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Remarks on the notion of homo-derivations
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Abstract

The purpose of this paper is to study the (different) notions of homo-derivations. These are additive map-

pings f of a ring R that also fulfill the identity

f (xy) = f (x)y + x f (y) + f (x) f (y) (x, y ∈ R) ,

or (in case of the other notion) the system of equations

f (xy) = f (x) f (y)

f (xy) = f (x)y + x f (y)
(x, y ∈ R) .

Our primary aim is to investigate the above equations without additivity as well as the following Pexiderized

equation

f (xy) = h(x)h(y) + xk(y) + k(x)y.

The obtained results show that under rather mild assumptions homo-derivations can be fully characterized,

even without the additivity assumption.

Dedicated to the 70th birthday of Professor Antal Járai.

1 Introduction and preliminaries

The main aim of this paper is to present some characterization theorems concerning homomorphisms, derivations

and also homo-derivations. Thus, at first, we list some notions and preliminary results that will be used in the

sequel. All of these statements and definitions can be found in Kuczma [7] and in Zariski–Samuel [13] and also

in Kharchenko [6].

Homomorphisms and derivations

Definition 1. Let P and Q be (not necessarily unital) rings. A function f : P → Q is called a homomorphism (of

P into Q) if it is additive, i.e.

f (x + y) = f (x) + f (y) (x, y ∈ P)

and also

f (xy) = f (x) f (y) (x, y ∈ P)

holds.

If moreover, f is one-to-one, then f is called a monomorphism. If f is onto, then f is called an epimorphism.

A homomorphism which is a monomorphism and an epimorphism is called an isomorphism. In case P = Q, the

function f is termed to be an endomorphism.

Definition 2. Let Q be a (not necessarily unital) ring and let P be a subring of Q. A function f : P→ Q is called

a derivation if it is additive and also satisfies the so-called Leibniz rule, i.e. equation

f (xy) = f (x)y + x f (y) (x, y ∈ P) .
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Remark. Let Q be a ring and let P be a subring of Q. Functions f : P → Q fulfilling the Leibniz rule only, will

be termed Leibniz functions.

Among derivations one can single out so-called inner derivations, similarly as in the case of automorphisms.

Definition 3. Let R be a ring and b ∈ R, then the mapping adb : R→ R defined by

adb(x) = [x, b] = xb − bx (x ∈ R)

is a derivation. A derivation f : R → R is termed to be an inner derivation if there is a b ∈ R so that f = adb. We

say that a derivation is an outer derivation if it is not inner.

An another fundamental example for derivations is the following.

Remark. Let F be a field, and let in the above definition P = Q = F[x] be the ring of polynomials with coefficients

from F. For a polynomial p ∈ F[x], p(x) =
∑n

k=0 ak xk, define the function f : F[x] → F[x] as

f (p) = p′,

where p′(x) =
∑n

k=1 kakxk−1 is the derivative of the polynomial p. Then the function f clearly fulfills

f (p + q) = f (p) + f (q)

f (pq) = p f (q) + q f (p)

for all p, q ∈ F[x]. Hence f is a derivation.

Clearly, commutative rings admit only trivial inner derivations. At the same time, it not so evident whether

commutative rings (or fields) do or do not admit nontrivial outer derivations. To answer this problem partially,

here we recall Theorem 14.2.1 from Kuczma [7].

Theorem 1. Let K be a field of characteristic zero, let F be a subfield of K, let S be an algebraic base of K over

F, if it exists, and let S = ∅ otherwise. Let f : F → K be a derivation. Then, for every function u : S → K, there

exists a unique derivation g : K→ K such that g|F = f and g|S = u.

In [4], El Sofy introduced the notion of homo-derivations. After that several results appeared where the

authors proved commutativity results for the domain of these mappings, see e. g. [1, 2, 8, 11]. It is objectionable

however that there have not been made attempt to characterize or to compare these notions. One of the main

purpose of this work is to clarify these problems.

