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Abstract

In this short note we consider the oriented vertex Turán problem in the hypercube:

for a fixed oriented graph
−→
F , determine the maximum size exv(

−→
F ,

−→
Qn) of a subset U of

the vertices of the oriented hypercube
−→
Qn such that the induced subgraph

−→
Qn[U ] does not

contain any copy of
−→
F . We obtain the exact value of exv(

−→
Pk,

−→
Qn) for the directed path

−→
Pk, the exact value of exv(

−→
V2,

−→
Qn) for the directed cherry

−→
V2 and the asymptotic value of

exv(
−→
T ,

−→
Qn) for any directed tree

−→
T .

1 Introduction

One of the most studied problems in extremal combinatorics is the so-called Turán problem
originated in the work of Turán [14] (for a recent survey see [9]). A basic problem of this sort
asks for the maximum possible number of edges ex(F,G) in a subgraph G′ of a given graph G
that does not contain F as a subgraph.

Much less attention is paid to the vertex version of this problem. This problem can be
formalized as follows: what is the the maximum size exv(F,G), of a subset U of vertices of a
given graph G such that G[U ] does not contain F as a subgraph.

We will consider Turán type problems for the n-dimensional hypercube Qn, the graph with
vertex set Vn = {0, 1}n corresponding to subsets of an n-element set and edges between vertices
that differ in exactly one coordinate.
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Edge-Turán problems in the hypercube have attracted a lot of attention. This research was
initiated by Erdős [6], who conjectured ex(C4, Qn) = (1 + o(1))n2n−1, i.e., any subgraph of Qn

having significantly more than half of the edges of Qn must contain a copy of C4. This problem
is still unsolved. Conlon [5] showed, extending earlier results due to Chung [3] and Füredi and
Özkahya [7, 8], that ex(C2k, Qn) = o(n2n) for k 6= 2, 3, 5.

Concerning the vertex Turán problem in the hypercube Qn, it is obvious that we can take half
of the vertices of Qn such that they induce no edges. Kostochka [13] and later, independently,
Johnson and Entringer [12] showed exv(C4, Qn) = maxj{

∑

i 6≡j mod 3

(

n
i

)

}. Johnson and Talbot
[11] proved a local stability version of this result. Chung, Füredi, Graham, Seymour [4] proved
that if U contains more than 2n−1 vertices, then there is a vertex of degree at least 1

2
log n −

1
2
log log n+ 1

2
in Qn[U ]. This shows that for any star Sk with k fixed, we have exv(Sk, Qn) = 2n−1

for large enough n. Alon, Krech, and Szabó [1] investigated the function exv(Qd, Qn).

Let us note that there is a simple connection between the edge and the vertex Turán problems
in the hypercube.

Proposition 1.1. exv(F,Qn) ≤ 2n−1 + ex(F,Qn)
n

.

Proof. If a subgraph G of Qn contains more than 2n−1 + ex(F,Qn)
n

vertices, then it contains more

than ex(F,Qn)
n

edges in every direction, thus more than ex(F,Qn) edges altogether, hence G
contains a copy of F .

This observation implies that for every tree T , we have exv(T,Qn) =
(

1
2
+O

(

1
n

))

2n, using the
well-known result from Turán theory which states ex(n, T ) = O(n) (and so ex(F,Qn) = O(2n)).
Also, together with Conlon’s result on the cycles mentioned earlier, we obtain exv(Ck, Qn) =
(

1
2
+ o(1)

)

2n for k 6= 2, 3, 5.

In this paper, we consider an oriented version of this problem. There is a natural orientation
of the edges of the hypercube. An edge uv means that u and v differ in only one coordinate;
if u contains 1 and v contains 0 in this coordinate, then we direct the edge from v to u. We

denote the hypercube Qn with this orientation by
−→
Qn. With this orientation it is natural to

forbid oriented subgraphs. We will denote by exv(
−→
F ,

−→
Qn) the maximum number of vertices that

an
−→
F -free subgraph of

−→
Qn can have. As vertices of the hypercube correspond to sets, instead of

working with subsets of the vertices of
−→
Qn we will consider families G ⊆ 2[n] of sets. We will say

that G ⊆ 2[n] is
−→
F -free if for the corresponding subset U of vertices of

−→
Qn the induced subgraph

−→
Qn[U ] is

−→
F -free.

