with Heegaard Floer
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homology ĤF(�(2, 3, 7)) = F
2
(0) ⊕ F(−1) and HF−(�(2, 3, 7)) = F[U ](−2) ⊕ F(−2)

in its unique spinc (hence spin) structure, see [28, Eq. (25)].
This three-manifold can be presented as the double branched cover of S3 either

along the torus knot T3,7, or along the pretzel knot P(2,−3,−7). The two presenta-
tions provide two involutions on �(2, 3, 7), which potentially provide two different
maps on the Heegaard Floer chain complex. Indeed, let φ1 denote the involution
�(2, 3, 7) admits as double branched cover along T3,7 and let φ2 denote the involu-
tion it gets as double branched cover along P(2,−3,−7). Through direct calculation,
the actions of these maps on Heegaard Floer homology has been identified in [12,
Propositions 6.26 and 6.27].

Theorem 4.1 ( [12]) The map (φ1)∗ induces the identity map on ĤF(�(2, 3, 7)) (and
hence on HF−(�(2, 3, 7)), while the map (φ2)∗ is different from the identity on
ĤF(�(2, 3, 7)). ��

This allows us to compute the invariants HFB− and HFB−
conn for T3,7 and

P(2,−3,−7), showing that

• HFB−(T3,7) = F[U ](−2) ⊕ F[U ](−3) ⊕ F(−2) ⊕ F(−3), or, as an F[U , Q]/(Q2)-
module (and ignoring gradings) HFB−(T3,7) = (F[U , Q]/(Q2)) ⊕ F

2,
• HFB−

conn(T3,7) = F[U ](−2), hence HFB
−
red-conn(T3,7) = 0;

• HFB−(P(2,−3,−7)) = (F[U , Q]/(Q2)) ⊕ F,
• HFB−

conn(P(2,−3,−7)) = F[U ](−2) ⊕ F(−2), hence HFB
−
red-conn(P(2,−3,−7))

= F(−2) �= 0.

These calculations generalize to show that any torus knot has trivial reduced con-
nected Floer homology HFB−

red-conn, while for pretzel knots there is a combinatorial
method to determine this quantity. In particular, the above results will be reproved in
Sect. 4.3 and in Sect. 6.

4.2 Quasi-alternating knots

Proof of Theoem 1.4 If K is a quasi-alternating knot, then the double branched cover
�(K ) is an L-space, and henceHF−(�(K ), s0) = F[U ]; in particular the homology is
only in even degrees. Results of [4] imply that τ# is determined (up to homotopy) by its
action on homology, which (as a grading preservingmap) forF[U ]must be equal to the
identity. Therefore τ# is homotopic to the identity, and so τ# + id = 0, hence the exact
triangle of Eq. (5) determines HFB−(K ) as the sum of two copies of HF−(�(K ), s0)
(one with shifted grading). Furthermore, since the homotopy commuting assumption
of a self-local equivalence in this case is vacuous, we get that HFB−

conn(K ) = F[U ](=
HF−(�(K ), s0)), HFB

−
red-conn(K ) = 0, and the only invariant we get from this picture

is the d-invariant of (�(K ), s0), which is (half of) the Manolescu–Owens invariant of
the knot K from [22]. ��

4.3 Torus knots

Next we turn to the discussion of Theorem 1.5. Thanks to the observation below, the
proof of this result is significantly easier when pq is odd.
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Proposition 4.2 Suppose that pq is odd. Then the covering involution τ on the double
branched cover �(Tp,q) is isotopic to id.

Proof The double branched cover of the torus knot Tp,q is diffeomorphic to the link
of the complex surface singularity given by the equation z2 = x p + yq , which is the
Brieskorn sphere�(2, p, q). The covering involution τ : �(2, p, q) → �(2, p, q) of
Tp,q acts as (z, x, y) → (−z, x, y).

Fix t ∈ S1 and consider the diffeomorphism

(z, x, y) → (t pq z, t2q x, t2p y).

Clearly we get an S1-family of diffeomorphisms, where t = 1 gives id, while t = −1
(under the condition pq odd) gives τ , concluding the proof of the proposition. ��

The case when exactly one of p and q is even, however, requires some more
preparation from lattice homology. (For a more thorough introduction to this subject
see [23,25]).