Definition 4 (El Sofy [4]). Let Q be a ring and let P be a subring of Q. A function f : P → Q is called a

homo-derivation if it is additive and also satisfies the equation

f (xy) = f (x)y + x f (y) + f (x) f (y) (x, y ∈ P) .

We remark that there can be found some other ways of introducing homo-derivations. Here we present a

further definition as it appears in [10].

Definition 5 (Mehdi Ebrahimi–Pajoohesh [10]). Let Q be a ring and let P be a subring of Q. A function f : P→ Q

is called a homo-derivation if it is a homomorphism and also satisfies the Leibniz rule.

Polynomials and the Levi-Cività equation

As we will see in the second section, the notion of exponential polynomials and the so-called Levi-Cività func-

tional equation will play a distinguished role while proving our results.

In view of Theorem 10.1 of [12], if (G, ·) is an Abelian group, then any function f : G → C satisfying the

so-called Levi-Cività functional equation, that is,

f (x · y) =

n∑

i=1

gi(x)hi(y) (x, y ∈ G) (1)
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for some positive integer n and functions gi, hi : G → C (i = 1, . . . , n), is an exponential polynomial of order at

most n.

At the same time, in equation (1) not only the function f , but also the mappings gi, hi : G → C (i = 1, . . . , n)

are assumed to be unknown.

If either the functions g1, . . . , gn or the functions h1, . . . , hn are linearly dependent, then the number n appearing

in equation (1) can be reduced and in this case the general solution of the equation can contain arbitrary functions,

we shall call this case degenerate.

Alternatively, if the functions h1, . . . , hn are linearly independent, then g1, . . . , gn are linear combinations of

the translates of f , hence they are exponential polynomials of order at most n, too. Moreover, they are built up

from the same additive and exponential functions as the function f . Roughly speaking this is Theorem 10.4 of

[12] which is the following.

Theorem 2. Let G be an Abelian group, n be a positive integer and f , gi, hi : G → C (i = 1, . . . , n) be functions

so that both the sets {g1, . . . , gn} and {h1, . . . , hn} are linearly independent. The functions f , gi, hi : G → C (i =

1, . . . , n) form a non-degenerate solution of equation (1) if and only if

(a) there exist positive integers k, n1, . . . , nk with n1 + · · · + nk = n;

(b) there exist different nonzero complex exponentials m1, . . . ,mk;

(c) for all j = 1, . . . , k there exists linearly independent sets of complex additive functions
{
a j,1, . . . , a j,n j−1

}
;

(d) there exist polynomials P j,Qi, j,Ri, j : C
n j−1 → C for all i = 1, . . . , n; j = 1, . . . , k in n j − 1 complex variables

and of degree at most n j − 1;

so that we have

f (x) =

k∑

j=1

P j

(
a j,1(x), . . . , a j,n j−1(x)

)
m j(x)

gi(x) =

k∑

j=1

Qi, j

(
a j,1(x), . . . , a j,n j−1(x)

)
m j(x)

and

hi(x) =

k∑

j=1

Ri, j

(
a j,1(x), . . . , a j,n j−1(x)

)
m j(x)

for all x ∈ G and i = 1, . . . , n.

Let G be a groupoid and F be field. Given (Ai, j)i, j ∈Mn×n(F) and (Γ
(k)

i, j
)i, j ∈Mn×n(F), in [9] McKiernan studied

the following problems.

(1) Find all functions h, fi, gi : G → F (i = 1, . . . , n) satisfying the equation

h(xy) =

n∑

i, j=1

Ai, j fi(x)g j(y) (x, y ∈ G) . (2)

(2) Find all functions gi : G → F (i = 1, . . . , n) satisfying the system of equations

gk(xy) =

n∑

i, j=1

Γ
(k)

i, j
gi(x)g j(y) (x, y ∈ G, k = 1, . . . , n) (3)

The solutions are obtained by showing that the two problems are essentially equivalent, then transforming to

a matrix problem and applying one of his earlier results concerning a multiplicative matrix equation. All in all,

the main result of [9] is that if
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(a) G is a (not necessarily commutative) semigroup,

(b) F is an algebraically closed field with char(F) ≥ (n − 1)!,

(c) det
(
Ai, j

)
, 0,

(d) f1, . . . , fn are linearly independent,

(e) g1, . . . , gn are linearly independent,

then the solutions of equation (2) as well as (3) are exponential polynomials.