For example, there is only one orientation of C4 that embeds into the hypercube, we will

denote it by
−→
C4. Hence we have exv(

−→
C4,

−→
Qn) = exv(C4, Qn), which is known exactly, due to

the above mentioned result of Kostochka and Johnson and Entringer. However, there are three

different orientations of P3, according to how many edges go towards the middle vertex:
−→
V2
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denotes the orientation with a source (i.e.,
−→
V2 is the path abc such that the edge ab is directed

from b to a and the edge bc is directed from b to c). The directed path
−→
Pk is a path on k vertices

v1, . . . , vk with edges going from vi to vi+1 for every i < k. The height of a directed graph is the
length of a longest directed path in it.

If we consider the hypercube as the Boolean poset, then each edge of the hypercube goes

between a set A and a set A∪ {x} for some x 6∈ A. Then in
−→
Qn the corresponding directed edge

goes from A to A∪{x}. A directed acyclic graph
−→
F can be considered as a poset F ; we will say

that F is the poset of
−→
F . The poset corresponding to a directed tree is said to be a tree poset.

Forbidding copies of a poset in a family of sets in this order-preserving sense has an extensive
literature (see [10] for a survey on the theory of forbidden subposets). We say P ⊂ 2[n] is a copy
of P if there exists a bijection f : P → P such that p < p′ implies f(p) ⊂ f(p′). We say that
F ⊂ 2[n] is P-free, if there is no P ⊂ F that is a copy of P . Observe that if P is the poset of the

directed acyclic graph
−→
F , then any P -free family is

−→
F -free.

The oriented version of the vertex Turán problem in the hypercube corresponds to the fol-
lowing variant of the forbidden subposet problem. We say P ⊂ 2[n] is a cover-preserving copy of
P if there exists a bijection f : P → P such that if p covers p′ in P , then f(p) covers f(p′) in the
Boolean poset. Thus it is not surprising that we can use techniques and results from the theory
of forbidden subposet problems in our setting.

In this paper, we consider Vertex Turán problems for directed trees. Our main result de-

termines the asymptotic value of the vertex Turán number exv(
−→
T ,

−→
Qn) for any directed tree

−→
T .

Theorem 1.2. For any directed tree
−→
T of height h, we have

exv(
−→
T ,

−→
Qn) =

(

h− 1

h
+ o(1)

)

2n.

Below we obtain the exact value of the vertex Turán number for some special directed trees

(namely
−→
V2 and

−→
Pk).

Theorem 1.3.

exv(
−→
V2,

−→
Qn) = 2n−1 + 1.

It would be natural to consider the following generalization of
−→
V2: let

−→
Vr denote the star with

r leaves all edges oriented towards the leaves. Note that if one takes the elements of the r highest
levels of the Boolean poset and every other level below them, then the corresponding family in
−→
Qn will be

−→
Vr-free. Computing the size of this family we have exv(

−→
Vr ,

−→
Qn) = 2n−1+Ω(nr−2). We

conjecture that exv(
−→
Vr ,

−→
Qn) = 2n−1 +Θ(nr−2) holds for every r ≥ 3.

Theorem 1.4. For any pair k, n of integers with k ≤ n we have

exv(
−→
Pk,

−→
Qn) = max

j∈[k]

{

∑

i 6≡j mod k

(

n

i

)

}

.
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2 Proofs

2.1 Proof of Theorem 1.2

We follow the lines of a proof of Bukh [2] that shows that if T is a tree poset with h(T ) = k
and F ⊆ 2[n] is a T -free family of sets, then |F| ≤ (k− 1 +O( 1

n
))
(

n
⌊n/2⌋

)

holds. The proof of this
theorem consists of several lemmas. Some of them we will state and use in their original form,
some others we will state and prove in a slightly altered way so that we can apply them in our
setting. First we need several definitions. For a family F ⊆ 2[n], its Lubell-function

λn(F) =
∑

F∈F

1
(

n
|F |

) =
1

n!

∑

F∈F

|F |!(n− |F |)!

is the average number of sets in F that a maximal chain C in 2[n] contains. A poset P is called
saturated if all its maximal chains have length h(P ). For any poset T its opposite poset T ′

consists of the same elements as T with t ≤T ′ t′ if and only if t′ ≤T t. For a family F ⊆ 2[n] of
sets, its complement family is F = {[n] \ F : F ∈ F}. Clearly, F contains a copy of P if and
only if F contains a copy of P ′ and λn(F) = λn(F).