4.4 Lattice homology

This theory was motivated by computational results of Ozsváth and Szabó (for mani-
folds given by negative definite plumbing trees of at most one ’bad’ vertex) in [29] and
extended byNémethi [23] to any negative definite plumbing trees. The isomorphism of
lattice homology with Heegaard Floer homology was established for almost-rational
graphs by Némethi in [23], which was extended in [26] to graphs with at most two
’bad’ vertices. Below we recall the basic concepts and results of this theory.

A graded root is a pair (R, w) where

• R is a directed, infinite treewith afinite number of leaves and aunique endmodelled
on the infinite stem • • • · · · , subject to the condition that
every vertex has exactly one successor (see Fig. 1 for an example),

• and w : R → Q is a function associating to each vertex x of R a rational number
w(x) ∈ Q such that w(x2) = w(x1) − 2 if (x1, x2) is an edge of R.

A graded root (R, w) specifies a graded F[U ]-module H
−(R, w) as follows: As a

graded vector space, H
−(R, w) is generated over F by the vertices of R, graded so

that gr(x) = w(x) for all x ∈ R. Multiplication byU is defined on the set of generators
by saying that U · x = y if for the vertex x of R the vertex y is its successor.

Manolescu andDai showed in [4] that the lattice homologyH
−(R, wk) correspond-

ing to the graded root (R, wk) can be represented as the homology of a model complex
C(R), which is defined as follows. Let C(R) be generated (as an F[U ]-module), by

• the leaves {vl} of R (with grading w(vl)), called the even generators, and
• by the odd generators defined as follows: for a vertex a of R with valency greater
than 2, let V = {v1, . . . , vn} be the set of all vertices of R satisfyingUv = a. Then
we take the formal sums v1 − v2, . . . , vn−1 − vn of vertices of R as generators of
C(R) at degree w(a) + 1.
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Fig. 1 A graded root

...

The U -action in this module lowers degree by 2. The differential ∂ on C(R) vanishes
on all even generators v, while for an odd generator a the definition is slightly more
complicated. Let v and w be two even generators (i.e. leaves of R) such that a =
U mv − U nw as formal sums of vertices of R, for some nonnegative integers m and n.
Then set ∂(a) = U m+1v − U n+1w. In this case we say that the odd generator a is an
angle between the even generators v and w (For pictorial descriptions of C(R), see
[4]).

A negative definite plumbing tree � (with associated plumbed four-manifold X�)
and a characteristic vector k of H2(X�, Z) determines a graded root (R�,wk) as
follows. Let L be the non-compact 1-dimensional CW -complex having the points of
H2(X�, Z) = Z

|�| as 0-cells and a 1-cell connecting two vertices �, �′ ∈ H2(X�; Z)

if �′ = � + v for some v ∈ �. The characteristic vector k ∈ H2(X�, Z) =
Hom(H2(X�), Z) determines a quadratic function χk : H2(X�; Z) → Z through the
formula

χk(�) = −1

2
(k(�) + �2). (7)

For each n ∈ Z let Sn be the set of connected components of the subcomplex of L
spanned by the vertices satisfying χk ≤ n.We define R� to be the graphwith vertex set⋃

n≥0 Sn , in which two vertices x1 and x2 are connected by a directed edge if and only
if the elements x1 ∈ Sn and x2 ∈ Sn+1 (corresponding to components of the sublevel
sets χk ≤ n and χk ≤ n + 1, respectively) satisfy x1 ⊂ x2. We define wk : R� → Q

for x ∈ Sn by the formula

wk(x) = k2 + |�|
4

− 2n.

A negative definite plumbing graph � is rational if it is the resolution graph of a
rational singularity, i.e. a singularity with geometric genus pg = 0. According to [24,
Theorem 1.3] a negative definite graph is rational if and only if the boundary Y� of the
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associated four-dimensional plumbing X� is a Heegaard Floer L-space. We say that
� is almost-rational if it is negative definite, and there is a vertex v of � on which we
can change the weight in such a way that the result is rational.