In what follows [12, Lemma 4.2], that is, the statement below will be utilized several times.

Theorem 3. Let G be an Abelian group, K a field, X a K-linear space and V a translation invariant linear space

of X-valued functions on G. Let ki be nonnegative integers, n ≥ 1, mi : G → K different nonzero exponentials,

Ai : Gni → X symmetric, ki-additive functions and qi : G → X polynomials of degree at most ki − 1 (i = 1, . . . , n).

If the function
n∑

i=1

(
diag(Ai) + qi

)
mi

belongs to V , then there exist polynomials ri : G → X of degree at most ki − 1 such that
(
diag(Ai) + ri

)
mi belongs

to V for i = 1, . . . , n.

From this, with the choice V = {0} and X = K we get the following.

Proposition 1. Let G be an Abelian group, K be a field and n be a positive integer. Suppose that for each x ∈ G

p1(x)m1(x) + · · · + pn(x)mn(x) = 0

holds, where m1, . . . ,mn : G → K are different exponentials and p1, . . . , pn : G → K are (generalized) polynomi-

als. Then for all i = 1, . . . , n the polynomial pi is identically zero.

2 Results

The functional equation of homo-derivations

As the theorem below shows, the notion of homo-derivations (in the sense of El Sofy [4]) can be characterized

even without additivity supposition.

Theorem 4. Let P and Q be rings such that P is a subring of Q and assume that ε is an arbitrary nonzero element

of the center of Q. Function h : P→ Q fulfills the functional equation

h(xy) = h(x)y + xh(y) + εh(x)h(y) (4)

for all x, y ∈ P if and only if there exists a multiplicative function m : P→ Q such that

εh(x) = m(x) − x (x ∈ P) .

Proof. Multiplying equation (4) with ε leads to

εh(xy) = εh(x)y + xεh(y) + εh(x)εh(y) (x, y ∈ P) .

If we add xy to both sides of this equation, then

εh(xy) + xy = εh(x)y + xεh(y) + εh(x)εh(y) + xy (x, y ∈ P) ,

follows. Observe however that

εh(x)y + xεh(y) + εh(x)εh(y) + xy = (εh(x) + x) · (εh(y) + y) (x, y ∈ P) ,

yielding exactly that the mapping m : P→ Q defined through

m(x) = εh(x) + x (x ∈ P)

is multiplicative. �
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Remark. In the case the ring Q is unital, ε = 1 is a nonzero central element of the ring Q. Hence any solution of

the above equation can be represented as

h(x) = m(x) − x (x ∈ P) ,

with an appropriate multiplicative function m.

As an immediate corollary we get the following.

Corollary 1. Let P be a subring of the ring Q and assume that ε is an arbitrary nonzero element of the center of

Q. The additive mapping a : P→ Q fulfills functional equation

a(xy) = a(x)y + xa(y) + εa(x)a(y)

for all x, y ∈ P if and only if there exists a homomorphism ϕ : P→ Q such that

εa(x) = ϕ(x) − x (x ∈ P) .

In view of the above result, homo-derivations in the sense of El Sofy [4] on commutative rings can be charac-

terized.

Corollary 2. Let P be a subring of the commutative ring Q and a : P → Q be a homo-derivation in the sense of

El Sofy [4]. Then and only then there exists a homomorphism ϕ : P→ Q such that

a(x) = ϕ(x) − x (x ∈ P) .

The proposition below considers the other notion of homo-derivations.

Proposition 2. Let P be a subring of the ring Q, the function f : P→ Q fulfills the system of equations

f (xy) = f (x) f (y)

f (xy) = f (x)y + x f (y)
(x ∈ F)

if and only if there exists a non-zero constant α ∈ Q such that α · f and f · α are identically zero.