Lemma 2.1 (Bukh [2]). Every tree poset T is an induced subposet of a saturated tree poset T ′

with h(T ) = h(T ′).

An interval in a poset P is a set of the form [x, y] = {z ∈ P : x ≤ z ≤ y}.

Lemma 2.2 (Bukh [2]). If T is a saturated tree poset that is not a chain, then there exists t ∈ T
that is a leaf in H(T ) and there exists an interval I ⊂ T containing t such that |I| < h(T ) holds,
and T \ I is a saturated tree poset with h(T ) = h(T \ I).

From now on we fix a tree poset T and we denote its height by k. We say that a chain in 2[n]

is fat if it contains k members of F .

Lemma 2.3. If F ⊆
⋃i+k−1

j=i

(

[n]
j

)

is a family with λ(F) ≥ (k − 1 + ε), then there are at least

(ε/k)n! fat chains.

Proof. Let Ci denote the number of maximal chains that contain exactly i sets from F . As
F ⊆

⋃i+k−1
j=i

(

[n]
j

)

, we have Ci = 0 for all i > k. Then counting the number of pairs (F, C) with C
being a maximal chain and F ∈ F ∩ C, in two different ways, we obtain

n
∑

i=0

iCi = λ(F)n! ≥ (k − 1 + ε)n!.

This, and
∑

iCi = n! imply

kCk =
∑

i≥k

iCi ≥
n

∑

i=0

iCi − (k − 1)
∑

i<k

Ci ≥ εn!.
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Therefore the number of fat chains in F is Ck ≥ (ε/k)n!.

Lemma 2.4. Let T be a saturated tree poset of height k. Suppose F ⊆ ∪i+k−1
j=i

(

[n]
j

)

is a family

with n/4 ≤ i ≤ 3n/4. Moreover, suppose L is a family of fat chains with |L| >
4(|T |+1

2 )
n

n!. Then
there is a copy of T in F that contains only sets that are contained in some fat chain in L.

Proof. We proceed by induction on |T |. If T is a chain, then the k sets in any element of L form
a copy of T . In particular, it gives the base case of the induction. So suppose T is not a chain.
Then applying Lemma 2.2, there exists a leaf t in T and interval I ⊆ T containing t such that
h(T \ I) = k and T \ I is a saturated tree poset. Our aim is to use induction to obtain a copy
of T \ I in F that can be extended to a copy of T . Finding a copy of T \ I is immediate, but
in order to be able to extend it, we need a copy satisfying some additional properties, described
later.

By passing to the opposite poset T ′ of T and considering F , we may assume that t is a
minimal element of T . There exists a maximal chain C in T that contains I, and we have
|C| = k as T is saturated. Then s := |C \ I| = k − |I| ≥ 1.

We need several definitions. Let F1 ⊃ F2 ⊃ · · · ⊃ Fs be a chain with |Fj| = i + k − j for
j = 1, . . . , s. Then this chain is a bottleneck if there exists a family S ⊂ F with |S| < |T | such that
for every fat chain F1 ⊃ F2 ⊃ · · · ⊃ Fs ⊃ Fs+1 ⊃ · · · ⊃ Fk in L we have S ∩ {Fs+1, . . . , Fk} 6= ∅.
Such an S is a witness to the fact that F1, . . . , Fs is a bottleneck (and we assume all sets
of the witness are contained in Fs). We say that a fat chain is bad if its top s sets form a
bottleneck. A fat chain is good if it is not bad. Observe that if there is a copy FT\I of T \ I
consisting of sets of good fat chains, then we can extend FT\I to a copy of T . Indeed, as the
sets F ′

1, . . . , F
′
s representing C \ I in FT\I do not form a bottleneck and |FT\I | < |T |, there must

be a good fat chain F ′
1 ⊃ · · · ⊃ F ′

s ⊃ F ′
s+1 ⊃ · · · ⊃ F ′

k such that F ′
s+1, . . . , F

′
k /∈ FT\I , therefore

FT\I ∪ {F ′
s+1, . . . , F

′
k} is a copy of T . Therefore all we need to prove is that there are enough

good fat chains to obtain a copy of T \ I by induction.
Let us bound the number of bad fat chains. If |C ∩ F| < s, then C cannot be bad. We

partition maximal chains in 2[n] according to their sth largest set Fs from F . As the top s sets
must form a bottleneck, there is a witness S to this fact. This means that if C is bad, then C
must meet S whose elements are all contained in Fs. But as |S| < |T | and all sets of 2Fs ∩ F
have size between n/4 and 3n/4, the proportion of those chains that do meet S is at most 4|T |/n
(any proper non-empty subset of FS is contained in at most 1/|Fs| proportion of chains going
through Fs). This holds independently of the choice of Fs, thus the number of bad fat chains is

at most 4|T |
n
n!. So the number of good fat chains is at least

|L| −
4|T |

n
n! ≥

4(
(

|T |+1
2

)

− |T |)

n
n! =

4
(

|T |
2

)

n
n!.