Theorem 4.3 ( [29]) Let � be an almost-rational graph, s ∈ Spinc(Y�) a spinc struc-
ture on Y� , and k a characteristic vector of the intersection lattice of X� representing
a spinc structure that restricts to s on the boundary ∂ X� = Y� . Then there is an
isomorphism H

−(R�,wk) � HF−(Y�, s) of graded F[U ]-modules. ��

4.5 Torus knots again

With this preparation in place, we now return to the computation of invariants of torus
knots. We start by describing a plumbing presentation of �(Tp,q), where the covering
involution τ is also visible. In what follows p and q denote two coprime, positive
integers with pq even.

Lemma 4.4 The double branched cover �(Tp,q) of S3 branched along the torus knot
Tp,q can be presented by a plumbing graph �p,q with the following properties:

• the graph �p,q is star-shaped with three legs L f i x , L1, L2 going out from the
central vertex c,

• the coefficients on L1 and L2 are the same,
• the covering involution τ of �(Tp,q) extends smoothly to an involution T of the

plumbed four-manifold X p,q associated to �p,q . More precisely we can take T to
be the map fixing the portion of X p,q corresponding to the arm L f ix , and flipping
the portion corresponding to L1 and L2.

Proof Recall that the double branched cover �(Tp,q) is equal to the link of the hyper-
surface singularity z2 = x p + yq , hence �(Tp,q) can be presented as a plumbed
manifold along the resolution dual graph of the above singularity. This graph can be
easily determined by computing first the embedded resolution of the curve singu-
larity x p + yq = 0, and then using a simple algorithm (described, for example in
[7, Sect. 7.2]) for computing the resolution graph of the singularity. The embedded
resolution of Tp,q gives a linear graph, where the single (−1)-curve is intersected
by the proper transform of the knot, and the multiplicities at the two ends are p and
q, respectively (see [5]). Now [7, Lemma 7.2.8] shows that if say p is even, then
the curves between the leaf with multiplicity p and the (−1)-curve intersecting the
proper transform have all even multiplicities. The algorithm described in [7, Sect. 7.2]
then provides the resolution graph, together with the information about the covering
transformation, satisfying the properties listed in the lemma. ��

We denote by Rp,q the graded root associated to �p,q as in Sect. 4.4. Recall that in
computing a graded root, we have to choose a characteristic vector k ∈ H2(X�; Z),
so that we can work with the induced weight function χk . Here, we choose k to be the
canonical characteristic vector, which is given by k(v) = −2 − v2, where v2 denotes
the self-intersection of the vertex v in the plumbing graph.

The map T : X p,q → X p,q of Lemma 4.4 induces an involution T∗ of the graded
module H

−(Rp,q , χk). Indeed, T induces an involution of the lattice H2(X p,q ; Z) ⊂
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H2(X p,q ; R) that preserves the weights assigned according to χk . The following was
observed in [4, Remark 4.3].

Lemma 4.5 If (R, w) is a graded root, then a grading preserving homomorphism
f : H

−(R, w) → H
−(R, w) lifts, uniquely up to chain homotopy, to a grading pre-

serving chain map f# : C(R) → C(R). In addition, if C is a free chain complex with
H∗(C) � H

−(R, w) then C � C(R). ��
Thus the involution T∗ : H

−(Rp,q , χk) → H
−(Rp,q , χk) lifts to an involution T# :

C∗(Rp,q) → C∗(Rp,q) of the model complex associated to the graded root Rp,q .

Lemma 4.6 (C∗(Rp,q), T#) is chain homotopy equivalent to (CF−(�(Tp,q), s0), τ#).

Proof The canonical class k is clearly Z/2Z-invariant, so the induced spinc structure
[k]|∂ X p,q ∈ Spinc(�(Tp,q)) on the boundary is also Z/2Z-invariant. Recall that the
Z/2Z-action on the set of spinc structures on �(Tp,q) leaves the unique spin structure
s0 invariant, and indeed s0 is the unique fixed point of the action, as shown in [9,
Page 1378] and [18, Remark 3.4]. Hence the lattice homology of �p,q with respect to
k computes HF−(�(Tp,q), s0).