Proof. Assume that the function f : P→ Q satisfies the above system. Then clearly, functional equation

f (x) f (y) = f (x)y + x f (y) (x, y ∈ P)

also holds. After some rearrangement we arrive at

f (x)
[
f (y) − y

]
= x f (y) (x ∈ P) .

Since f must be a Leibniz function,

f (y) − y = 0

cannot hold for all y ∈ P. Thus there exists y∗ ∈ P such that f (y∗) − y∗ , 0, from which

f (x)
[
f (y∗) − y∗

]
= x f (y∗) (x ∈ P) .

In other words, there are constants α, β ∈ Q with α , 0 such that

f (x)α = xβ (x ∈ P) .

Writing this back to the Leibniz equation β = 0 follows, yielding that f · α is identically zero. Changing the role

of x and y in the above argument, α · f ≡ 0 also follows. �

Corollary 3. Let P be a subring of the ring Q, a function a : P → Q is a homo-derivation in the sense of Mehdi

Ebrahimi–Pajoohesh [10] if and only if there exists a nonzero constant α ∈ Q such that α · a ≡ a · α ≡ 0.

Especially, if Q has no zero-divisors, then a has to be identically zero.
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On the functional equation f (xy) = h(x)h(y) + xk(y) + k(x)y

In this subsection we determine the solutions f , h, k : F→ K of the functional equation

f (xy) = h(x)h(y) + xk(y) + k(x)y (x, y ∈ F) . (5)

From this, the additive solutions of the same equation will follow immediately. Here we suppose that K is an

algebraically closed field with char(K) , 2 and F is a subfield of K.

Observe that equation (5) is a special Levi-Cività equation. Therefore according to the value dim lin (id, h, k),

we have to distinguish several cases. Clearly,

dim lin (id, h, k) = 3

means that the mappings involved in the right hand side of (5) are linearly independent. Thus in the degenerate

cases we have dim lin (id, h, k) < 3.

Degenerate cases

Firstly, let us assume that dim lin (id, h, k) = 1. In this situation there exist constants λ1, λ2 ∈ K such that

h(x) = λ1x and k(x) = λ2x (x ∈ F) .

Proposition 3. Let λ1, λ2 ∈ K be arbitrarily fixed. Function f : F→ K fulfills functional equation (5) if and only

if

f (x) =
(
λ2

1 + 2λ2

)
x (x ∈ F) .

Proof. In case

h(x) = λ1x and k(x) = λ2x (x ∈ F) ,

our equation reduces to

f (xy) =
(
λ2

1 + 2λ2

)
xy (x, y ∈ F) ,

from which the results follows immediately. �

Secondly, assume that dim lin (id, h, k) = 2, which can happen in different ways. If {id, h} are linearly depen-

dent, that is

h(x) = λx (x ∈ F)

holds with a certain λ ∈ K, then we have the following.

Proposition 4. Let λ ∈ K be an arbitrary constant. Functions f , k : F→ K fulfill the functional equation

f (xy) = λ2xy + xk(y) + k(x)y (x, y ∈ F)

if and only if there exists a Leibniz function δ : F→ K such that

k(x) = k(1)x + δ(x)

f (x) =
(
λ2
+ 2k(1)

)
x + δ(x)

(x ∈ F) .

Proof. Under the above assumptions, equation (5) with y = 1 yields that

f (x) = (λ2
+ k(1))x + k(x) (x ∈ F) .

Writing this back into our equation, we get that

k(xy) + (λ2
+ k(1))xy = xk(y) + k(x)y + λ2xy (x, y ∈ F) .

This means that the function k : F→ K fulfills

k(xy) + k(1)xy = xk(y) + k(x)y (x, y ∈ F) .

Thus, there exists a Leibniz function δ : F→ K such that

k(x) = k(1)x + δ(x)

f (x) =
(
λ2
+ 2k(1)

)
x + δ(x)

(x ∈ F) .