As |T \ I| < |T |, the induction hypothesis implies the existence of a copy of T \ I among the sets
contained in good fat chains, as required.
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The next lemma essentially states that if a a T -free family is contained in the union of k
consecutive levels, then its size is asymptotically at most the cardinality of the k − 1 largest
levels. Formally, let b(i) = bk,n(i) = max{

(

n
j

)

: i ≤ j ≤ i + k − 1}. So if i ≤ n/2 − k + 1, then

b(i) =
(

n
i+k−1

)

, if i ≥ n/2, then b(i) =
(

n
i

)

, while if n/2− k + 1 < i < n/2, then b(i) =
(

n
⌊n/2⌋

)

.

Lemma 2.5. If T is a tree poset of height k, then there exists n0 such that for n > n0, n/4 ≤

i ≤ 3n/4− k any F ⊂
⋃i+k−1

j=i

(

[n]
j

)

of size at least
(

k − 1 + k4|T |2

n

)

b(i) contains a copy of T .

Proof. By Lemma 2.1 we may suppose that T is a saturated tree poset. Assume F ⊆
⋃i+k−1

j=i

(

[n]
j

)

is a T -free family that contains at least
(

k − 1 + k4|T |2

n

)

b(i) sets. Then F ⊆
⋃i+k−1

j=i

(

[n]
j

)

implies

that λn(F) ≥ k − 1 + k4|T |2

n
.

Let ε = 4k|T |2/n. Then we can apply Lemma 2.3 to find 4|T |2n!/n fat chains. Then we can
apply Lemma 2.4 with k = h(T ) to obtain a copy of T in F , contradicting the T -free property
of F .

With Lemma 2.5 in hand, we can now prove Theorem 1.2. Let us consider a
−→
T -free family F .

Let T be the poset of
−→
T and let T ∗ be the saturated poset containing T with h(T ) = h(T ∗) = k -

guaranteed by Lemma 2.1. For any integer 0 ≤ i ≤ n−k+1, let Fi = {F ∈ F : i ≤ |F | ≤ i+k−1}.

Observe that the
−→
T -free property of F implies that Fi is T ∗-free for every i. Note that every

F ∈ F belongs to exactly k families Fi unless |F | < k − 1 or |F | > n− k + 1. It is well-known

that
∣

∣

∣

(

[n]
≤n/4

)

∪
(

[n]
≥3n/4

)

∣

∣

∣
= o

(

1
n
2n
)

, therefore using Lemma 2.5 we obtain

k|F|−o

(

1

n
2n
)

≤

3n/4
∑

i=n/4

|Fi| ≤

(

k − 1 +
k4|T |2

n

) 3n/4
∑

i=n/4

b(i) ≤

(

k − 1 +
k4|T |2

n

)(

2n + k

(

n

⌊n/2⌋

))

.

After rearranging, we get |F| ≤
(

k−1
k

+ o(1)
)

2n.

2.2 Proof of Theorem 1.3

To prove the lower bound, we show a
−→
V2-free family in

−→
Qn of size 2n−1+1. Simply take every sec-

ond level in the hypercube starting from the (n−1)st level and also take the vertex corresponding
to [n].

We prove the upper bound by induction on n (it is easy to see the base case n = 2). We will
need the following simple claim.

Claim 2.6. Let F ⊂ 2[n] is a maximal
−→
V2-free family, then F contains the set [n] and at least

one set of size n− 1.

6



Proof of Claim. First note that [n] can be added to any
−→
V2-free family as there is only one subset

of [n] of size n. Also, if F does not contain any set of size n − 1, then one such set S can be

added to F . Indeed, if we add S, no copy of
−→
V2 having sets of size n − 1 and n will be created

because [n] is the only set of size n in F ∪ {S}. Furthermore, no copy of
−→
V2 having sets of size

n− 2 and n− 1 will be created as S is the only set of size n− 1 in F ∪ {S}.