In order to extend the isomorphism to the connected groups, as a consequence of
Lemma 4.5, it is sufficient to prove that τ∗ : HF−(�(Tp,q), s0) → HF−(�(Tp,q), s0)
and T∗ : H

−(Rp,q , χk) → H
−(Rp,q , χk) correspond to each other under the isomor-

phism H
−(Rp,q , χk) � HF−(�(Tp,q), s0).

Unravelling the definition of the isomorphism of Theorem 4.3, as it was done in [4,
Theorem 3.1], the claim boils down to the identity

τ# ◦ F−
X p,q ,ξ = F−

X p,q ,T∗ξ ,

where ξ = k + 2 · PD(�), with � ∈ H2(X p,q , Z) any characteristic vector restricting
to the only spin structure s0 on ∂ X p,q = �(Tp,q). This identity on the other hand is
exactly the content of Lemma 3.6. ��
Lemma 4.7 The reduced connected homology associated to (C∗(Rp,q), T#) vanishes.

Proof First, we claim that there exists a Z/2Z-invariant vertex v ∈ V (Rk) with mini-
mal χk-value. To prove this, we have to find a lattice point x = ∑

xv · v ∈ Z
|�| which

satisfies the following properties:

• x is Z/2Z-invariant, i.e. the coefficients of x on the arm L1 and the coefficients of
x on L2 are the same.

• χk(x) ≤ χk(y) for any other lattice point y = ∑
v∈V (�) yv · v.

Once we have found such a lattice point, the claim about the vertex v can be proved
using the following argument. Recall that vertices of Rk are components of sublevel
sets of χk . The Z/2Z-action on Rk permutes the components of sublevel sets, hence if
we denote the component of the minimally-weighted sublevel set which contains the
invariant lattice point x by C , then C is fixed by the Z/2Z-action.
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To see the existence of x with the above properties, we first choose any lattice point
x0 = ∑

v∈V (�(x0)v · v such that χk(x0) is minimal. Then we can write χk(x0) as

χk(x0) = χk(x f i x
0 ) + Q1(x0) + Q2(x0),

where x f i x
0 = ∑

v∈L f i x ∪c xv · v is the “fixed part” of x0 and Q1, Q2 are functions

defined on Z
|�| using the formula

−2Qi (x) =
∑

v∈Li

(x2v · ev + xvkv) +
∑

edge (v1v2) in Li

xv1xv2 + xvi
c
xc

for i = 1, 2. (Here, we have denoted the vertex in Li which is connected to the central
vertex c as vi

c.)
Assume, without loss of generality, that Q1(x0) ≤ Q2(x0), and consider the lattice

point x ′ defined as

x ′ = x f i x
0 +

∑

v∈V (L1)

xv · (v + σ(v)),

where σ denotes the Z/2Z-action on � coming from the symmetry found in
Lemma 4.4. Then we have

χk(x ′) = χk(x f i x
0 ) + 2Q1(x0) ≤ χk(x0) + Q1(x0) + Q2(x0) = χk(x0).

Since we assumed that χk(x0) is minimal among all lattice points, we get χk(x ′) =
χk(x0), implying x ′ satisfies the desired properties.

Now we claim that our symmetric graded root R = Rk is locally equivalent to
another symmetric graded root R′, where the Z/2Z-action on R′ is trivial. This can be
verified by induction on the number nR of non-Z/2Z-invariant leaves of R. In this part
of the proof, in the notation we will confuse graded roots with their associated model
complexes. For example, when we write that two given symmetric graded roots are
locally equivalent, we will actually mean that their associated model chain complexes
are locally equivalent.

The base case is simple: if nR = 0, then the Z/2Z-action on R is already trivial,
so we are done. In the general case, choose a non-Z/2Z-invariant leaf v of R. Since
R carries a Z/2Z-invariant leaf in its top-degree level, we can always find a Z/2Z-
invariant vertex x of R which lies in the same grading as v does. Denote the angle
between the infinite monotone path starting at v and at x by α. Then we define R1
as the graded root associated to the model complex we get from the model complex
of R by deleting v, σ (v) and the angles α, σ (α). Define a map F from the associated
model complex of R to that of R1 as follows.