�
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Corollary 4. Let λ ∈ K be an arbitrary constant. The additive functions f , k : F → K fulfill the functional

equation

f (xy) = λ2xy + xk(y) + k(x)y (x, y ∈ F)

if and only if there exists a derivation d : F→ K such that

k(x) = k(1)x + d(x)

f (x) =
(
λ2
+ 2k(1)

)
x + d(x)

(x ∈ F) .

Our second case is when {id, k} are linearly dependent, that is if

k(x) = λx (x ∈ F)

with a certain λ ∈ K.

Proposition 5. Let λ ∈ F be arbitrarily fixed. Functions f , h : F→ K fulfill the functional equation

f (xy) = h(x)h(y) + 2λxy (x, y ∈ F)

if and only if there exists a multiplicative function m : F→ K such that

h(x) = h(1)m(x)

f (x) = h(1)2m(x) + 2λx
(x ∈ F) .

Proof. Define the function f̃ : F→ K through

f̃ (x) = f (x) − 2λx (x ∈ F)

to deduce that

f̃ (xy) = h(x)h(y) (x, y ∈ F) .

This identity with y = 1 implies that

f̃ (x) = h(1)h(x) (x ∈ F) .

Therefore,

A) either h(1) = 0 from which

f (x) = 2λx (x ∈ F)

and h ≡ 0 follows;

B) or h(1) , 0 from which we get that

h(xy)

h(1)
=

h(x)

h(1)
·

h(y)

h(1)
(x, y ∈ F) .

All in all, there exists a multiplicative function m : F→ K such that

h(x) = h(1)m(x) (x ∈ F) .

From this we also obtain that

f (x) = h(1)2m(x) + 2λx (x ∈ F) .

�

Remark. Similarly, as previously, the additive solutions of the above equation are of the form

h(x) = h(1)ϕ(x)

f (x) = h(1)2ϕ(x) + 2λx
(x ∈ F) ,

with a certain homomorphism ϕ : F→ K.
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Finally, the last possibility is that {h, k} is linearly dependent. In this case there are constants λ1, λ2 ∈ K not

vanishing simultaneously such that

λ1k(x) + λ2h(x) = 0

for all x ∈ F. Again we have the following alternative.

A) Either λ2 = 0 and then k ≡ 0. In this case (5) is

f (xy) = h(x)h(y) (x, y ∈ F) .

Using Proposition 5 we finally get that there exists a multiplicative function m : F→ K such that

h(x) = h(1)m(x)

f (x) = h(1)2m(x)
(x ∈ F) .

B) Or λ2 , 0 and then there exists a constant λ ∈ K such that

h(x) = λk(x) (x ∈ F) .

In this case equation (5) is of the form

f (xy) = k(x)y + xk(y) + λ2k(x)k(y) (x, y ∈ F) .

Proposition 6. Let λ ∈ K. Functions f , k : F→ K fulfill the functional equation

f (xy) = xk(y) + k(x)y + λ2k(x)k(y) (x, y ∈ F)

if and only if

A) in case λ = 0 and there exists a Leibniz function δ : F→ K such that

k(x) = k(1)x + δ(x)

f (x) = 2k(1)x + δ(x)
(x ∈ F) ,

B) in case λ , 0

(a) either there exists a constant γ ∈ K such that

k(x) = γx

f (x) =
(
λ2γ2

+ 2γ
)

x
(x ∈ F) .

(b) or there exists a multiplicative function m : F→ K and a constant γ ∈ K such that

k(x) = −
1

λ2
x + γm(x)

f (x) = −
1

λ2
x + γ2λ2m(x)

(x ∈ F) .

Proof. Observe, that our equation with y = 1 immediately yields that

f (x) = (1 + λ2k(1))k(x) + k(1)x (x ∈ F) .

If λ = 0, then from this we get that the mapping k̃ defined on F by

k̃(x) = k(x) − k(1)x (x ∈ F) ,

is a Leibniz function.