Now we are ready to prove Theorem 1.3. Let F ⊂ 2[n] be a
−→
V2-free family. For some x ∈ [n],

define
F−

x = {F | F ∈ F , x 6∈ F} and F+
x = {F\{x} | F ∈ F , x ∈ F}.

Then F−
x ,F

+
x ⊂ 2[n]\{x} and they are also

−→
V2-free. By induction, we have

|F| = |F−
x |+ |F+

x | ≤ 2n−2 + 1 + 2n−2 + 1 = 2n−1 + 2.

Assume that |F| = 2n−1 + 2. Then |F−
x | = |F+

x | = 2n−2 + 1 must hold for all x ∈ [n]. By
Claim 2.6, |F−

x | = 2n−2 +1 implies that [n]\{x} and at least one set of size n− 2 are in F . This
holds for all x ∈ [n], so all sets of size n− 1, and at least one set of size n− 2 are in F . However,

these would form a forbidden
−→
V2 in F , contradicting our original assumption on F . This proves

that |F| ≤ 2n−1 + 1.

2.3 Proof of Theorem 1.4

Let U be a set of vertices in Qn such that the subgraph of Qn induced by U (i.e., Qn[U ]) is
−→
Pk-free. Let F ⊂ 2[n] be a family of subsets corresponding to U .

First, we will introduce a weight function. For every F ∈ F , let w(F ) =
(

n
|F |

)

. For a maximal

chain C, let w(C) =
∑

F∈C∩F w(F ) denote the weight of C. Let Cn denote the set of all maximal
chains in [n]. Then

1

n!

∑

C∈Cn

w(C) =
1

n!

∑

C∈Cn

∑

F∈C∩F

w(F ) =
1

n!

∑

F∈F

|F |!(n− |F |)!w(F ) = |F|.

This means that the average of the weights of the full chains equals the size of F . It means
that if we find an upper bound that is valid for the weight of any chain, then this will be an
upper bound on |F| too.

Our assumption that there is no
−→
Pk means that there are no k neighboring members of F in

a chain. For a given chain C, let a1, a2, . . . at denote the sizes of those elements of C that are not
in F . Then 0 ≤ a1 < a2 < · · · < at ≤ n, a1 ≤ k − 1, n − k + 1 ≤ at and ai+1 − ai ≤ k for all
i = 1, 2, . . . t− 1. The weight of the chain C is

w(C) = 2n −
t

∑

i=1

(

n

ai

)

.
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We claim that this is maximized when the numbers {a1, a2, . . . at} are all the numbers between
0 and n that give the same residue when divided by k.

Assume that w(C) is maximized by a different kind of set {a1, a2, . . . at}. Then there is an
index i such that ai+1 − ai < k.

If ai ≤ n
2
then we can decrease the numbers {a1, a2, . . . ai} by 1. (If a1 becomes -1 then

we simply remove that number.) The resulting set of numbers will still satisfy the conditions
and w(C) increases. Otherwise, ai+1 > n

2
must hold. Similarly, we can increase the numbers

{ai+1, ai+2, . . . an} by 1 to achieve the same result. We proved that

w(C) ≤ 2n −min
j∈[k]

∑

i≡j mod k

(

n

i

)

= max
j∈[k]

{

∑

i 6≡j mod k

(

n

i

)

}

holds for any full chain C. Therefore the same upper bound holds for |F| as well.
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In Erdős Centennial, pages 169–264. Springer, 2013.

[10] J. R. Griggs and W.-T. Li. Progress on poset-free families of subsets. pages 317–338, 2016.

[11] J. R. Johnson and J. Talbot. Vertex Turán problems in the hypercube. Journal of Combi-
natorial Theory, Series A, 117(4):454–465, 2010.

[12] K. A. Johnson and R. Entringer. Largest induced subgraphs of the n-cube that contain no
4-cycles. Journal of Combinatorial Theory, Series B, 46(3):346–355, 1989.

[13] E. Kostochka. Piercing the edges of the n-dimensional unit cube. Diskret. Analiz Vyp,
28(223):55–64, 1976.

[14] P. Turán. On an external problem in graph theory. Mat. Fiz. Lapok, 48:436–452, 1941.

9


	1 Introduction
	2 Proofs
	2.1 Proof of Theorem ??
	2.2 Proof of Theorem ??
	2.3 Proof of Theorem ??