• F(v) = F(σ (v)) = x and F(w) = w for any leaf w �= v.
• F(α) = F(σ (α)) = 0 and F(β) = β for any angle β �= α.
• Extend this map F[U ]-linearly to the model chain complex of R.
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FΓΓ KΓ

Fig. 2 The plumbing graph � on the left determines a surface F� (shown in the middle) with boundary K�

(on the right)

This map F is obviouslyF[U ]-linear andZ/2Z-equivariant, so if we only prove that F
is a chainmap, it would automatically be a local equivalence to its image. To check that
F is a chain map, it suffices to check that ∂(F(v)) = F(∂v) and ∂(F(α)) = F(∂α)

by linearity and equivariance. Indeed,

• ∂(F(v)) = ∂(even generator) = 0 and F(∂v) = F(0) = 0,
• ∂(F(α)) = ∂(0) = 0 and F(∂α) = F(v + x) = F(v) + F(x) = x + x = 0.

Consequently F is a local equivalence. This implies that R is locally equivalent to R1,
and the number of non-Z/2Z-invariant leaves of R1 is strictly smaller than the number
of non-Z/2Z-invariant leaves of R. Thus, by induction, we deduce that R is locally
equivalent to a symmetric graded root R′ whose Z/2Z-action is trivial. This gives us
the equality δ(K ) = δ(K ), which by Proposition 3.7 then implies the claim. ��
Proof of Theorem 1.5 When pq is odd, Proposition 4.2 shows that the covering trans-
formation on �(Tp,q) is homotopic to id, implying the vanishing of the reduced
connected homology. For pq even the combination of Lemmas 4.4 and 4.7 implies
that HFB−

red-conn(Tp,q) = 0, concluding the proof. ��

5 Arborescent andmontesinos knots

A plumbing tree � is a tree whose vertices are labelled by integers (see � on Figure 2
below). Above we associated a four-manifold X� (and its three-dimensional boundary
Y�) to a plumbing tree �. A variant of this construction associates a surface F� ⊂ S3

to �: for every vertex we consider an annulus or a Möbius band, given by introducing
half-twists dictated by the label of the vertex, and plumb (i.e. Murasugi sum) these
annuli and Möbius bands together according to �. (See Fig. 2 for a simple example.)
Following [6, Definition 1.3], the boundary of F� specifies a link K� = ∂ F� , called
an arborescent link associated to �.

Remark 5.1 Notice that the link is not determined uniquely by the graph, since at ver-
tices of higher valency we need to determine an order for the edges when considering a
planar presentation, and the link might depend on this choice. In addition, the location
of the plumbing region relative to the twists also might influence the resulting link.
With slightly more information (see Gabai’s introductory work in [6]) attached to the
tree this procedure can be made unique, though.
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The resulting K� is called a Montesinos link if the tree � is star-shaped; it is a
pretzel link if � is star-shaped with all legs of length one, and is two-bridge if the
graph � is linear.

The construction of the four-manifold and the knot associated to � is connected
by the fact that (by repeated application of Montesinos’ trick) the double branched
cover �(K�) of an arborescent link K� is diffeomorphic to the boundary Y� of the
four-dimensional plumbing X� associated to �. Indeed, X� can be presented as the
double branched cover of D4 branched along the surface we get by pushing the interior
of the surface F� of the above pluming into D4.

If k is a characteristic vector which restricts to a self-conjugate spinc structure s0 ∈
Spinc(Y�), then the graded root (R�,wk) comes with an involution J : H

−(R, w) →
H

−(R, w), induced by the map

� → −� − 1

2
P D(k), (8)

for � ∈ H2(X�, Z), cf. [4, Sect. 2.3]. We denote its lift to C(R) by J# : C(R�) →
C(R�).

Theorem 5.2 Let K = K� be an arborescent knot associated to an almost-rational
plumbing tree�. Then there exists a chain homotopy equivalence (CF−(�(K ), s0), τ#)
� (C(R�), J#) of ι-complexes.

Proof Let k0 ∈ H2(X�, Z) be a characteristic vector of the intersection lattice of X�

which restricts to s0 on the boundary. Theorem 4.3 provides an isomorphism

H∗(CF−(�(K ), s0)) = HF−(�(K ), s0) � H
−(R�,wk0) = H∗(C(R�)) .