If λ , 0, then define the function h : F→ K by

h(x) = x +
λ2

2
k(x) (x ∈ F)

to derive

f (xy) = k(x)h(y) + h(x)k(y) (x, y ∈ F) ,

that is the same sine-type equation as in the proof of Proposition 4. Similarly as there, a careful adaptation shows

that alternative (a) corresponds to the case when k and h are linearly dependent, while alternative (b) corresponds

to the case when k and h are linearly independent. �
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Remark. If we would like to describe the additive solutions of the above functional equation, then the mapping

δ should be replaced by a derivation d : F → K, and the mapping m should be replaced by a homomorphism

ϕ : F→ K.

The non-degenerate case

In this subsection we investigate the so-called non-degenerate case. More precisely, the problem to be studied

is the following. Let K be an algebraically closed field with char(K) , 2 zero and F be a subfield of K, and

f , h, k : F→ K be functions so that the system {id, h, k} is linearly independent. In what follows we determine the

solutions of the functional equation

f (xy) = h(x)h(y) + xk(y) + k(x)y (x, y ∈ F) .

Using the results of Székelyhidi [12] and McKiernan [9] delineated in the first section, we derive immediately

that the solutions f , h, k : F → K of the above equation are exponential polynomials of degree at most two.

Depending on this degree we have three different possibilities, see pages 89-92 of [12] where the description of

the functional equation

f (xy) = g1(x)h1(y) + g2(x)h2(y) + g3(x)h3(y)

can be found. This obviously covers our equation with the choice

g1(x) = h1(x) = h(x)

g2(x) = x

h2(x) = k(x)

g3(x) = k(x)

h3(x) = x

(x ∈ F) .

The first possibility is that there exist different nonzero multiplicative functions m1,m2,m3 : F → K and

constants αi, β
(i)

j
, γ

( j)

i
∈ K, i, j = 1, 2, 3 such that

f (x) = α1m1(x) + α2m2(x) + α3m3(x)

gi(x) = β
(i)

1
m1(x) + β

(i)

2
m2(x) + β

(i)

3
m3(x)

hi(x) = γ
(i)

1
m1(x) + γ

(i)

2
m2(x) + γ

(i)

3
m3(x)

(x ∈ F) .

Condition g1 = h1 implies that

β
(1)

j
= γ

(1)

j
( j = 1, 2, 3) .

Similarly, from h2 = g3 we obtain that

β
(3)

j
= γ

(2)

j
( j = 1, 2, 3) .

Finally, from

g2(x) = h3(x) = x (x ∈ F)

we derive that one of the multiplicative functions m1,m2,m3 is the identity, say m1 and

β
(2)

2
= β

(2)

3
= 0 β

(2)

1
= 1

γ
(3)

2
= γ

(3)

3
= 0 γ

(3)

1
= 1.

Using this and our functional equation, we get that for the above constants



β
(1)

1
1 β

(3)

1

β
(1)

2
0 β

(3)

2

β
(1)

3
0 β

(3)

3

 ·



β
(1)

1
β

(1)

2
β

(1)

3

β
(3)

1
β

(3)

2
β

(3)

3

1 0 0

 =



α1 0 0

0 α2 0

0 0 α3


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has to hold. Especially, β
(1)

2
· β

(1)

3
= 0, which yields that the coefficient of m2 or that of m3 is zero. All in all, there

exists a multiplicative function m : F→ K and constants such that

f (x) = (β2
1
+ 2γ1)x + β2

2
m(x)

h(x) = β1x + β2m(x)

k(x) = γ1x + γ2m(x)

(x ∈ F) .

In this case however the functions id, h and k span a linear space of dimension at most two. Notice that we are

interested in the case dim lin (id, h, k) = 3. Therefore the above type of solutions does not appear.

The second possibility is that there exist different multiplicative functions m1,m2 and a logarithmic function

l : F× → K and constants such that

f (x) = (α1l(x) + α2) m1(x) + α3m2(x)

gi =

(
β

(i)

1
l(x) + β

(i)

2

)
m1(x) + β3m2(x)

hi =

(
γ

(i)

1
l(x) + γ

(i)

2

)
m1(x) + γ3m2(x)

(x ∈ F, i = 1, 2, 3) .

In our case
g1(x) = h1(x) = h(x)

g2(x) = x

h2(x) = k(x)

g3(x) = k(x)

h3(x) = x

(x ∈ F) ,

thus either m1 or m2 is the identity. If we would have

m2(x) = x (x ∈ F) ,

then after comparing the coefficients

f (x) = α1x + α2m(x)

h(x) = β1x + β2m(x)

k(x) = γ1x + γ2m(x)

(x ∈ F) .

would follow with certain constants. Similarly as above, in this case we would have dim lin (id, h, k) ≤ 2, contrary

to our assumptions.

The fact that

m1(x) = x (x ∈ F) ,

means that there exists a multiplicative function m : F → K and a logarithmic function l : F× → K and constants

such that
f (x) = (α1l(x) + α2) x + α3m(x)

h(x) = (β1l(x) + β2) x + β3m(x)

k(x) = (γ1l(x) + γ2) x + γ3m(x)

(x ∈ F) .

Inserting this back into our equation the system of equations

β1 = 0

α1 = γ1

α2 = β
2
2
+ 2γ2

α3 = β
2
3

follow, that is,

f (x) =
(
γ1l(x) + β2

2 + 2γ2

)
x + β2

3m(x)

h(x) = β2x + β3m(x)

k(x) = (γ1l(x) + γ2) x + γ3m(x)

,
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where additionally γ3 + β2β3 = 0 also has to hold. To guarantee the system {id, h, k} to be linearly independent,

β3 , 0 and γ1 , 0 also has to be supposed.

The last possibility is that all the involved functions are exponential polynomials of degree two. Since

g2(x) = h3(x) = x (x ∈ F) ,

the corresponding multiplicative function is the identity, that is, we have

f (x) =

2∑

p,q=1

αp,qlp(x)lq(x)x +

2∑

p=1

αplp(x)x + αx

h(x) =

2∑

p,q=1

βp,qlp(x)lq(x)x +

2∑

p=1

βplp(x)x + βx

k(x) =

2∑

p,q=1

γp,qlp(x)lq(x)x +

2∑

p=1

γplp(x)x + γx

(x ∈ F)

with certain constants and with linearly independent logarithmic functions l1, l2 : F× → K. Substituting these

representations into our equation, firstly

αp,q = βp,q = γp,q = 0 (p, q ∈ {1, 2})

can be concluded, that is, in fact we have that

f (x) =

2∑

p=1

αplp(x)x + αx

h(x) =

2∑

p=1

βplp(x)x + βx

k(x) =

2∑

p=1

γplp(x)x + γx

(x ∈ F) .

Again, the comparison of the coefficients leads to

β1 = 0 β2 = 0 α1 = γ1 α2 = γ2 α = β2
+ 2γ,

that is, there exist linearly independent logarithmic functions l1, l2 : F× → K and constants γ1, γ2, β, γ ∈ K such

that
f (x) = γ1l1(x)x + γ2l2(x)x + (β2

+ 2γ)x

h(x) = βx

k(x) = γ1l1(x)x + γ2l2(x)x + γx

(x ∈ F) .

Observe that in this case id and h are linearly dependent, yielding that this possibility cannot occur in our situation.

Summing up, the following statement holds true.

Theorem 5. Let f , h, k : F→ K be functions such that the system {id, h, k} is linearly independent. The functional

equation

f (xy) = h(x)h(y) + xk(y) + k(x)y (6)

is fulfilled for any x, y ∈ F if and only if there exists a multiplicative function m : F → K and a logarithmic

function l : F× → K and constants β2, β3, γ1, γ2, γ3 ∈ K such that

f (x) =
(
γ1l(x) + β2

2 + 2γ2

)
x + β2

3m(x)

h(x) = β2x + β3m(x)

k(x) = (γ1l(x) + γ2) x + γ3m(x)

(x ∈ F) ,

where additionally γ3 + β2β3 = 0, β3 , 0 and γ1 , 0 also have to hold.
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3 Further interpretations and open questions

The primary aim of this paper was to study (different) notions of homo-derivations on fields (with and without

additivity supposition) as well as the Pexiderized version of this definition. At the same time, the results obtained

here can be restated with the aid of the notion of alien functional equations. This concept was developed by

J. Dhombres in the paper [3]. However, the interested reader should also consult the survey paper Ger–Sablik [5].

Let X and Y be nonempty sets and E1( f ) = 0 and E2( f ) = 0 be two functional equations for the function

f : X → Y . We say that equations E1 and E2 are alien, if any solution f : X → Y of the functional equation

E1( f ) + E2( f ) = 0

also solves the system

E1( f ) = 0

E2( f ) = 0.