AsaconsequenceofLemma4.5, the proof that the push-forwardof J : H
−(R�,wk0) →

H
−(R�,wk) through this isomorphism agrees with τ∗ : HF−(�(K ), s0) →

HF−(�(K ), s0) would complete the argument.
Denote by W� the cobordism S3 → Y� obtained from X� by removing the interior

of a small ball D4 ⊂ X� . Proceeding as in the proof of Lemma 4.6, the claim is
reduced to the identity

τ# ◦ F−
W�,k = F−

W�,−k ,

where k is any characteristic vector which restricts to s0 on the boundary. According to
[38] the covering involution τ : Y� → Y� extends over X� as the complex conjugation
T : X� → X� . Since T acts on spinc structures as spinc conjugation, Lemma 3.6
implies the claimed identity. ��
Corollary 5.3 Let K = K� be an arborescent knot associated to an almost-rational
plumbing tree �. Then δ(K ) = δ(K ) and δ(K ) = −σ(K )/4, where σ(K ) denotes
the signature of K .

Proof As consequence of [4, Theorem 3.1] and Theorem 5.2 above we have an iden-
tification HFB−(K ) � H∗(Cone(1 + J#)) � H F I −(�(K ), s0). Thus δ(K ) =
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d(�(K ), s0) and δ(K ) = d(�(K ), s0). Hence [4, Theorem 1.2] implies that the
invariant δ(K ) agrees with the Ozsváth-Szabó correction term of the double branched
cover d(�(K ), s0) = δ(K ). Furthermore, δ(K ) = −2 · μ(�, s0) where μ(�, s0)
denotes the Neumann-Siebenmannμ-invariant of the plumbing � in the spin structure
s0. On the other hand, according to [37, Theorem 5] we have σ(K ) = 8 · μ(�, s0)
thus δ(K ) = −σ(K )/4. ��

The connected group associated to the ι-complex (C(R), J#) of a graded root (R, w)

can be easily computed. Given a vertex v ∈ R denote by C(v) the set of all leaves of
R that are connected to v by an oriented path. We construct a subset S of the leaves
of R by the following algorithm. Let v0 denote the J -invariant vertex v0 of R with
highest weight. If C(v0) consists of only one vertex, we add it to S; otherwise, we can
find a pair {v, Jv} in C(v0) and in this case we add both v and Jv to S. Next consider
the path γ connecting v0 to infinity. Take v1 ∈ R to be the first vertex along γ for
which C(v0) � C(v1). If C(v1) contains a pair of leaves {v, Jv} with weight larger
than the weight of any leaf in S then we choose one such pair with largest possible
weight and we add it to S. By keep iterating this procedure until γ merges with the
long stem we end up with a set S of distiguished leaves. We denote by M the smallest
graded root M ⊂ R containing S. According to [11, Proposition 7.5] we have that
HFB−

conn(K ) = H
−(M, w|M ). The resulting M is the monotone subroot of (R, w).

6 Some independence results

The following observation is a simple corollary of the concluding statements of Sect. 3.

Corollary 6.1 Suppose that F = {Ki | i ∈ I } is a family of knots with
HFB−

red-conn(K ) = 0 for all K ∈ F . If 〈F〉 denotes the subgroup of C generated
the equivalence classes of Ki ∈ F , then HFB−

red-conn(K ) = 0 for all K ∈ 〈F〉.
Proof Lemmas 3.8 and 3.9 , together with the equivalence provided by Proposition 3.7
imply the result. ��

Recall the definition of the subgroups QA and T (generated by quasi-alternating
and torus knots, respectively) of the smooth concordance group C from Sect. 1.

Proposition 6.2 For [K ] ∈ QA + T we have that HFB−
red-conn(K ) = 0.

Proof In Sect. 4 we showed that HFB−
red-conn(K ) = 0 for K a quasi-alternating knot

or a torus knot. Application of Corollary 6.1 concludes the argument. ��
Based on this proposition, nonvanishing results for HFB−

red-conn then immediately
imply nonvanishing in the quotient group C/(QA + T ).

We now prove Theorem 1.6.
Let C = (C0, ∂0, ι0) denote the ι-complex where C0 (as an F[U ]-module) is gen-

erated by three generators a, b, c, the boundary map ∂0 is given by ∂0a = ∂0b = 0
and ∂0c = Ua + Ub and ι0(a) = b, ι0(b) = a, ι0(c) = c. Define the grading by
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Fig. 3 On the left we give the
plumbing graph �q giving the
pretzel knot P(2, −3,−q). On
the right the monotone subroot
of the associated graded root is
shown

...

(b)(a)

−2

−3

−q

−1

Γq

v1

v2

v3

c

gr(a) = gr(b) = 0 and gr(c) = −1, and denote by C[r ] the same chain complex with
grading shifted by r ∈ Q. (The same chain complex has been denoted by C1 in [11,
Subsection 7.1].)

Lemma 6.3 Let q ≥ 7 be any odd integer. Then (CF−(�(P(2,−3,−q)), s0), τ#) is
locally equivalent to C[r ] for some r. In particular, HFB−

red-conn(P(2,−3,−q)) = F.

Proof The pretzel knot −P(−2, 3, q) = P(2,−3,−q) with q ≥ 7 is associated to
the negative definite star-shaped (hence almost-rational) plumbing tree �q shown in
Figure 3(a). Let us label the vertices of �q by c, v1, v2, v3 as shown by Figure 3(a).
(Notice that by successively blowing down c, v1 and v2 we can see that the three-
manifold Y�q defined by the plumbing is the result of (−q + 6)-surgery on the right-
handed trefoil knot).

In determining the connected Floer homology of these pretzel knots, we will
appeal to the computational scheme through lattice homology (as outlined in Sect. 5
for appropriate arborescent knots). Recall that the canonical characteristic vector
Kq ∈ H2(X�q ; Z) is the class satisfying Kq(v) = −2 − v2 for each vertex (where
a vertex v is viewed as an element of H2(X�q ; Z) and v2 denotes the weight on
the vertex v, which is equal to the self-intersection of the corresponding homology
class). In particular, Kq(c) = −1, Kq(v1) = 0, Kq(v2) = 1 and Kq(v3) = q − 2.
Every characteristic cohomology element determines a spinc structure on the bound-
ary three-manifold; by following the blow-down sequence described above with Kq

we see that it induces the unique spin structure s0 on the boundary. For an element
x = αc +βv1 + γ v2 + δv3 ∈ H2(X�q ; Z) the quadratic function χKq of Equation (7)
is given by

2χKq (αc + βv1 + γ v2 + δv3) = α2 + 2β2 + 3γ 2 + qδ2 − 2α(β + γ + δ) + α − γ − (q − 2)δ.

It is not hard to see that χKq (x) ≥ 0 for any x ∈ H2(X�q ; Z). In order to determine
the monotone subroot Mq of the graded root (RKq , wKq ) it will be sufficient to under-
stand S0 and S1 (in the terminology of Subsection 4.4, i.e., Sn = {χKq ≤ n}). For
q = 7 this calculation has been performed in [29, Subsection 3.2], where it has been
shown that {χK7 ≤ 0} has two components, while {χK7 ≤ 1} has a single component.
This shows that M7 is of the form given by Fig. 3b.
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Fig. 4 The plumbing graph �q

−2 −2 −2 −2 −2 −2 −2

−(2q + 1)

4q + 1 4q + 3

Notice, however, that for x = αc+βv1+γ v2+δv3 we have 2χKq (x) = 2χK7(x)+
(q − 7)(δ2 − δ). Since χKq (x) ≥ 0 for all x , we have that S0 and S1 have the same
cardinality for all q ≥ 7, hence the monotone subroot will be the same for all q.

The explicit description of the two vectors representing S0 (as given in [29]) and
the description of the involution in Eq. (8) now identifies the action of τ#, verifying
the claim about the ι-complex. Then the definition of HFB−

conn(P(2,−3,−q)) shows
that in this case it is isomorphic to HF−(�(P(2,−3,−q)), s0), and hence that the
reduced group HFB−

red-conn(P(2,−3,−q)) has dimension one, completing the proof.
��

Remark 6.4 Indeed, ĤF(�(P(2,−3,−q))) can be easily computed using the surgery
exact triangle (by viewing this three-manifold as surgery along the trefoil knot). This
computation shows that dim ĤF(�(P(2,−3,−q)), s0) = 3 (and all other spinc struc-
tures have one-dimensional invariant), showing that the local equivalence claimed in
Lemma 6.3 is, indeed, a chain homotopy equivalence. Also, the gradings can be easily
determined by computing K 2

q . The detailed calculation in the proof of Lemma 6.3 is
crucial in the identification of the involution τ#.