Furthermore, equations E1 and E2 are strongly alien, if any pair f , g : X → Y of functions that solves

E1( f ) + E1(g) = 0

also yields a solution for

E1( f ) = 0

E2(g) = 0.

The following statement shows that the multiplicative Cauchy equation and the Leibniz rule equation are not

strongly alien, this is an easy consequence of Theorem 5.

Proposition 7. Let h, k : F→ K be functions such that the system {id, h, k} is linearly independent. The functional

equation

h(xy) + k(xy) = h(x)h(y) + xk(y) + k(x)y (7)

is fulfilled for any x, y ∈ F if and only if there exists a multiplicative function m : F → K and a logarithmic

function l : F× → K and constants β, γ ∈ K, β , 1, γ , 0 such that

h(x) = βx + (1 − β)m(x)

k(x) =
(
γl(x) + β − β2

)
x + (β2 − β)m(x)

(x ∈ F) .

As the proposition below shows, the multiplicative Cauchy equation and the Leibniz rule equation are alien,

cf. Proposition 2 and take λ = µ in the corollary below.

Corollary 5. Let λ, µ ∈ K be arbitrarily fixed constants not vanishing simultaneously. Function f : F→ K fulfills

the functional equation

λ
[
f (xy) − f (x)y − x f (y)

]
+ µ
[
f (xy) − f (x) f (y)

]
= 0 (x, y ∈ F) (8)

if and only if

(A) either λ = 0 and f is multiplicative;

(B) or µ = 0 and f is a Leibniz function;

(C) or none of them is zero and

(a) f is identically zero

(b) or

f (x) =
µ − λ

µ
· x (x ∈ F) .

Remark. Under the assumptions of the previous corollary, the additive solutions of equation (8) are the following.
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(A) either λ = 0 and f is a homomorphism;

(B) or µ = 0 and f is a derivation;

(C) or none of them is zero and

(a) f is identically zero

(b) or

f (x) =
µ − λ

µ
· x (x ∈ F) .

Open Problems. In this paper equation (4) was considered under rather mild assumptions on the domain and also

on the range. At the same time, while investigating functional equation (5) we always assumed that the range of

the involved mappings is a commutative, algebraically closed field K with char(K) , 2. The reason for this is

that our main tools were Theorem 2 and the related results of McKiernan [9]. Clearly, the above equations can be

studied without these assumptions. We remark that in case of the so-called degenerate cases a careful adaptation

of the proofs shows that the same results hold true for commutative rings (at some places we have to assume that

the range does not have any zero-divisors). Therefore we can formulate the following open questions.

(A) The algebraic closedness of the fieldK essential in our results. Nevertheless, if the fieldK is not algebraically

closed, then we may take algcl(K) as the extended range. Using our method, algcl(K)-valued solutions can be

described and every K-valued solution belongs to the above larger solution space. How can these solutions

be recognized in the larger solution space?

(B) To apply the results of Székelyhidi [12] and McKiernan [9], the assumption F ⊂ K be a field is sufficient, but

may not be necessary. Observe that we only need F to be a (commutative) subring of K. In case the range Q

is only a (commutative) ring, then what else should be supposed about Q, to get the same results?

It is worth to note that if Q has no zero divisors, then up to isomorphism there exists a unique field of fractions

that we may denote by K. In this case K-valued functions can be considered and if it is needed we should

take the algebraic closure of this field (c.f. part (A)).

(C) In case P ⊂ Q are (commutative) rings and we consider mappings from P to Q, then are there different

solutions of (5) then presented here?
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