Proof of Theorem 1.6 Suppose that K is the connected sum of pretzel knots P(2,−3,
−q) for some q’s (all with q ≥ 7). By [11, Proposition 7.1] the tensor product of these
ι-complexes have nonvanishing connected homology, hence the combination of this
nonvanishing result with Proposition 6.2 implies that [K ] ∈ C/(QA+T ) is nontrivial.
In the statement of the theoremwe considered mirrors of the knots encountered above;
since HFB−

red-conn(−K ) andHFB−
red-conn(K ), as well as [K ] and [−K ] in C/(QA+T )

are trivial at the same time, the proof is complete. ��
Next we verify Theorem 1.7 from Sect. 1. For a knot K ⊂ S3 define ω(K ) =

min{n ≥ 0 | U n · HFB−
red-conn(K ) = 0}.

Proof of Theorem 1.7 The double branched cover of the pretzel knot Kq = P(−2q −
1, 4q + 1, 4q + 3) can be expressed as boundary of the negative definite plumbing
along the tree �q of Fig. 4. The associated graded root Rq was partially computed in
[15]. According to [15] the top part of Rq , describing the truncated Heegaard Floer
group HF−

≥δ(Kq )−2q(�(Kq)), looks like the oriented graph of Fig. 5a.
The monotone subroot Mq ⊂ Rq of a graded root of this form can be determined

as it is explained at the end of Sect. 5, providing the graded roots of Fig. 5b (see also
[4, Theorem 6.1 and Fig. 4]). This calculation implies

HFB−
conn(Kq) = F[U ] ⊕ F[U ]/(U q).
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Fig. 5 Schematic picture of the
graded root associated to �q in
(a) and its monotone subroot in
(b). Notice that there is no
element of top degree fixed by
the reflection

... ...

(a) (b)

q

The application of [11, Proposition 7.1] calculates HFB−
conn(K ) for a knot K that is a

positive linear combination of the pretzel knots Kq :

HFB−
conn(Kq1# · · · #Kqs ) = F[U ] ⊕

s⊕

i=1

F[U ]/U qi .

In particular, for a knot of this form we have that

ω(Kq1# · · · #Kqs ) = max
i

qi . (9)

Suppose that there is a non-trivial linear relation among the classes represented by
the pretzel knots Kq in C/(T + QA). By grouping the summands of such a linear
relation according to their sign we end up with an identity in the knot concordance
group C of the form

Ka1# . . . #Kas = Kb1# · · · #Kbl#P

for some P ∈ T + QA. Without loss of generality we can assume that the relation
is reduced, i.e. that ai �= b j for each i and j . On the other hand, as a consequence of
Equation (9) we have that

max
i

ai = ω(Ka1# · · · #Kas ) = ω(Kb1# . . . #Kbl#P) = ω(Kb1# · · · #Kbl ) = max
j

b j ,

a contradiction. This shows that the subgroup 〈[Kq ] | q odd and q ≥ 7〉 ⊂ C/(T +
QA) generated by the above pretzel knots is isomorphic to Z

∞ ⊂ C/(T + QA).
In [3] Dai, Hom, Stoffregen, and Truong showed that the Brieskorn spheres�(2q +

1, 4q +1, 4q +3) (q ≥ 1) generate aZ
∞ summand of the homology cobordism group

�3
Z
. This was done by constructing a family {φn} of homomorphisms from the group

of almost ι-complexes to Z, and then proving that the given Brieskorn spheres are
mapped to 1 for exactly one of the homomorphisms and mapped to 0 for all the others.
The same argument applies in our case, and thus the Z

∞ subgroup of C/(T + QA),
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generated by the pretzel knots Kq = P(−2q − 1, 4q + 1, 4q + 3) (q ≥ 1), is indeed
a direct summand, concluding the proof. ��
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